Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2016

Open Access 01-12-2016 | Review

Robot-aided assessment of lower extremity functions: a review

Authors: Serena Maggioni, Alejandro Melendez-Calderon, Edwin van Asseldonk, Verena Klamroth-Marganska, Lars Lünenburger, Robert Riener, Herman van der Kooij

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2016

Login to get access

Abstract

The assessment of sensorimotor functions is extremely important to understand the health status of a patient and its change over time. Assessments are necessary to plan and adjust the therapy in order to maximize the chances of individual recovery. Nowadays, however, assessments are seldom used in clinical practice due to administrative constraints or to inadequate validity, reliability and responsiveness. In clinical trials, more sensitive and reliable measurement scales could unmask changes in physiological variables that would not be visible with existing clinical scores.
In the last decades robotic devices have become available for neurorehabilitation training in clinical centers. Besides training, robotic devices can overcome some of the limitations in traditional clinical assessments by providing more objective, sensitive, reliable and time-efficient measurements. However, it is necessary to understand the clinical needs to be able to develop novel robot-aided assessment methods that can be integrated in clinical practice.
This paper aims at providing researchers and developers in the field of robotic neurorehabilitation with a comprehensive review of assessment methods for the lower extremities. Among the ICF domains, we included those related to lower extremities sensorimotor functions and walking; for each chapter we present and discuss existing assessments used in routine clinical practice and contrast those to state-of-the-art instrumented and robot-aided technologies. Based on the shortcomings of current assessments, on the identified clinical needs and on the opportunities offered by robotic devices, we propose future directions for research in rehabilitation robotics. The review and recommendations provided in this paper aim to guide the design of the next generation of robot-aided functional assessments, their validation and their translation to clinical practice.
Footnotes
1
The terminology used in different publications is not always consistent. In the work of Kearny and colleagues [136] the intrinsic component includes the passive properties of the joint and the properties of the active muscle fibers.
 
Literature
1.
go back to reference Duncan EA, Murray J. The barriers and facilitators to routine outcome measurement by allied health professionals in practice: a systematic review. BMC Health Serv Res. 2012;12:96.PubMedPubMedCentralCrossRef Duncan EA, Murray J. The barriers and facilitators to routine outcome measurement by allied health professionals in practice: a systematic review. BMC Health Serv Res. 2012;12:96.PubMedPubMedCentralCrossRef
2.
go back to reference Jette DU, Halbert J, Iverson C, Miceli E, Shah P. Use of standardized outcome measures in physical therapist practice: perceptions and applications. Phys Ther. 2009;89:125–35.PubMedCrossRef Jette DU, Halbert J, Iverson C, Miceli E, Shah P. Use of standardized outcome measures in physical therapist practice: perceptions and applications. Phys Ther. 2009;89:125–35.PubMedCrossRef
3.
go back to reference Copeland J. Outcome measures: why physiotherapists must use them. Phys Ther Rev. 2009;14:367–8.CrossRef Copeland J. Outcome measures: why physiotherapists must use them. Phys Ther Rev. 2009;14:367–8.CrossRef
4.
go back to reference Van Hedel HJA. Improvement in function after spinal cord injury : the black-box entitled rehabilitation. Swiss Med Wkly. 2012;142:w13673.PubMed Van Hedel HJA. Improvement in function after spinal cord injury : the black-box entitled rehabilitation. Swiss Med Wkly. 2012;142:w13673.PubMed
5.
go back to reference Steeves JD, Lammertse D, Curt A, Fawcett JW, Tuszynski MH, Ditunno JF, Ellaway PH, Fehlings MG, Guest J, Kleitman N, Bartlett P, Blight A, Dietz V, Dobkin B, Grossman R, Short D, Nakamura M, Coleman W, Gaviria M, Privat A. Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord. 2007;45:206–21.PubMedCrossRef Steeves JD, Lammertse D, Curt A, Fawcett JW, Tuszynski MH, Ditunno JF, Ellaway PH, Fehlings MG, Guest J, Kleitman N, Bartlett P, Blight A, Dietz V, Dobkin B, Grossman R, Short D, Nakamura M, Coleman W, Gaviria M, Privat A. Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord. 2007;45:206–21.PubMedCrossRef
6.
go back to reference Lambercy O, Maggioni S, Lünenburger L, Gassert R, Bolliger M. Robotic and wearable sensor technologies for measurements/clinical assessments. In: Neurorehabilitation Technology 2nd edition. Edited by Dietz V, Reinkensmeyer DJ. Springer International; 2016. Lambercy O, Maggioni S, Lünenburger L, Gassert R, Bolliger M. Robotic and wearable sensor technologies for measurements/clinical assessments. In: Neurorehabilitation Technology 2nd edition. Edited by Dietz V, Reinkensmeyer DJ. Springer International; 2016.
7.
go back to reference Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke (Review). Cochrane Libr. 2013;44(10):e127. Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke (Review). Cochrane Libr. 2013;44(10):e127.
8.
go back to reference Diaz I, Gil JJ, Sanchez E. Lower-Limb Robotic Rehabilitation : Literature Review and Challenges. J Robot. 2011. Diaz I, Gil JJ, Sanchez E. Lower-Limb Robotic Rehabilitation : Literature Review and Challenges. J Robot. 2011.
9.
go back to reference Keller U, Schölch S, Albisser U, Rudhe C, Curt A, Riener R, Klamroth-Marganska V. Robot-assisted Arm assessments in spinal cord injured patients: a consideration of concept study. PLoS One. 2015;10:e0126948.PubMedPubMedCentralCrossRef Keller U, Schölch S, Albisser U, Rudhe C, Curt A, Riener R, Klamroth-Marganska V. Robot-assisted Arm assessments in spinal cord injured patients: a consideration of concept study. PLoS One. 2015;10:e0126948.PubMedPubMedCentralCrossRef
10.
go back to reference Bolliger M, Banz R, Dietz V, Lünenburger L. Standardized voluntary force measurement in a lower extremity rehabilitation robot. J Neuroeng Rehabil. 2008;5:23.PubMedPubMedCentralCrossRef Bolliger M, Banz R, Dietz V, Lünenburger L. Standardized voluntary force measurement in a lower extremity rehabilitation robot. J Neuroeng Rehabil. 2008;5:23.PubMedPubMedCentralCrossRef
11.
go back to reference Tiffreau V, Ledoux I, Eymard B, Thévenon A, Hogrel J-Y. Isokinetic muscle testing for weak patients suffering from neuromuscular disorders: a reliability study. Neuromuscul Disord. 2007;17:524–31.PubMedCrossRef Tiffreau V, Ledoux I, Eymard B, Thévenon A, Hogrel J-Y. Isokinetic muscle testing for weak patients suffering from neuromuscular disorders: a reliability study. Neuromuscul Disord. 2007;17:524–31.PubMedCrossRef
12.
go back to reference Ditunno PL, Patrick M, Stineman M, Ditunno JF. Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 2008;46:500–6.PubMedCrossRef Ditunno PL, Patrick M, Stineman M, Ditunno JF. Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 2008;46:500–6.PubMedCrossRef
13.
go back to reference Bohannon RW, Horton MG, Wikholm JB. Importance of four variables of walking to patients with stroke. Int J Rehabil Res. 1991;14:246–50.PubMedCrossRef Bohannon RW, Horton MG, Wikholm JB. Importance of four variables of walking to patients with stroke. Int J Rehabil Res. 1991;14:246–50.PubMedCrossRef
14.
go back to reference Zhang M, Davies TC, Zhang Y, Xie S, Eng P. Reviewing effectiveness of ankle assessment techniques for use in robot-assisted therapy. J Rehabil Res Dev. 2014;51:517–34.PubMedCrossRef Zhang M, Davies TC, Zhang Y, Xie S, Eng P. Reviewing effectiveness of ankle assessment techniques for use in robot-assisted therapy. J Rehabil Res Dev. 2014;51:517–34.PubMedCrossRef
15.
go back to reference World Health Organization. Towards a Common Language for Functioning, Disability and Health ICF. 2002. World Health Organization. Towards a Common Language for Functioning, Disability and Health ICF. 2002.
