Skip to main content
Top
Published in: Annals of Intensive Care 1/2015

Open Access 01-12-2015 | Review

Non-invasive monitoring of oxygen delivery in acutely ill patients: new frontiers

Author: Azriel Perel

Published in: Annals of Intensive Care | Issue 1/2015

Login to get access

Abstract

Hypovolemia, anemia and hypoxemia may cause critical deterioration in the oxygen delivery (DO2). Their early detection followed by a prompt and appropriate intervention is a cornerstone in the care of critically ill patients. And yet, the remedies for these life-threatening conditions, namely fluids, blood and oxygen, have to be carefully titrated as they are all associated with severe side-effects when administered in excess. New technological developments enable us to monitor the components of DO2 in a continuous non-invasive manner via the sensor of the traditional pulse oximeter. The ability to better assess oxygenation, hemoglobin levels and fluid responsiveness continuously and simultaneously may be of great help in managing the DO2. The non-invasive nature of this technology may also extend the benefits of advanced monitoring to wider patient populations.
Literature
1.
go back to reference Ackland GL, Iqbal S, Paredes LG, et al. Individualised oxygen delivery targeted haemodynamic therapy in high-risk surgical patients: a multicentre, randomised, double-blind, controlled, mechanistic trial. Lancet Respir Med. 2015;3:33–41.CrossRefPubMed Ackland GL, Iqbal S, Paredes LG, et al. Individualised oxygen delivery targeted haemodynamic therapy in high-risk surgical patients: a multicentre, randomised, double-blind, controlled, mechanistic trial. Lancet Respir Med. 2015;3:33–41.CrossRefPubMed
2.
go back to reference Schwartz S, Frantz RA, Shoemaker WC. Sequential hemodynamic and oxygen transport responses in hypovolemia, anemia, and hypoxia. Am J Physiol. 1981;241:H864–71.PubMed Schwartz S, Frantz RA, Shoemaker WC. Sequential hemodynamic and oxygen transport responses in hypovolemia, anemia, and hypoxia. Am J Physiol. 1981;241:H864–71.PubMed
3.
go back to reference Shah A, Shelley KH. Is pulse oximetry an essential tool or just another distraction? The role of the pulse oximeter in modern anesthesia care. J Clin Monit Comput. 2013;27:235–42.CrossRefPubMed Shah A, Shelley KH. Is pulse oximetry an essential tool or just another distraction? The role of the pulse oximeter in modern anesthesia care. J Clin Monit Comput. 2013;27:235–42.CrossRefPubMed
4.
go back to reference Lee LA, Domino KB. The closed claims project. has it influenced anesthetic practice and outcome? Anesthesiol Clin North Am. 2002;20:485–501.CrossRef Lee LA, Domino KB. The closed claims project. has it influenced anesthetic practice and outcome? Anesthesiol Clin North Am. 2002;20:485–501.CrossRef
5.
go back to reference Ehrenfeld JM, Funk LM, Van Schalkwyk J, et al. The incidence of hypoxemia during surgery: evidence from two institutions. Can J Anaesth. 2010;57:888–97.PubMedCentralCrossRefPubMed Ehrenfeld JM, Funk LM, Van Schalkwyk J, et al. The incidence of hypoxemia during surgery: evidence from two institutions. Can J Anaesth. 2010;57:888–97.PubMedCentralCrossRefPubMed
6.
go back to reference Epstein RH, Dexter F, Lopez MG, Ehrenfeld JM. Anesthesiologist staffing considerations consequent to the temporal distribution of hypoxemic episodes in the postanesthesia care unit. Anesth Analg. 2014;119:1322–33.CrossRefPubMed Epstein RH, Dexter F, Lopez MG, Ehrenfeld JM. Anesthesiologist staffing considerations consequent to the temporal distribution of hypoxemic episodes in the postanesthesia care unit. Anesth Analg. 2014;119:1322–33.CrossRefPubMed
7.
go back to reference Khemani RG, Rubin S, Belani S, et al. Pulse oximetry vs. PaO2 metrics in mechanically ventilated children: berlin definition of ARDS and mortality risk. Intensiv Care Med. 2015;41:94–102.CrossRef Khemani RG, Rubin S, Belani S, et al. Pulse oximetry vs. PaO2 metrics in mechanically ventilated children: berlin definition of ARDS and mortality risk. Intensiv Care Med. 2015;41:94–102.CrossRef
8.
go back to reference Villar J, Blanco J, del Campo R, et al. Assessment of PaO2/FiO2 for stratification of patients with moderate and severe acute respiratory distress syndrome. BMJ Open. 2015;5:e006812.PubMedCentralCrossRefPubMed Villar J, Blanco J, del Campo R, et al. Assessment of PaO2/FiO2 for stratification of patients with moderate and severe acute respiratory distress syndrome. BMJ Open. 2015;5:e006812.PubMedCentralCrossRefPubMed
10.
go back to reference Aust H, Kranke P, Eberhart LH, et al. Impact of medical training and clinical experience on the assessment of oxygenation and hypoxaemia after general anaesthesia: an observational study. J Clin Monit Comput. 2015;29:415–26.CrossRefPubMed Aust H, Kranke P, Eberhart LH, et al. Impact of medical training and clinical experience on the assessment of oxygenation and hypoxaemia after general anaesthesia: an observational study. J Clin Monit Comput. 2015;29:415–26.CrossRefPubMed
11.
go back to reference Douw G, Schoonhoven L, Holwerda T, et al. Nurses’ worry or concern and early recognition of deteriorating patients on general wards in acute care hospitals: a systematic review. Crit Care. 2015;19:230.PubMedCentralCrossRefPubMed Douw G, Schoonhoven L, Holwerda T, et al. Nurses’ worry or concern and early recognition of deteriorating patients on general wards in acute care hospitals: a systematic review. Crit Care. 2015;19:230.PubMedCentralCrossRefPubMed
12.
go back to reference Taenzer AH, Pyke JB, McGrath SP, Blike GT. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010;112:282–7.CrossRefPubMed Taenzer AH, Pyke JB, McGrath SP, Blike GT. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010;112:282–7.CrossRefPubMed
13.
go back to reference Canet J, Sabate S, Mazo V, et al. Development and validation of a score to predict postoperative respiratory failure in a multicentre European cohort: a prospective, observational study. Eur J Anaesthesiol. 2015 Feb 13. (Epub ahead of print). Canet J, Sabate S, Mazo V, et al. Development and validation of a score to predict postoperative respiratory failure in a multicentre European cohort: a prospective, observational study. Eur J Anaesthesiol. 2015 Feb 13. (Epub ahead of print).
14.
go back to reference Fu ES, Downs JB, Schweiger JW, Miguel RV, Smith RA. Supplemental oxygen impairs detection of hypoventilation by pulse oximetry. Chest. 2004;126:1552–8.CrossRefPubMed Fu ES, Downs JB, Schweiger JW, Miguel RV, Smith RA. Supplemental oxygen impairs detection of hypoventilation by pulse oximetry. Chest. 2004;126:1552–8.CrossRefPubMed
15.
go back to reference Lee LA, Caplan RA, Stephens LS, et al. Postoperative opioid-induced respiratory depression: a closed claims analysis. Anesthesiology. 2015;122:659–65.CrossRefPubMed Lee LA, Caplan RA, Stephens LS, et al. Postoperative opioid-induced respiratory depression: a closed claims analysis. Anesthesiology. 2015;122:659–65.CrossRefPubMed
16.
go back to reference Kelley SD, Ramsay MA. Respiratory rate monitoring: characterizing performance for emerging technologies. Anesth Analg. 2014;119:1246–8.CrossRefPubMed Kelley SD, Ramsay MA. Respiratory rate monitoring: characterizing performance for emerging technologies. Anesth Analg. 2014;119:1246–8.CrossRefPubMed
17.
go back to reference Lauscher P, Mirakaj V, Koenig K, Meier J. Why hyperoxia matters during acute anemia. Minerva Anestesiol. 2013;79:643–51.PubMed Lauscher P, Mirakaj V, Koenig K, Meier J. Why hyperoxia matters during acute anemia. Minerva Anestesiol. 2013;79:643–51.PubMed
18.
go back to reference Bouroche G, Bourgain JL. Pre-oxygenation and general anesthesia: a review. Minerva Anestesiol. 2015;81:910–20.PubMed Bouroche G, Bourgain JL. Pre-oxygenation and general anesthesia: a review. Minerva Anestesiol. 2015;81:910–20.PubMed
19.
go back to reference Day T, Farnell S, Wilson-Barnett J. Suctioning: a review of current research recommendations. Intensiv Crit Care Nurs. 2002;18:79–89.CrossRef Day T, Farnell S, Wilson-Barnett J. Suctioning: a review of current research recommendations. Intensiv Crit Care Nurs. 2002;18:79–89.CrossRef
20.