16.
go back to reference Raghavendra P, Bornman J, Granlund M, Björck-Akesson E. The world health Organization’s international classification of functioning, disability and health: implications for clinical and research practice in the field of augmentative and alternative communication. Augment Altern Commun. 2007;23:349–61.CrossRef Raghavendra P, Bornman J, Granlund M, Björck-Akesson E. The world health Organization’s international classification of functioning, disability and health: implications for clinical and research practice in the field of augmentative and alternative communication. Augment Altern Commun. 2007;23:349–61.CrossRef
17.
go back to reference Atkinson G, Nevill A. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sport Med. 1998;26:217–38.CrossRef Atkinson G, Nevill A. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sport Med. 1998;26:217–38.CrossRef
18.
go back to reference Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19:231–40.PubMed Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19:231–40.PubMed
19.
go back to reference Altman DG, Bland JM. Measurement in medicine : the analysis of method comparison studies. Stat. 1983;32(July 1981):307–17. Altman DG, Bland JM. Measurement in medicine : the analysis of method comparison studies. Stat. 1983;32(July 1981):307–17.
20.
go back to reference Andresen EM. Criteria for assessing the tools of disability outcomes research. Arch Phys Med Rehabil. 2000;81:S15–20.PubMedCrossRef Andresen EM. Criteria for assessing the tools of disability outcomes research. Arch Phys Med Rehabil. 2000;81:S15–20.PubMedCrossRef
21.
go back to reference Roach KE. Measurement of health outcomes : reliability, validity and responsiveness. J Prosthetics Orthot. 2006;18:1–5.CrossRef Roach KE. Measurement of health outcomes : reliability, validity and responsiveness. J Prosthetics Orthot. 2006;18:1–5.CrossRef
22.
23.
go back to reference Clarkson H. Joint motion and function assessment: a research-based practical guide. Philadelphia: Lippincott Williams and Wilkins; 2000. Clarkson H. Joint motion and function assessment: a research-based practical guide. Philadelphia: Lippincott Williams and Wilkins; 2000.
24.
go back to reference Rowe PJ, Myles CM, Walker C, Nutton R. Knee joint kinematics in gait and other functional activities measured using flexible electrogoniometry: how much knee motion is sufficient for normal daily life? Gait Posture. 2000;12:143–55.PubMedCrossRef Rowe PJ, Myles CM, Walker C, Nutton R. Knee joint kinematics in gait and other functional activities measured using flexible electrogoniometry: how much knee motion is sufficient for normal daily life? Gait Posture. 2000;12:143–55.PubMedCrossRef
25.
go back to reference Charbonnier C, Chagué S, Schmid J, Kolo FC, Bernardoni M, Christofilopoulos P. Analysis of hip range of motion in everyday life: a pilot study. Hip Int. 2015;25:82–90.PubMedCrossRef Charbonnier C, Chagué S, Schmid J, Kolo FC, Bernardoni M, Christofilopoulos P. Analysis of hip range of motion in everyday life: a pilot study. Hip Int. 2015;25:82–90.PubMedCrossRef
26.
go back to reference Anderson FC, Goldberg SR, Pandy MG, Delp SL. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait : an induced position analysis. J Biomech. 2004;37:731–7.PubMedCrossRef Anderson FC, Goldberg SR, Pandy MG, Delp SL. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait : an induced position analysis. J Biomech. 2004;37:731–7.PubMedCrossRef
27.
go back to reference Ribbers G. Brain injury: long term outcome after traumatic brain injury. In: Stone J, Blouin M, editors. International Encyclopedia of Rehabilitation. 2010. Ribbers G. Brain injury: long term outcome after traumatic brain injury. In: Stone J, Blouin M, editors. International Encyclopedia of Rehabilitation. 2010.
28.
go back to reference Pohl M, Mehrholz J, Rockstroh G, Rückriem S, Koch R. Contractures and involuntary muscle overactivity in severe brain injury. Brain Inj. 2007;21:421–32.PubMedCrossRef Pohl M, Mehrholz J, Rockstroh G, Rückriem S, Koch R. Contractures and involuntary muscle overactivity in severe brain injury. Brain Inj. 2007;21:421–32.PubMedCrossRef
29.
go back to reference Brosseau L, Balmer S, Tousignant M, O’Sullivan JP, Goudreault C, Goudreault M, Gringras S. Intra- and intertester reliability and criterion validity of the parallelogram and universal goniometers for measuring maximum active knee flexion and extension of patients with knee restrictions. Arch Phys Med Rehabil. 2001;82:396–402.PubMedCrossRef Brosseau L, Balmer S, Tousignant M, O’Sullivan JP, Goudreault C, Goudreault M, Gringras S. Intra- and intertester reliability and criterion validity of the parallelogram and universal goniometers for measuring maximum active knee flexion and extension of patients with knee restrictions. Arch Phys Med Rehabil. 2001;82:396–402.PubMedCrossRef
30.
go back to reference Gajdosik RL, Bohannon RW. Clinical measurement of range of motion. Review of goniometry emphasizing reliability and validity. Phys Ther. 1987;67:1867–72.PubMed Gajdosik RL, Bohannon RW. Clinical measurement of range of motion. Review of goniometry emphasizing reliability and validity. Phys Ther. 1987;67:1867–72.PubMed
31.
go back to reference Piriyaprasarth P, Morris ME. Psychometric properties of measurement tools for quantifying knee joint position and movement: a systematic review. Knee. 2007;14:2–8.PubMedCrossRef Piriyaprasarth P, Morris ME. Psychometric properties of measurement tools for quantifying knee joint position and movement: a systematic review. Knee. 2007;14:2–8.PubMedCrossRef
32.
go back to reference van Trijffel E, van de Pol RJ, Oostendorp RB, Lucas C. Inter-rater reliability for measurement of passive physiological movements in lower extremity joints is generally low: a systematic review. J Physiol Lond. 2010;56:223–35. van Trijffel E, van de Pol RJ, Oostendorp RB, Lucas C. Inter-rater reliability for measurement of passive physiological movements in lower extremity joints is generally low: a systematic review. J Physiol Lond. 2010;56:223–35.
33.
go back to reference Dijkstra PU, de Bont LG, Van der Weele LT BG. Joint mobility measurements: reliability of a standardized method. Cranio J Craniomandib Pract. 1994;12:52–7. Dijkstra PU, de Bont LG, Van der Weele LT BG. Joint mobility measurements: reliability of a standardized method. Cranio J Craniomandib Pract. 1994;12:52–7.
34.
go back to reference Jung I-G, Yu I-Y, Kim S-Y, Lee D-K, Oh J-S. Reliability of ankle dorsiflexion passive range of motion measurements obtained using a hand-held goniometer and Biodex dynamometer in stroke patients. J Phys Ther Sci. 2015;27:1899–901.PubMedPubMedCentralCrossRef Jung I-G, Yu I-Y, Kim S-Y, Lee D-K, Oh J-S. Reliability of ankle dorsiflexion passive range of motion measurements obtained using a hand-held goniometer and Biodex dynamometer in stroke patients. J Phys Ther Sci. 2015;27:1899–901.PubMedPubMedCentralCrossRef
35.
36.
go back to reference Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with Active Leg Exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009;17:2–8.PubMedCrossRef Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with Active Leg Exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009;17:2–8.PubMedCrossRef
37.
go back to reference Emken JL, Wynne JH, Harkema SJ, Reinkensmeyer DJ. Robotic device for manipulating human stepping. IEEE Trans Robot. 2006;22:185–9.CrossRef Emken JL, Wynne JH, Harkema SJ, Reinkensmeyer DJ. Robotic device for manipulating human stepping. IEEE Trans Robot. 2006;22:185–9.CrossRef
38.
go back to reference Farris RJ, Quintero H, Goldfarb M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng. 2011;19:652–9.PubMedPubMedCentralCrossRef Farris RJ, Quintero H, Goldfarb M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng. 2011;19:652–9.PubMedPubMedCentralCrossRef
39.
go back to reference del-Ama AJ, Gil-Agudo A, Pons JL, Moreno JC. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J Neuroeng Rehabil. 2014;11:27.PubMedPubMedCentralCrossRef del-Ama AJ, Gil-Agudo A, Pons JL, Moreno JC. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J Neuroeng Rehabil. 2014;11:27.PubMedPubMedCentralCrossRef
40.
go back to reference Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91:911–21.PubMedCrossRef Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91:911–21.PubMedCrossRef
41.
go back to reference Strausser KA, Swift TA, Zoss AB, Kazerooni H, Bennett BC. Mobile Exoskeleton for Spinal Cord Injury: Development and Testing. Arlington: ASME 2011 Dynamic Systems and Control Conference; 2011. Strausser KA, Swift TA, Zoss AB, Kazerooni H, Bennett BC. Mobile Exoskeleton for Spinal Cord Injury: Development and Testing. Arlington: ASME 2011 Dynamic Systems and Control Conference; 2011.