go back to reference Gebremedhn EG, Mesele D, Aemero D, Alemu E. The incidence of oxygen desaturation during rapid sequence induction and intubation. World J Emerg Med. 2014;5:279–85.PubMedCentralCrossRefPubMed Gebremedhn EG, Mesele D, Aemero D, Alemu E. The incidence of oxygen desaturation during rapid sequence induction and intubation. World J Emerg Med. 2014;5:279–85.PubMedCentralCrossRefPubMed
21.
go back to reference Murphy C, Wong DT. Airway management and oxygenation in obese patients. Can J Anaesth. 2013;60:929–45.CrossRefPubMed Murphy C, Wong DT. Airway management and oxygenation in obese patients. Can J Anaesth. 2013;60:929–45.CrossRefPubMed
23.
go back to reference Baillard C, Fosse JP, Sebbane M, et al. Noninvasive ventilation improves preoxygenation before intubation of hypoxic patients. Am J Respir Crit Care Med. 2006;174:171–7.CrossRefPubMed Baillard C, Fosse JP, Sebbane M, et al. Noninvasive ventilation improves preoxygenation before intubation of hypoxic patients. Am J Respir Crit Care Med. 2006;174:171–7.CrossRefPubMed
24.
go back to reference Martin DS. Grocott MPW. III. Oxygen therapy in anaesthesia: the yin and yang of O2. Br J Anaesth. 2013;111:867–71.CrossRefPubMed Martin DS. Grocott MPW. III. Oxygen therapy in anaesthesia: the yin and yang of O2. Br J Anaesth. 2013;111:867–71.CrossRefPubMed
25.
go back to reference Aggarwal NR, Brower RG. Targeting normoxemia in acute respiratory distress syndrome may cause worse short-term outcomes because of oxygen toxicity. Ann Am Thorac Soc. 2014;11:1449–53.CrossRefPubMed Aggarwal NR, Brower RG. Targeting normoxemia in acute respiratory distress syndrome may cause worse short-term outcomes because of oxygen toxicity. Ann Am Thorac Soc. 2014;11:1449–53.CrossRefPubMed
26.
go back to reference Mikkelsen ME, Anderson B, Christie JD, et al. Can we optimize long-term outcomes in acute respiratory distress syndrome by targeting normoxemia? Ann Am Thorac Soc. 2014;11:613–8.PubMedCentralCrossRefPubMed Mikkelsen ME, Anderson B, Christie JD, et al. Can we optimize long-term outcomes in acute respiratory distress syndrome by targeting normoxemia? Ann Am Thorac Soc. 2014;11:613–8.PubMedCentralCrossRefPubMed
27.
28.
go back to reference Asfar P, Singer M, Radermacher P. Understanding the benefits and harms of oxygen therapy. Intensiv Care Med. 2015;41:1118–21.CrossRef Asfar P, Singer M, Radermacher P. Understanding the benefits and harms of oxygen therapy. Intensiv Care Med. 2015;41:1118–21.CrossRef
29.
go back to reference de Graaff AE, Dongelmans DA, Binnekade JM, de Jonge E. Clinicians’ response to hyperoxia in ventilated patients in a Dutch ICU depends on the level of FiO2. Intensiv Care Med. 2011;37:46–51.CrossRef de Graaff AE, Dongelmans DA, Binnekade JM, de Jonge E. Clinicians’ response to hyperoxia in ventilated patients in a Dutch ICU depends on the level of FiO2. Intensiv Care Med. 2011;37:46–51.CrossRef
30.
go back to reference Berkow L, Rotolo S, Mirski E. Continuous noninvasive hemoglobin monitoring during complex spine surgery. Anesth Analg. 2011;113:1396–402.CrossRefPubMed Berkow L, Rotolo S, Mirski E. Continuous noninvasive hemoglobin monitoring during complex spine surgery. Anesth Analg. 2011;113:1396–402.CrossRefPubMed
31.
go back to reference Frank SM, Savage WJ, Rothschild JA, et al. Variability in blood and blood component utilization as assessed by an anesthesia information management system. Anesthesiology. 2012;117:99–106.CrossRefPubMed Frank SM, Savage WJ, Rothschild JA, et al. Variability in blood and blood component utilization as assessed by an anesthesia information management system. Anesthesiology. 2012;117:99–106.CrossRefPubMed
32.
go back to reference Bennett-Guerrero E, Zhao Y, O’Brien SM, et al. Variation in use of blood transfusion in coronary artery bypass graft surgery. JAMA. 2010;304:1568–75.CrossRefPubMed Bennett-Guerrero E, Zhao Y, O’Brien SM, et al. Variation in use of blood transfusion in coronary artery bypass graft surgery. JAMA. 2010;304:1568–75.CrossRefPubMed
33.
go back to reference Hebert PC, Wells G, Martin C, et al. Variation in red cell transfusion practice in the intensive care unit: a multicentre cohort study. Crit Care. 1999;3:57–63.PubMedCentralCrossRefPubMed Hebert PC, Wells G, Martin C, et al. Variation in red cell transfusion practice in the intensive care unit: a multicentre cohort study. Crit Care. 1999;3:57–63.PubMedCentralCrossRefPubMed
34.
35.
go back to reference Hajjar LA, Vincent JL, Galas FR, et al. Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial. JAMA. 2010;304:1559–67.CrossRefPubMed Hajjar LA, Vincent JL, Galas FR, et al. Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial. JAMA. 2010;304:1559–67.CrossRefPubMed
36.
go back to reference McEvoy MT, Shander A. Anemia, bleeding, and blood transfusion in the intensive care unit: causes, risks, costs, and new strategies. Am J Crit Care. 2013;22:eS1–13.CrossRefPubMed McEvoy MT, Shander A. Anemia, bleeding, and blood transfusion in the intensive care unit: causes, risks, costs, and new strategies. Am J Crit Care. 2013;22:eS1–13.CrossRefPubMed
37.
go back to reference Shander A, Hofmann A, Ozawa S, et al. Activity-based costs of blood transfusions in surgical patients at four hospitals. Transfusion. 2010;50:753–65.CrossRefPubMed Shander A, Hofmann A, Ozawa S, et al. Activity-based costs of blood transfusions in surgical patients at four hospitals. Transfusion. 2010;50:753–65.CrossRefPubMed
38.
go back to reference Musallam KM, Tamim HM, Richards T, et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet. 2011;378:1396–407.CrossRefPubMed Musallam KM, Tamim HM, Richards T, et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet. 2011;378:1396–407.CrossRefPubMed
39.
go back to reference Gutsche JT, Kohl BA. When to transfuse: is it any surprise that we still don’t know? Crit Care Med. 2014;42:2647–8.CrossRefPubMed Gutsche JT, Kohl BA. When to transfuse: is it any surprise that we still don’t know? Crit Care Med. 2014;42:2647–8.CrossRefPubMed
40.
go back to reference Vincent JL. Indications for blood transfusions: too complex to base on a single number? Ann Int Med. 2012;157:71–2.CrossRefPubMed Vincent JL. Indications for blood transfusions: too complex to base on a single number? Ann Int Med. 2012;157:71–2.CrossRefPubMed
41.
go back to reference Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensiv Care Med. 2013;39:165–228.CrossRef Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensiv Care Med. 2013;39:165–228.CrossRef
42.
go back to reference Holst LB, Haase N, Wetterslev J, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371:1381–91.CrossRefPubMed Holst LB, Haase N, Wetterslev J, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371:1381–91.CrossRefPubMed
43.
go back to reference Ehrenfeld JM, Henneman JP, Bulka CM, Sandberg WS. Continuous non-invasive hemoglobin monitoring during orthopedic surgery: a randomized trial. J Blood Disord Transf. 2014;5:237. Ehrenfeld JM, Henneman JP, Bulka CM, Sandberg WS. Continuous non-invasive hemoglobin monitoring during orthopedic surgery: a randomized trial. J Blood Disord Transf. 2014;5:237.
44.
go back to reference Awada WN, Mohmoued MF, Radwan TM, et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4. (Epub ahead of print). Awada WN, Mohmoued MF, Radwan TM, et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4. (Epub ahead of print).