42.
go back to reference Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil. 2015;12:54.PubMedPubMedCentralCrossRef Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil. 2015;12:54.PubMedPubMedCentralCrossRef
43.
go back to reference Bartenbach V, Wyss D, Seuret D, Riener R. A Lower Limb Exoskeleton Research Platform to Investigate Human-Robot Interaction. Singapore: IEEE International Conference on Rehabilitation Robotics; 2015.CrossRef Bartenbach V, Wyss D, Seuret D, Riener R. A Lower Limb Exoskeleton Research Platform to Investigate Human-Robot Interaction. Singapore: IEEE International Conference on Rehabilitation Robotics; 2015.CrossRef
44.
go back to reference Riener R, Lünenburger L, Maier IC, Colombo G, Dietz V. Locomotor training in subjects with sensori-motor deficits : an overview of the robotic gait orthosis lokomat. J Healthc Eng. 2010;1:197–216.CrossRef Riener R, Lünenburger L, Maier IC, Colombo G, Dietz V. Locomotor training in subjects with sensori-motor deficits : an overview of the robotic gait orthosis lokomat. J Healthc Eng. 2010;1:197–216.CrossRef
45.
go back to reference Peng Q, Park H-S, Shah P, Wilson N, Ren Y, Wu Y-N, Liu J, Gaebler-Spira DJ, Zhang L-Q. Quantitative evaluations of ankle spasticity and stiffness in neurological disorders using manual spasticity evaluator. J Rehabil Res Dev. 2011;48:473–81.PubMedPubMedCentralCrossRef Peng Q, Park H-S, Shah P, Wilson N, Ren Y, Wu Y-N, Liu J, Gaebler-Spira DJ, Zhang L-Q. Quantitative evaluations of ankle spasticity and stiffness in neurological disorders using manual spasticity evaluator. J Rehabil Res Dev. 2011;48:473–81.PubMedPubMedCentralCrossRef
46.
go back to reference Waldman G, Yang C-Y, Ren Y, Liu L, Guo X, Harvey RL, Roth EJ, Zhang L-Q. Effects of robot-guided passive stretching and active movement training of ankle and mobility impairments in stroke. NeuroRehabilitation. 2013;32:625–34.PubMed Waldman G, Yang C-Y, Ren Y, Liu L, Guo X, Harvey RL, Roth EJ, Zhang L-Q. Effects of robot-guided passive stretching and active movement training of ankle and mobility impairments in stroke. NeuroRehabilitation. 2013;32:625–34.PubMed
47.
go back to reference Zhang L-Q, Chung SG, Bai Z, Xu D, Rey EMT V, Rogers MW, Johnson ME, Roth EJ. Intelligent stretching of ankle joints with contracture/spasticity. IEEE Trans Neural Syst Rehabil Eng. 2002;10:149–57.PubMedCrossRef Zhang L-Q, Chung SG, Bai Z, Xu D, Rey EMT V, Rogers MW, Johnson ME, Roth EJ. Intelligent stretching of ankle joints with contracture/spasticity. IEEE Trans Neural Syst Rehabil Eng. 2002;10:149–57.PubMedCrossRef
48.
go back to reference Giacomozzi C, Cesinaro S, Basile F, De Angelis G, Giansanti D, Maccioni G, Masci E, Panella a, Paolizzi M, Torre M, Valentini P, Macellari V. Measurement device for ankle joint kinematic and dynamic characterisation. Med Biol Eng Comput. 2003;41:486–93.PubMedCrossRef Giacomozzi C, Cesinaro S, Basile F, De Angelis G, Giansanti D, Maccioni G, Masci E, Panella a, Paolizzi M, Torre M, Valentini P, Macellari V. Measurement device for ankle joint kinematic and dynamic characterisation. Med Biol Eng Comput. 2003;41:486–93.PubMedCrossRef
49.
go back to reference Roy A, Krebs HI, Williams DJ, Bever CT, Forrester LW, Macko RM, Hogan N. Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans Robot. 2009;25:569–82.CrossRef Roy A, Krebs HI, Williams DJ, Bever CT, Forrester LW, Macko RM, Hogan N. Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans Robot. 2009;25:569–82.CrossRef
50.
go back to reference Borsa PA, Sauers EL, Herling DE, Manzour WF. In vivo quantification of capsular End- point in the nonimpaired glenohumeral joint using an instrumented measurement system. J Orthop Sports Phys Ther. 2001;31:419–31.PubMedCrossRef Borsa PA, Sauers EL, Herling DE, Manzour WF. In vivo quantification of capsular End- point in the nonimpaired glenohumeral joint using an instrumented measurement system. J Orthop Sports Phys Ther. 2001;31:419–31.PubMedCrossRef
51.
go back to reference McQuade K, Price R, Liu N, Ciol MA. Objective assessment of joint stiffness: a clinically oriented hardware and software device with an application to the shoulder joint. J Nov Physiother. 2012;2:7.CrossRef McQuade K, Price R, Liu N, Ciol MA. Objective assessment of joint stiffness: a clinically oriented hardware and software device with an application to the shoulder joint. J Nov Physiother. 2012;2:7.CrossRef
52.
go back to reference Jarrassé N, Proietti T, Crocher V, Robertson J, Sahbani A, Morel G, Roby-Brami A. Robotic exoskeletons: a perspective for the rehabilitation of Arm coordination in stroke patients. Front Hum Neurosci. 2014;8(December):1–13. Jarrassé N, Proietti T, Crocher V, Robertson J, Sahbani A, Morel G, Roby-Brami A. Robotic exoskeletons: a perspective for the rehabilitation of Arm coordination in stroke patients. Front Hum Neurosci. 2014;8(December):1–13.
53.
go back to reference van Dijk W, van der Kooij H, Koopman B, van Asseldonk EHF. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking. IEEE Int Conf Rehabil Robot. 2013;2013:6650393.PubMed van Dijk W, van der Kooij H, Koopman B, van Asseldonk EHF. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking. IEEE Int Conf Rehabil Robot. 2013;2013:6650393.PubMed
54.
go back to reference Weiselfish-Giammatteo S, Giammatteo T. Integrative Manual Therapy for Biomechanics: Application of Muscle Energy and “Beyond” Technique : Treatment of the Spine, Ribs, and Extremities. North Atlantic Books; 2003. [Integrated Manual Therapy Series]. Weiselfish-Giammatteo S, Giammatteo T. Integrative Manual Therapy for Biomechanics: Application of Muscle Energy and “Beyond” Technique : Treatment of the Spine, Ribs, and Extremities. North Atlantic Books; 2003. [Integrated Manual Therapy Series].
55.
go back to reference Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Asseldonk EHF V. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15:379–86.PubMedCrossRef Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Asseldonk EHF V. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15:379–86.PubMedCrossRef
56.
go back to reference Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 2001;39:252–5.PubMedCrossRef Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 2001;39:252–5.PubMedCrossRef
57.
go back to reference Rowe P, Myles C, Hillmann S, Hazlewood M. Validation of flexible electrogoniometry as a measure of joint kinematics. Physiotherapy. 2001;87:479–88.CrossRef Rowe P, Myles C, Hillmann S, Hazlewood M. Validation of flexible electrogoniometry as a measure of joint kinematics. Physiotherapy. 2001;87:479–88.CrossRef
58.
go back to reference Tesio L, Monzani M, Gatti R, Franchignoni F. Flexible electrogoniometers: kinesiological advantages with respect to potentiometric goniometers. Clin Biomech (Bristol, Avon). 1995;10:2–4.CrossRef Tesio L, Monzani M, Gatti R, Franchignoni F. Flexible electrogoniometers: kinesiological advantages with respect to potentiometric goniometers. Clin Biomech (Bristol, Avon). 1995;10:2–4.CrossRef
59.
go back to reference Bronner S, Agraharasamakulam S, Ojofeitimi S. Reliability and validity of electrogoniometry measurement of lower extremity movement. J Med Eng Technol. 2010;34:232–42.PubMedCrossRef Bronner S, Agraharasamakulam S, Ojofeitimi S. Reliability and validity of electrogoniometry measurement of lower extremity movement. J Med Eng Technol. 2010;34:232–42.PubMedCrossRef
60.
go back to reference Piriyaprasarth P, Morris ME, Winter A, Bialocerkowski AE. The reliability of knee joint position testing using electrogoniometry. BMC Musculoskelet Disord. 2008;9:6.PubMedPubMedCentralCrossRef Piriyaprasarth P, Morris ME, Winter A, Bialocerkowski AE. The reliability of knee joint position testing using electrogoniometry. BMC Musculoskelet Disord. 2008;9:6.PubMedPubMedCentralCrossRef
61.
go back to reference Menguc Y, Park YL, Martinez-Villalpando E, Aubin P, Zisook M, Stirling L, Wood RJ, Walsh CJ. Soft wearable motion sensing suit for lower limb biomechanics measurements. Proc - IEEE Int Conf Robot Autom. 2013;5309–16. Menguc Y, Park YL, Martinez-Villalpando E, Aubin P, Zisook M, Stirling L, Wood RJ, Walsh CJ. Soft wearable motion sensing suit for lower limb biomechanics measurements. Proc - IEEE Int Conf Robot Autom. 2013;5309–16.