45.
go back to reference Dutton RP, Lee LA, Stephens LS, Posner KL, Davies JM, Domino KB. Massive hemorrhage: a report from the Anesthesia Closed Claims Project. Anesthesiology. 2014;121:450–68.CrossRefPubMed Dutton RP, Lee LA, Stephens LS, Posner KL, Davies JM, Domino KB. Massive hemorrhage: a report from the Anesthesia Closed Claims Project. Anesthesiology. 2014;121:450–68.CrossRefPubMed
46.
go back to reference Barker SJ, Shander A, Ramsay MA. Continuous noninvasive hemoglobin monitoring: a measured response to a critical review. Anesth Analg 2015 Mar 5. (Epub ahead of print). Barker SJ, Shander A, Ramsay MA. Continuous noninvasive hemoglobin monitoring: a measured response to a critical review. Anesth Analg 2015 Mar 5. (Epub ahead of print).
47.
go back to reference Frasca D, Mounios H, Giraud B, et al. Continuous monitoring of haemoglobin concentration after in vivo adjustment in patients undergoing surgery with blood loss. Anaesthesia 2015 Feb 13. (Epub ahead of print). Frasca D, Mounios H, Giraud B, et al. Continuous monitoring of haemoglobin concentration after in vivo adjustment in patients undergoing surgery with blood loss. Anaesthesia 2015 Feb 13. (Epub ahead of print).
48.
go back to reference Cannesson M, Delannoy B, Morand A, et al. Does the pleth variability index indicate the respiratory-induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analgesia. 2008;106:1189–94.CrossRef Cannesson M, Delannoy B, Morand A, et al. Does the pleth variability index indicate the respiratory-induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analgesia. 2008;106:1189–94.CrossRef
49.
go back to reference Loupec T, Nanadoumgar H, Frasca D, et al. Pleth variability index predicts fluid responsiveness in critically ill patients. Crit Care Med. 2011;39:294–9.CrossRefPubMed Loupec T, Nanadoumgar H, Frasca D, et al. Pleth variability index predicts fluid responsiveness in critically ill patients. Crit Care Med. 2011;39:294–9.CrossRefPubMed
50.
go back to reference Perel A, Pizov R, Cotev S. Respiratory variations in the arterial pressure during mechanical ventilation reflect volume status and fluid responsiveness. Intensiv Care Med. 2014;40:798–807.CrossRef Perel A, Pizov R, Cotev S. Respiratory variations in the arterial pressure during mechanical ventilation reflect volume status and fluid responsiveness. Intensiv Care Med. 2014;40:798–807.CrossRef
51.
go back to reference Perel A, Habicher M, Sander M. Bench-to-bedside review: functional hemodynamics during surgery—should it be used for all high-risk cases? Crit Care. 2013;17:203.PubMedCentralCrossRefPubMed Perel A, Habicher M, Sander M. Bench-to-bedside review: functional hemodynamics during surgery—should it be used for all high-risk cases? Crit Care. 2013;17:203.PubMedCentralCrossRefPubMed
52.
go back to reference Velissaris D, Pierrakos C, Scolletta S, et al. High mixed venous oxygen saturation levels do not exclude fluid responsiveness in critically ill septic patients. Crit Care. 2011;15:R177.PubMedCentralCrossRefPubMed Velissaris D, Pierrakos C, Scolletta S, et al. High mixed venous oxygen saturation levels do not exclude fluid responsiveness in critically ill septic patients. Crit Care. 2011;15:R177.PubMedCentralCrossRefPubMed
53.
54.
go back to reference Pearse RM, Harrison DA, MacDonald N, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311:2181–90.CrossRefPubMed Pearse RM, Harrison DA, MacDonald N, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311:2181–90.CrossRefPubMed
55.
go back to reference Pestana D, Espinosa E, Eden A, et al. Perioperative goal-directed hemodynamic optimization using noninvasive cardiac output monitoring in major abdominal surgery: a prospective, randomized, multicenter, pragmatic trial. Anesth Analg. 2014;119:579–87.CrossRefPubMed Pestana D, Espinosa E, Eden A, et al. Perioperative goal-directed hemodynamic optimization using noninvasive cardiac output monitoring in major abdominal surgery: a prospective, randomized, multicenter, pragmatic trial. Anesth Analg. 2014;119:579–87.CrossRefPubMed
56.
go back to reference Perel A. Goal-directed therapy: some remaining questions. ICU Manag. 2015;14:8–12. Perel A. Goal-directed therapy: some remaining questions. ICU Manag. 2015;14:8–12.
57.
go back to reference MacDonald N, Ahmad T, Mohr O, et al. Dynamic preload markers to predict fluid responsiveness during and after major gastrointestinal surgery: an observational substudy of the OPTIMISE trial. Brit J Anaesth. 2015;114:598–604.CrossRefPubMed MacDonald N, Ahmad T, Mohr O, et al. Dynamic preload markers to predict fluid responsiveness during and after major gastrointestinal surgery: an observational substudy of the OPTIMISE trial. Brit J Anaesth. 2015;114:598–604.CrossRefPubMed
58.
go back to reference Navarro LH, Bloomstone JA, Auler JO Jr, et al. Perioperative fluid therapy: a statement from the international fluid optimization group. Perioper Med (Lond). 2015;4:3.PubMedCentralCrossRefPubMed Navarro LH, Bloomstone JA, Auler JO Jr, et al. Perioperative fluid therapy: a statement from the international fluid optimization group. Perioper Med (Lond). 2015;4:3.PubMedCentralCrossRefPubMed
59.
go back to reference Cannesson M, Slieker J, Desebbe O, et al. The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesth Analg. 2008;106:1195–200.CrossRefPubMed Cannesson M, Slieker J, Desebbe O, et al. The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesth Analg. 2008;106:1195–200.CrossRefPubMed
60.
go back to reference Sandroni C, Cavallaro F, Marano C, et al. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensiv Care Med. 2012;38:1429–37.CrossRef Sandroni C, Cavallaro F, Marano C, et al. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensiv Care Med. 2012;38:1429–37.CrossRef
61.
go back to reference Cannesson M, Desebbe O, Rosamel P, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Brit J Anaesth. 2008;101:200–6.CrossRefPubMed Cannesson M, Desebbe O, Rosamel P, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Brit J Anaesth. 2008;101:200–6.CrossRefPubMed
62.
go back to reference Feissel M, Teboul JL, Merlani P, et al. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensiv Care Med. 2007;33:993–9.CrossRef Feissel M, Teboul JL, Merlani P, et al. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensiv Care Med. 2007;33:993–9.CrossRef
63.
go back to reference Forget P, Lois F, de Kock M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg. 2010;111:910–4.PubMed Forget P, Lois F, de Kock M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg. 2010;111:910–4.PubMed
64.
go back to reference Thiele RH, Rea KM, Turrentine FE, et al. Standardization of care: impact of an enhanced recovery protocol on length of stay, complications, and direct costs after colorectal surgery. J Am Coll Surg. 2015;220:430–43.CrossRefPubMed Thiele RH, Rea KM, Turrentine FE, et al. Standardization of care: impact of an enhanced recovery protocol on length of stay, complications, and direct costs after colorectal surgery. J Am Coll Surg. 2015;220:430–43.CrossRefPubMed
65.
go back to reference Yu Y, Dong J, Xu Z, et al. Pleth variability index-directed fluid management in abdominal surgery under combined general and epidural anesthesia. J Clin Monit Comput. 2015;29:47–52.CrossRefPubMed Yu Y, Dong J, Xu Z, et al. Pleth variability index-directed fluid management in abdominal surgery under combined general and epidural anesthesia. J Clin Monit Comput. 2015;29:47–52.CrossRefPubMed
66.
go back to reference Perel A. Excessive variations in the plethysmographic waveform during spontaneous ventilation: an important sign of upper airway obstruction. Anesth Analg. 2014;119:1288–92.CrossRefPubMed Perel A. Excessive variations in the plethysmographic waveform during spontaneous ventilation: an important sign of upper airway obstruction. Anesth Analg. 2014;119:1288–92.CrossRefPubMed
67.
go back to reference Monnet X, Guerin L, Jozwiak M, et al. Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Brit J Anaesth. 2013;110:207–13.CrossRefPubMed Monnet X, Guerin L, Jozwiak M, et al. Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Brit J Anaesth. 2013;110:207–13.CrossRefPubMed
68.
go back to reference Cannesson M, Manach YL. Noninvasive hemodynamic monitoring: no high heels on the farm; no clogs to the opera. Anesthesiology. 2012;117:937–9.CrossRefPubMed Cannesson M, Manach YL. Noninvasive hemodynamic monitoring: no high heels on the farm; no clogs to the opera. Anesthesiology. 2012;117:937–9.CrossRefPubMed
Metadata
Title
Non-invasive monitoring of oxygen delivery in acutely ill patients: new frontiers
Author
Azriel Perel
Publication date
01-12-2015
Publisher
Springer Paris
Published in
Annals of Intensive Care / Issue 1/2015
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-015-0067-7

Other articles of this Issue 1/2015

Annals of Intensive Care 1/2015 Go to the issue