62.
go back to reference Donno M, Palange E, Nicola F Di, Member S, Bucci G, Ciancetta F. A New Flexible Optical Fiber Goniometer for Dynamic Angular Measurements : Application to Human Joint Movement Monitoring. IEEE Trans. Instrum. Meas. 2008;57:1614–20. Donno M, Palange E, Nicola F Di, Member S, Bucci G, Ciancetta F. A New Flexible Optical Fiber Goniometer for Dynamic Angular Measurements : Application to Human Joint Movement Monitoring. IEEE Trans. Instrum. Meas. 2008;57:1614–20.
63.
go back to reference Favre J, Jolles BM, Aissaoui R, Aminian K. Ambulatory measurement of 3D knee joint angle. J Biomech. 2008;41:1029–35.PubMedCrossRef Favre J, Jolles BM, Aissaoui R, Aminian K. Ambulatory measurement of 3D knee joint angle. J Biomech. 2008;41:1029–35.PubMedCrossRef
64.
go back to reference Luinge HJ, Veltink PH. Inclination measurement of human movement using a 3-D accelerometer with autocalibration. IEEE Trans Neural Syst Rehabil Eng. 2004;12:112–21.PubMedCrossRef Luinge HJ, Veltink PH. Inclination measurement of human movement using a 3-D accelerometer with autocalibration. IEEE Trans Neural Syst Rehabil Eng. 2004;12:112–21.PubMedCrossRef
65.
go back to reference Dejnabadi H, Jolles BM, Aminian K. A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes. IEEE Trans Biomed Eng. 2005;52:1478–84.PubMedCrossRef Dejnabadi H, Jolles BM, Aminian K. A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes. IEEE Trans Biomed Eng. 2005;52:1478–84.PubMedCrossRef
66.
go back to reference Djurić-Jovičić MD, Jovičić NS, Popović DB, Djordjević AR. Nonlinear optimization for drift removal in estimation of gait kinematics based on accelerometers. J Biomech. 2012;45:2849–54.PubMedCrossRef Djurić-Jovičić MD, Jovičić NS, Popović DB, Djordjević AR. Nonlinear optimization for drift removal in estimation of gait kinematics based on accelerometers. J Biomech. 2012;45:2849–54.PubMedCrossRef
68.
go back to reference Neckel N, Pelliccio M, Nichols D, Hidler J. Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke. J Neuroeng Rehabil. 2006;3:17.PubMedPubMedCentralCrossRef Neckel N, Pelliccio M, Nichols D, Hidler J. Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke. J Neuroeng Rehabil. 2006;3:17.PubMedPubMedCentralCrossRef
69.
go back to reference Wirz M, van Hedel HJ, Rupp R, Curt A, Dietz V. Muscle force and gait performance: relationships after spinal cord injury. Arch Phys Med Rehabil. 2006;87:1218–22.PubMedCrossRef Wirz M, van Hedel HJ, Rupp R, Curt A, Dietz V. Muscle force and gait performance: relationships after spinal cord injury. Arch Phys Med Rehabil. 2006;87:1218–22.PubMedCrossRef
70.
go back to reference Kim C, Eng J. The relationship of lower-extremity muscle torque to locomotor performance in people with stroke. Phys Ther. 2003;83:49–57.PubMed Kim C, Eng J. The relationship of lower-extremity muscle torque to locomotor performance in people with stroke. Phys Ther. 2003;83:49–57.PubMed
72.
go back to reference Newham DJ, Hsiao SF. Knee muscle isometric strength, voluntary activation and antagonist co-contraction in the first six months after stroke. Disabil Rehabil. 2001;23:379.PubMedCrossRef Newham DJ, Hsiao SF. Knee muscle isometric strength, voluntary activation and antagonist co-contraction in the first six months after stroke. Disabil Rehabil. 2001;23:379.PubMedCrossRef
73.
go back to reference Noreau L, Vachon J. Comparison of three methods to assess muscular strength in individuals with spinal cord injury. Spinal Cord. 1998;36:716–23.PubMedCrossRef Noreau L, Vachon J. Comparison of three methods to assess muscular strength in individuals with spinal cord injury. Spinal Cord. 1998;36:716–23.PubMedCrossRef
74.
go back to reference Paternostro-Sluga T, Grim-Stieger M, Posch M, Schuhfried O, Vacariu G, Mittermaier C, Bittner C, Fialka-Moser V. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J Rehabil Med. 2008;40:665–71.PubMedCrossRef Paternostro-Sluga T, Grim-Stieger M, Posch M, Schuhfried O, Vacariu G, Mittermaier C, Bittner C, Fialka-Moser V. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J Rehabil Med. 2008;40:665–71.PubMedCrossRef
75.
go back to reference Beasley W. Quantitative muscle testing: principles and applications to research and clinical services. Arch Phys Med Rehabil. 1961;42:398–425.PubMed Beasley W. Quantitative muscle testing: principles and applications to research and clinical services. Arch Phys Med Rehabil. 1961;42:398–425.PubMed
76.
go back to reference Herbison GJ, Isaac Z, Cohen ME, Ditunno JF. Strength post-spinal cord injury: myometer vs manual muscle test. Spinal Cord. 1996;34:543–8.PubMedCrossRef Herbison GJ, Isaac Z, Cohen ME, Ditunno JF. Strength post-spinal cord injury: myometer vs manual muscle test. Spinal Cord. 1996;34:543–8.PubMedCrossRef
77.
go back to reference Bohannon RW. Manual muscle testing: does it meet the standards of an adequate screening test? Clin Rehabil. 2005;19:662–7.PubMedCrossRef Bohannon RW. Manual muscle testing: does it meet the standards of an adequate screening test? Clin Rehabil. 2005;19:662–7.PubMedCrossRef
78.
go back to reference Merlini L, Mazzone ES, Solari A, Morandi L. Reliability of hand-held dynamometry in spinal muscular atrophy. Muscle Nerve. 2002;26:64–70.PubMedCrossRef Merlini L, Mazzone ES, Solari A, Morandi L. Reliability of hand-held dynamometry in spinal muscular atrophy. Muscle Nerve. 2002;26:64–70.PubMedCrossRef
79.
go back to reference Stark T, Walker B, Phillips JK, Fejer R, Beck R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R. 2011;3:472–9.PubMedCrossRef Stark T, Walker B, Phillips JK, Fejer R, Beck R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R. 2011;3:472–9.PubMedCrossRef
80.
go back to reference Marmon AR, Pozzi F, Alnahdi AH, Zeni J. The validity of plantarflexor strength measures obtained through hand-held dynamometry measurements of force. Int J Sports Phys Ther. 2013;8:820–7.PubMedPubMedCentral Marmon AR, Pozzi F, Alnahdi AH, Zeni J. The validity of plantarflexor strength measures obtained through hand-held dynamometry measurements of force. Int J Sports Phys Ther. 2013;8:820–7.PubMedPubMedCentral
81.
go back to reference Kim WK, Kim DK, Seo KM, Kang SH. Reliability and validity of isometric knee extensor strength test with hand-held dynamometer depending on its fixation: a pilot study. Ann Rehabil Med. 2014;38:84–93.PubMedPubMedCentralCrossRef Kim WK, Kim DK, Seo KM, Kang SH. Reliability and validity of isometric knee extensor strength test with hand-held dynamometer depending on its fixation: a pilot study. Ann Rehabil Med. 2014;38:84–93.PubMedPubMedCentralCrossRef
82.
go back to reference Meldrum D, Cahalane E, Keogan F, Hardiman O. Maximum voluntary isometric contraction: investigation of reliability and learning effect. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4:36–44.PubMedCrossRef Meldrum D, Cahalane E, Keogan F, Hardiman O. Maximum voluntary isometric contraction: investigation of reliability and learning effect. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4:36–44.PubMedCrossRef
83.
go back to reference Colombo R, Mazzini L, Mora G, Parenzan R, Creola G, Pirali I, Minuco G. Measurement of isometric muscle strength: a reproducibility study of maximal voluntary contraction in normal subjects and amyotrophic lateral sclerosis patients. Med Eng Phys. 2000;22:167–74.PubMedCrossRef Colombo R, Mazzini L, Mora G, Parenzan R, Creola G, Pirali I, Minuco G. Measurement of isometric muscle strength: a reproducibility study of maximal voluntary contraction in normal subjects and amyotrophic lateral sclerosis patients. Med Eng Phys. 2000;22:167–74.PubMedCrossRef
84.
go back to reference Lauermann SP, Lienhard K, Item-Glatthorn JF, Casartelli NC, Maffiuletti N. Assessment of quadriceps muscle weakness in patients after total knee arthroplasty and total hip arthroplasty: methodological issues. J Electromyogr Kinesiol. 2014;24:285–91.PubMedCrossRef Lauermann SP, Lienhard K, Item-Glatthorn JF, Casartelli NC, Maffiuletti N. Assessment of quadriceps muscle weakness in patients after total knee arthroplasty and total hip arthroplasty: methodological issues. J Electromyogr Kinesiol. 2014;24:285–91.PubMedCrossRef
85.
go back to reference Lienhard K, Lauermann SP, Schneider D, Item-Glatthorn JF, Casartelli NC, Maffiuletti N. Validity and reliability of isometric, isokinetic and isoinertial modalities for the assessment of quadriceps muscle strength in patients with total knee arthroplasty. J Electromyogr Kinesiol. 2013;23:1283–8.PubMedCrossRef Lienhard K, Lauermann SP, Schneider D, Item-Glatthorn JF, Casartelli NC, Maffiuletti N. Validity and reliability of isometric, isokinetic and isoinertial modalities for the assessment of quadriceps muscle strength in patients with total knee arthroplasty. J Electromyogr Kinesiol. 2013;23:1283–8.PubMedCrossRef
86.
go back to reference Lum PS, Patten C, Kothari D, Yap R. Effects of velocity on maximal torque production in poststroke hemiparesis. Muscle Nerve. 2004;30:732–42.PubMedCrossRef Lum PS, Patten C, Kothari D, Yap R. Effects of velocity on maximal torque production in poststroke hemiparesis. Muscle Nerve. 2004;30:732–42.PubMedCrossRef
87.
go back to reference Knapik JJ, Wright JE, Mawdsley RH, Braun J. Isometric, isotonic, and isokinetic torque variations in four muscle groups through a range of joint motion. Phys Ther. 1983;63:938–47.PubMed Knapik JJ, Wright JE, Mawdsley RH, Braun J. Isometric, isotonic, and isokinetic torque variations in four muscle groups through a range of joint motion. Phys Ther. 1983;63:938–47.PubMed
88.
go back to reference Whiteley R, Jacobsen P, Prior S, Skazalski C, Otten R, Johnson A. Correlation of isokinetic and novel hand-held dynamometry measures of knee flexion and extension strength testing. J Sci Med Sport. 2012;15:444–50.PubMedCrossRef Whiteley R, Jacobsen P, Prior S, Skazalski C, Otten R, Johnson A. Correlation of isokinetic and novel hand-held dynamometry measures of knee flexion and extension strength testing. J Sci Med Sport. 2012;15:444–50.PubMedCrossRef
89.
go back to reference Van Campen A, De Groote F, Jonkers I, De Schutter J. An extended dynamometer setup to improve the accuracy of knee joint moment assessment. IEEE Trans Biomed Eng. 2013;60:1202–8.PubMedCrossRef Van Campen A, De Groote F, Jonkers I, De Schutter J. An extended dynamometer setup to improve the accuracy of knee joint moment assessment. IEEE Trans Biomed Eng. 2013;60:1202–8.PubMedCrossRef
90.
go back to reference Clark DJ, Condliffe EG, Patten C. Reliability of concentric and eccentric torque during isokinetic knee extension in post-stroke hemiparesis. Clin Biomech (Bristol, Avon). 2006;21:395–404.CrossRef Clark DJ, Condliffe EG, Patten C. Reliability of concentric and eccentric torque during isokinetic knee extension in post-stroke hemiparesis. Clin Biomech (Bristol, Avon). 2006;21:395–404.CrossRef
91.
go back to reference Hidler J. Robotic-assessment of walking in individuals with gait disorders. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2004;7:4829–31.CrossRef Hidler J. Robotic-assessment of walking in individuals with gait disorders. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2004;7:4829–31.CrossRef
92.
go back to reference Neckel ND, Blonien N, Nichols D, Hidler J. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. J Neuroeng Rehabil. 2008;5:19.PubMedPubMedCentralCrossRef Neckel ND, Blonien N, Nichols D, Hidler J. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. J Neuroeng Rehabil. 2008;5:19.PubMedPubMedCentralCrossRef
93.
go back to reference Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, Van Der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. Neural Syst Rehabil Eng IEEE Trans. 2007;15:379–86.CrossRef Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, Van Der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. Neural Syst Rehabil Eng IEEE Trans. 2007;15:379–86.CrossRef
94.
go back to reference Forrester LW, Roy A, Goodman RN, Rietschel J, Barton JE, Krebs HI, Macko RF. Clinical application of a modular ankle robot for stroke rehabilitation. NeuroRehabilitation. 2013;33:85–97.PubMedPubMedCentral Forrester LW, Roy A, Goodman RN, Rietschel J, Barton JE, Krebs HI, Macko RF. Clinical application of a modular ankle robot for stroke rehabilitation. NeuroRehabilitation. 2013;33:85–97.PubMedPubMedCentral
95.
go back to reference Bohannon RW. Knee extension strength and body weight determine sit-to-stand independence after stroke. Physiother Theory Pract. 2007;23:291–7.PubMedCrossRef Bohannon RW. Knee extension strength and body weight determine sit-to-stand independence after stroke. Physiother Theory Pract. 2007;23:291–7.PubMedCrossRef
96.
go back to reference Bohannon RW. Relevance of Muscle Strength to Gait Performance in Patients with Neurologic Disability. Neurorehabil Neural Repair. 1989. Bohannon RW. Relevance of Muscle Strength to Gait Performance in Patients with Neurologic Disability. Neurorehabil Neural Repair. 1989.
97.
go back to reference Nadler SF, DePrince ML, Hauesien N, Malanga G, Stitik TP, Price E. Portable dynamometer anchoring station for measuring strength of the hip extensors and abductors. Arch Phys Med Rehabil. 2000;81:1072–6.PubMedCrossRef Nadler SF, DePrince ML, Hauesien N, Malanga G, Stitik TP, Price E. Portable dynamometer anchoring station for measuring strength of the hip extensors and abductors. Arch Phys Med Rehabil. 2000;81:1072–6.PubMedCrossRef
98.
go back to reference Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol. 2004;91:22–9.PubMedCrossRef Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol. 2004;91:22–9.PubMedCrossRef
99.
go back to reference Rothstein JM, Lamb RL, Mayhew TP. Clinical uses of isokinetic measurements. Critical issues Phys Ther. 1987;67:1840–4.PubMed Rothstein JM, Lamb RL, Mayhew TP. Clinical uses of isokinetic measurements. Critical issues Phys Ther. 1987;67:1840–4.PubMed
100.
go back to reference Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: A critical review of methods. J Sport Heal Sci. 2015. Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: A critical review of methods. J Sport Heal Sci. 2015.
101.
go back to reference Suetterlin KJ, Sayer AA. Proprioception: where are we now? A commentary on clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing. 2013;43:1–6. Suetterlin KJ, Sayer AA. Proprioception: where are we now? A commentary on clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing. 2013;43:1–6.
102.
go back to reference Goble DJ. Proprioceptive acuity assessment via joint position matching: from basic science to general practice. Phys Ther. 2010;90:1176–84.PubMedCrossRef Goble DJ. Proprioceptive acuity assessment via joint position matching: from basic science to general practice. Phys Ther. 2010;90:1176–84.PubMedCrossRef
103.
go back to reference Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92:1651–97.PubMedCrossRef Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92:1651–97.PubMedCrossRef
104.
go back to reference Cammarata ML, Dhaher YY. Proprioceptive acuity in the frontal and sagittal planes of the knee: a preliminary study. Eur J Appl Physiol. 2011;111:1313–20.PubMedCrossRef Cammarata ML, Dhaher YY. Proprioceptive acuity in the frontal and sagittal planes of the knee: a preliminary study. Eur J Appl Physiol. 2011;111:1313–20.PubMedCrossRef
105.
go back to reference Allet L, Kim H, Ashton-Miller J, De Mott T, Richardson JK. Frontal plane hip and ankle sensorimotor function, not age, predicts unipedal stance time. Muscle Nerve. 2012;45:578–85.PubMedPubMedCentralCrossRef Allet L, Kim H, Ashton-Miller J, De Mott T, Richardson JK. Frontal plane hip and ankle sensorimotor function, not age, predicts unipedal stance time. Muscle Nerve. 2012;45:578–85.PubMedPubMedCentralCrossRef
106.
go back to reference Domingo A, Lam T. Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. J Neuroeng Rehabil. 2014;11:167.PubMedPubMedCentralCrossRef Domingo A, Lam T. Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. J Neuroeng Rehabil. 2014;11:167.PubMedPubMedCentralCrossRef
107.
go back to reference Elangovan N, Herrmann A, Konczak J. Assessing proprioceptive function: evaluating joint position matching methods against psychophysical thresholds. Phys Ther. 2014;94:553–61.PubMedCrossRef Elangovan N, Herrmann A, Konczak J. Assessing proprioceptive function: evaluating joint position matching methods against psychophysical thresholds. Phys Ther. 2014;94:553–61.PubMedCrossRef
108.
go back to reference Clark NC, Röijezon U, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 2: clinical assessment and intervention. Man Ther. 2015;20:378–87.PubMedCrossRef Clark NC, Röijezon U, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 2: clinical assessment and intervention. Man Ther. 2015;20:378–87.PubMedCrossRef
109.
go back to reference Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993;73:447–54.PubMed Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993;73:447–54.PubMed
110.
go back to reference Hillier S, Immink M, Thewlis D: Assessing Proprioception: A Systematic Review of Possibilities. Neurorehabil Neural Repair 2015;29:933–49. Hillier S, Immink M, Thewlis D: Assessing Proprioception: A Systematic Review of Possibilities. Neurorehabil Neural Repair 2015;29:933–49.
111.
112.
113.
go back to reference Hurkmans EJ, van der Esch M, Ostelo RWJG, Knol D, Dekker J, Steultjens MPM. Reproducibility of the measurement of knee joint proprioception in patients with osteoarthritis of the knee. Arthritis Rheum. 2007;57:1398–403.PubMedCrossRef Hurkmans EJ, van der Esch M, Ostelo RWJG, Knol D, Dekker J, Steultjens MPM. Reproducibility of the measurement of knee joint proprioception in patients with osteoarthritis of the knee. Arthritis Rheum. 2007;57:1398–403.PubMedCrossRef
114.
go back to reference Chisholm AE, Domingo A, Jeyasurya J, Lam T. Quantification of lower extremity kinesthesia deficits using a robotic exoskeleton in people with a spinal cord injury. Neurorehabil Neural Repair. 2015;30:199–208.PubMedCrossRef Chisholm AE, Domingo A, Jeyasurya J, Lam T. Quantification of lower extremity kinesthesia deficits using a robotic exoskeleton in people with a spinal cord injury. Neurorehabil Neural Repair. 2015;30:199–208.PubMedCrossRef
115.
go back to reference Brunnstrom S. Movement therapy in hemiplegia—a neurophysiological approach. New York: Harper & Row Publishers, Inc.; 1970. Brunnstrom S. Movement therapy in hemiplegia—a neurophysiological approach. New York: Harper & Row Publishers, Inc.; 1970.
116.
go back to reference Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:13–31.PubMed Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:13–31.PubMed
117.
go back to reference Duncan PW, Propst M, Nelson SG. Reliability of the fugl-meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther. 1983;63:1606–10.PubMed Duncan PW, Propst M, Nelson SG. Reliability of the fugl-meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther. 1983;63:1606–10.PubMed
118.
go back to reference Hsueh I-P, Hsu M-J, Sheu C-F, Lee S, Hsieh C-L, Lin J-H. Psychometric comparisons of 2 versions of the fugl-meyer motor scale and 2 versions of the stroke rehabilitation assessment of movement. Neurorehabil Neural Repair. 2008;22:737–44.PubMedCrossRef Hsueh I-P, Hsu M-J, Sheu C-F, Lee S, Hsieh C-L, Lin J-H. Psychometric comparisons of 2 versions of the fugl-meyer motor scale and 2 versions of the stroke rehabilitation assessment of movement. Neurorehabil Neural Repair. 2008;22:737–44.PubMedCrossRef
119.
go back to reference Dettmann MA, Linder MT, Sepic SB. Relationships among walking performance, postural stability, and functional assessments of the hemiplegic patient. Am J Phys Med. 1987;66:77–90.PubMed Dettmann MA, Linder MT, Sepic SB. Relationships among walking performance, postural stability, and functional assessments of the hemiplegic patient. Am J Phys Med. 1987;66:77–90.PubMed
120.
go back to reference Tan AQ, Dhaher YY. Evaluation of lower limb cross planar kinetic connectivity signatures post-stroke. J Biomech. 2014;47:1–8.CrossRef Tan AQ, Dhaher YY. Evaluation of lower limb cross planar kinetic connectivity signatures post-stroke. J Biomech. 2014;47:1–8.CrossRef
121.
go back to reference Cruz TH, Dhaher Y. Evidence of abnormal lower-limb torque coupling after stroke: an isometric study. Stroke. 2008;39:139–47.PubMedCrossRef Cruz TH, Dhaher Y. Evidence of abnormal lower-limb torque coupling after stroke: an isometric study. Stroke. 2008;39:139–47.PubMedCrossRef
122.
go back to reference Krishnan C, Dhaher Y. Corticospinal responses of quadriceps are abnormally coupled with hip adductors in chronic stroke survivors. Exp Neurol. 2012;233:400–7.PubMedCrossRef Krishnan C, Dhaher Y. Corticospinal responses of quadriceps are abnormally coupled with hip adductors in chronic stroke survivors. Exp Neurol. 2012;233:400–7.PubMedCrossRef
123.
go back to reference Thelen DD, Riewald S, Asakawa DS, Sanger TD, Delp SL. Abnormal coupling of knee and hip moments during maximal exertions in persons with cerebral palsy. Muscle Nerve. 2003;27:486–93.PubMedCrossRef Thelen DD, Riewald S, Asakawa DS, Sanger TD, Delp SL. Abnormal coupling of knee and hip moments during maximal exertions in persons with cerebral palsy. Muscle Nerve. 2003;27:486–93.PubMedCrossRef
124.
go back to reference Hidler JM, Carroll M, Federovich EH. Strength and coordination in the paretic Leg of individuals following acute stroke. J Biomech. 2007;15:526–34. Hidler JM, Carroll M, Federovich EH. Strength and coordination in the paretic Leg of individuals following acute stroke. J Biomech. 2007;15:526–34.
125.
go back to reference Sanchez N, Dewald JPA. Constraints imposed by the lower extremity extensor synergy in chronic hemiparetic stroke: Preliminary findings. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf. 2014;2014:5804–7. Sanchez N, Dewald JPA. Constraints imposed by the lower extremity extensor synergy in chronic hemiparetic stroke: Preliminary findings. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf. 2014;2014:5804–7.
126.
go back to reference Lunardini F, Casellato C, D’Avella A, Sanger T, Pedrocchi A. Robustness and reliability of synergy-based myocontrol of a multiple degree of freedom robotic Arm. IEEE Trans Neural Syst Rehabil Eng. 2015. Lunardini F, Casellato C, D’Avella A, Sanger T, Pedrocchi A. Robustness and reliability of synergy-based myocontrol of a multiple degree of freedom robotic Arm. IEEE Trans Neural Syst Rehabil Eng. 2015.
127.
go back to reference Sanchez N, Acosta A, Stienen A, Dewald J: A Multiple Degree of Freedom Lower Extremity Isometric Device to Simultaneously Quantify Hip, Knee and Ankle Torques. IEEE Trans Neural Syst Rehabil Eng 2015;23:765–75. Sanchez N, Acosta A, Stienen A, Dewald J: A Multiple Degree of Freedom Lower Extremity Isometric Device to Simultaneously Quantify Hip, Knee and Ankle Torques. IEEE Trans Neural Syst Rehabil Eng 2015;23:765–75.
128.
129.
go back to reference Dewald JP, Beer R. Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001;24(2):273–83.PubMedCrossRef Dewald JP, Beer R. Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001;24(2):273–83.PubMedCrossRef
130.
go back to reference Ellis MD, Sukal T, DeMott T, Dewald JPA. Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading. Neurorehabil Neural Repair. 2008;22:321–9.PubMedPubMedCentralCrossRef Ellis MD, Sukal T, DeMott T, Dewald JPA. Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading. Neurorehabil Neural Repair. 2008;22:321–9.PubMedPubMedCentralCrossRef
131.
go back to reference Latash M, Zatsiorsky VM. Biomechanics and Motor Control: Defining Central Concepts. Academic Press; 2015. Latash M, Zatsiorsky VM. Biomechanics and Motor Control: Defining Central Concepts. Academic Press; 2015.
132.
go back to reference Hogan N. Mechanical impedance of single- and multi-articular systems. In: Winters JM, Woo S-Y, editors. Multiple Muscle Systems. New York: Springer; 1990. p. 149–64.CrossRef Hogan N. Mechanical impedance of single- and multi-articular systems. In: Winters JM, Woo S-Y, editors. Multiple Muscle Systems. New York: Springer; 1990. p. 149–64.CrossRef
133.
go back to reference Latash ML, Zatsiorsky VM. Joint stiffness: Myth or reality? Hum Mov Sci. 1993;12(6):653–92.CrossRef Latash ML, Zatsiorsky VM. Joint stiffness: Myth or reality? Hum Mov Sci. 1993;12(6):653–92.CrossRef
134.
go back to reference Ludvig D, Perreault EJ. Estimation of joint impedance using short data segments. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf. 2011;2011:4120–3. Ludvig D, Perreault EJ. Estimation of joint impedance using short data segments. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf. 2011;2011:4120–3.
135.
go back to reference Kearney RE, Hunter IW. System identification of human joint dynamics. Crit Rev Biomed Eng. 1990;18:55–87.PubMed Kearney RE, Hunter IW. System identification of human joint dynamics. Crit Rev Biomed Eng. 1990;18:55–87.PubMed
136.
go back to reference Mirbagheri MM, Barbeau H, Kearney RE. Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position. Exp Brain Res. 2000;135:423.PubMedCrossRef Mirbagheri MM, Barbeau H, Kearney RE. Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position. Exp Brain Res. 2000;135:423.PubMedCrossRef
137.
go back to reference Sinkjaer T, Magnussen I. Passive, intrinsic and reflex-mediated stiffness in the ankle extensors of hemiparetic patients. Brain. 1994;117:355–63.PubMedCrossRef Sinkjaer T, Magnussen I. Passive, intrinsic and reflex-mediated stiffness in the ankle extensors of hemiparetic patients. Brain. 1994;117:355–63.PubMedCrossRef
138.
go back to reference Chung SG, Van Rey E, Bai Z, Roth EJ, Zhang L-Q. Biomechanic changes in passive properties of hemiplegic ankles with spastic hypertonia. Arch Phys Med Rehabil. 2004;85:1638–46.PubMedCrossRef Chung SG, Van Rey E, Bai Z, Roth EJ, Zhang L-Q. Biomechanic changes in passive properties of hemiplegic ankles with spastic hypertonia. Arch Phys Med Rehabil. 2004;85:1638–46.PubMedCrossRef
139.
go back to reference Mirbagheri MM, Barbeau H, Ladouceur M, Kearney RE. Intrinsic and reflex stiffness in normal and spastic, spinal cord injured subjects. Exp Brain Res. 2001;141:446.PubMedCrossRef Mirbagheri MM, Barbeau H, Ladouceur M, Kearney RE. Intrinsic and reflex stiffness in normal and spastic, spinal cord injured subjects. Exp Brain Res. 2001;141:446.PubMedCrossRef
140.
go back to reference Hunter I, Kearney R. Dynamics of human ankle stiffness: variation with mean ankle torque. J Biomech. 1982;15:747–52.PubMedCrossRef Hunter I, Kearney R. Dynamics of human ankle stiffness: variation with mean ankle torque. J Biomech. 1982;15:747–52.PubMedCrossRef
141.
go back to reference Gottlieb GL, Agarwal GC. Response to sudden torques about ankle in man: myotatic reflex. J Neurophysiol. 1979;42(1 Pt 1):91–106.PubMed Gottlieb GL, Agarwal GC. Response to sudden torques about ankle in man: myotatic reflex. J Neurophysiol. 1979;42(1 Pt 1):91–106.PubMed
142.
go back to reference Weiss P, Kearney R, Hunter I. Position dependence of ankle joint dynamics-II. Active mechanics. J Biomech. 1986;19:737–51.PubMedCrossRef Weiss P, Kearney R, Hunter I. Position dependence of ankle joint dynamics-II. Active mechanics. J Biomech. 1986;19:737–51.PubMedCrossRef
143.
go back to reference Weiss P, Kearney R, Hunter I. Position dependence of ankle joint dynamics-I. Passive mechanics. J Biomech. 1986;19:727–35.PubMedCrossRef Weiss P, Kearney R, Hunter I. Position dependence of ankle joint dynamics-I. Passive mechanics. J Biomech. 1986;19:727–35.PubMedCrossRef
144.
go back to reference Kearney R, Hunter I. Dynamics of human ankle stiffness: variation with displacement amplitude. J Biomech. 1982;15:753–6.PubMedCrossRef Kearney R, Hunter I. Dynamics of human ankle stiffness: variation with displacement amplitude. J Biomech. 1982;15:753–6.PubMedCrossRef
145.
go back to reference de Vlugt E, van Eesbeek S, Baines P, Hilte J, Meskers CGM, de Groot JH. Short range stiffness elastic limit depends on joint velocity. J Biomech. 2011;44:2106–12.PubMedCrossRef de Vlugt E, van Eesbeek S, Baines P, Hilte J, Meskers CGM, de Groot JH. Short range stiffness elastic limit depends on joint velocity. J Biomech. 2011;44:2106–12.PubMedCrossRef
146.
go back to reference Zhang LQ, Nuber G, Butler J, Bowen M, Rymer WZ. In vivo human knee joint dynamic properties as functions of muscle contraction and joint position. J Biomech. 1998;31:71–6.PubMedCrossRef Zhang LQ, Nuber G, Butler J, Bowen M, Rymer WZ. In vivo human knee joint dynamic properties as functions of muscle contraction and joint position. J Biomech. 1998;31:71–6.PubMedCrossRef
147.
go back to reference Kearney RE, Hunter IW. Nonlinear identification of stretch reflex dynamics. Ann Biomed Eng. 1988;16:79–94.PubMedCrossRef Kearney RE, Hunter IW. Nonlinear identification of stretch reflex dynamics. Ann Biomed Eng. 1988;16:79–94.PubMedCrossRef
148.
go back to reference Powers RK, Marder-Meyer J, Rymer WZ. Quantitative relations between hypertonia and stretch reflex threshold in spastic hemiparesis. Ann Neurol. 1988;23:115–24.PubMedCrossRef Powers RK, Marder-Meyer J, Rymer WZ. Quantitative relations between hypertonia and stretch reflex threshold in spastic hemiparesis. Ann Neurol. 1988;23:115–24.PubMedCrossRef
149.
go back to reference Mugge W, Abbink DA, van der Helm FCT. Reduced power method: how to evoke low-bandwidth behaviour while estimating full-bandwidth dynamics. 2007. p. 575–81. Mugge W, Abbink DA, van der Helm FCT. Reduced power method: how to evoke low-bandwidth behaviour while estimating full-bandwidth dynamics. 2007. p. 575–81.
150.
go back to reference Bohannon RW, Smith MB. Interrater reliability of a modified ashworth scale of muscle spasticity. Phys Ther. 1987;67:206–7.PubMed Bohannon RW, Smith MB. Interrater reliability of a modified ashworth scale of muscle spasticity. Phys Ther. 1987;67:206–7.PubMed
151.
go back to reference Blackburn M, van Vliet P, Mockett SP. Reliability of measurements obtained with the modified Ashworth scale in the lower extremities of people with stroke. Phys Ther. 2002;82:25–34.PubMed Blackburn M, van Vliet P, Mockett SP. Reliability of measurements obtained with the modified Ashworth scale in the lower extremities of people with stroke. Phys Ther. 2002;82:25–34.PubMed
153.
go back to reference Bohannon RW, Harrison S, Kinsella-Shaw J. Reliability and validity of pendulum test measures of spasticity obtained with the Polhemus tracking system from patients with chronic stroke. J Neuroeng Rehabil. 2009;6:30.PubMedPubMedCentralCrossRef Bohannon RW, Harrison S, Kinsella-Shaw J. Reliability and validity of pendulum test measures of spasticity obtained with the Polhemus tracking system from patients with chronic stroke. J Neuroeng Rehabil. 2009;6:30.PubMedPubMedCentralCrossRef
154.
go back to reference Fowler EG, Nwigwe AI, Ho TW. Sensitivity of the pendulum test for assessing spasticity in persons with cerebral palsy. Dev Med Child Neurol. 2000;42:182–9.PubMedCrossRef Fowler EG, Nwigwe AI, Ho TW. Sensitivity of the pendulum test for assessing spasticity in persons with cerebral palsy. Dev Med Child Neurol. 2000;42:182–9.PubMedCrossRef
155.
go back to reference Kearney E, Weiss L, Morier R. System identification of human ankle dynamics: Intersubject variability and intrasubject reliability. Clin Biomech. 1990;5:205–17.CrossRef Kearney E, Weiss L, Morier R. System identification of human ankle dynamics: Intersubject variability and intrasubject reliability. Clin Biomech. 1990;5:205–17.CrossRef
156.
go back to reference Wilken J, Rao S, Estin M, Saltzman CL, Yack HJ. A new device for assessing ankle dorsiflexion motion: reliability and validity. J Orthop Sports Phys Ther. 2011;41:274–80.PubMedCrossRef Wilken J, Rao S, Estin M, Saltzman CL, Yack HJ. A new device for assessing ankle dorsiflexion motion: reliability and validity. J Orthop Sports Phys Ther. 2011;41:274–80.PubMedCrossRef
157.
go back to reference Lünenburger L, Colombo G, Riener R, Dietz V. Clinical assessments performed during robotic rehabilitation by the gait training robot Lokomat. In: Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics. 2005. p. 345–8. Lünenburger L, Colombo G, Riener R, Dietz V. Clinical assessments performed during robotic rehabilitation by the gait training robot Lokomat. In: Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics. 2005. p. 345–8.
158.
go back to reference Chesworth BM, Vandervoort BM. Reliability of a torque motor system for measurement of passive ankle joint stiffness in control subjects. Physiother Canada. 1988;40:300–3. Chesworth BM, Vandervoort BM. Reliability of a torque motor system for measurement of passive ankle joint stiffness in control subjects. Physiother Canada. 1988;40:300–3.
159.
go back to reference Franzoi AC, Castro C, Cardone C. Isokinetic assessment of spasticity in subjects with traumatic spinal cord injury (ASIA A). Spinal Cord. 1999;37:416–20.PubMedCrossRef Franzoi AC, Castro C, Cardone C. Isokinetic assessment of spasticity in subjects with traumatic spinal cord injury (ASIA A). Spinal Cord. 1999;37:416–20.PubMedCrossRef
160.
go back to reference McHugh MP, Hogan DE. Effect of knee flexion angle on active joint stiffness. Acta Physiol Scand. 2004;180:249–54.PubMedCrossRef McHugh MP, Hogan DE. Effect of knee flexion angle on active joint stiffness. Acta Physiol Scand. 2004;180:249–54.PubMedCrossRef
161.
go back to reference Blackburn JT, Padua DA, Riemann BL, Guskiewicz KM. The relationships between active extensibility, and passive and active stiffness of the knee flexors. J Electromyogr Kinesiol. 2004;14:683–91.PubMedCrossRef Blackburn JT, Padua DA, Riemann BL, Guskiewicz KM. The relationships between active extensibility, and passive and active stiffness of the knee flexors. J Electromyogr Kinesiol. 2004;14:683–91.PubMedCrossRef
162.
go back to reference de Vlugt E, de Groot JH, Schenkeveld KE, Arendzen JH, van der Helm FCT, Meskers CGM. The relation between neuromechanical parameters and Ashworth score in stroke patients. J Neuroeng Rehabil. 2010;7:35.PubMedPubMedCentralCrossRef de Vlugt E, de Groot JH, Schenkeveld KE, Arendzen JH, van der Helm FCT, Meskers CGM. The relation between neuromechanical parameters and Ashworth score in stroke patients. J Neuroeng Rehabil. 2010;7:35.PubMedPubMedCentralCrossRef
163.
go back to reference Androwis GJ, Michael PA, Strongwater A, Foulds RA. Estimation of intrinsic joint impedance using quasi-static passive and dynamic methods in individuals with and without Cerebral Palsy. In: IEEE Engineering in Medicine and Biology Society. Annual Conference. 2014. p. 4403–6. Androwis GJ, Michael PA, Strongwater A, Foulds RA. Estimation of intrinsic joint impedance using quasi-static passive and dynamic methods in individuals with and without Cerebral Palsy. In: IEEE Engineering in Medicine and Biology Society. Annual Conference. 2014. p. 4403–6.
164.
go back to reference Mirbagheri MM, Kearney RE, Barbeau H. Quantitative, objective measurement of ankle dynamic stiffness: Intrasubject reliability and intersubject variability. In: Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. 1996. p. 585–6. Mirbagheri MM, Kearney RE, Barbeau H. Quantitative, objective measurement of ankle dynamic stiffness: Intrasubject reliability and intersubject variability. In: Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. 1996. p. 585–6.
165.
go back to reference Sloot LH, van der Krogt MM, de Gooijer-van de Groep KL, van Eesbeek S, de Groot J, Buizer AI, Meskers C, Becher JG, de Vlugt E, Harlaar J. The validity and reliability of modelled neural and tissue properties of the ankle muscles in children with cerebral palsy. Gait Posture. 2015;42:7–15.PubMedCrossRef Sloot LH, van der Krogt MM, de Gooijer-van de Groep KL, van Eesbeek S, de Groot J, Buizer AI, Meskers C, Becher JG, de Vlugt E, Harlaar J. The validity and reliability of modelled neural and tissue properties of the ankle muscles in children with cerebral palsy. Gait Posture. 2015;42:7–15.PubMedCrossRef
166.
167.
go back to reference Vlutters M, Boonstra TA, Schouten AC, Van der Kooij H. Direct measurement of the intrinsic ankle stiffness during standing. J Biomech. 2015;48:1258–63.PubMedCrossRef Vlutters M, Boonstra TA, Schouten AC, Van der Kooij H. Direct measurement of the intrinsic ankle stiffness during standing. J Biomech. 2015;48:1258–63.PubMedCrossRef
168.
go back to reference Koopman B, van Asseldonk EHF, Van Der Kooij H. In vivo measurement of human knee and hip dynamics using MIMO system identification. Buenos Aires: Proceedings of 32nd Annual Internation conference of the IEEE EMBS; 2011. p. 3426–9. Koopman B, van Asseldonk EHF, Van Der Kooij H. In vivo measurement of human knee and hip dynamics using MIMO system identification. Buenos Aires: Proceedings of 32nd Annual Internation conference of the IEEE EMBS; 2011. p. 3426–9.
169.
170.
go back to reference Ludvig D, Pfeifer S, Hu X, Perreault EJ. Time-varying system identification for understanding the control of human knee impedance. In: IFAC Proceedings Volumes (IFAC-PapersOnline). 2012. p. 1306–10. Ludvig D, Pfeifer S, Hu X, Perreault EJ. Time-varying system identification for understanding the control of human knee impedance. In: IFAC Proceedings Volumes (IFAC-PapersOnline). 2012. p. 1306–10.
171.
go back to reference Ludvig D, Starret Visser T, Giesbrecht H, Kearney R. Identification of time-varying intrinsic and reflex joint stiffness. IEEE Trans Biomed Eng. 2011;58:1.CrossRef Ludvig D, Starret Visser T, Giesbrecht H, Kearney R. Identification of time-varying intrinsic and reflex joint stiffness. IEEE Trans Biomed Eng. 2011;58:1.CrossRef
172.
173.
go back to reference Tucker MR, Moser A, Lambercy O, Sulzer J, Gassert R. Design of a wearable perturbator for human knee impedance estimation during gait. IEEE Int Conf Rehabil Robot 2013. 2013;2013:6650372. Tucker MR, Moser A, Lambercy O, Sulzer J, Gassert R. Design of a wearable perturbator for human knee impedance estimation during gait. IEEE Int Conf Rehabil Robot 2013. 2013;2013:6650372.
174.
go back to reference Perry J. Gait Analysis. Normal and Pathological Function. Thorofare: SLACK Incorporated; 1992. Perry J. Gait Analysis. Normal and Pathological Function. Thorofare: SLACK Incorporated; 1992.
175.
go back to reference Keane-Miller, O’Toole MT. Miller-Keane Encyclopedia & Dictionary of Medicine, Nursing & Allied Health. 7th ed. 2005. Keane-Miller, O’Toole MT. Miller-Keane Encyclopedia & Dictionary of Medicine, Nursing & Allied Health. 7th ed. 2005.
176.
go back to reference Winter DA. Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. 2nd edition. Waterloo Biomechanics; 1991. Winter DA. Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. 2nd edition. Waterloo Biomechanics; 1991.
177.
go back to reference Baker R: Measuring Walking: A Handbook of Clinical Gait Analysis. 1st edition. London: Mac Keith Press; 2013. Baker R: Measuring Walking: A Handbook of Clinical Gait Analysis. 1st edition. London: Mac Keith Press; 2013.
178.
go back to reference Awai L, Curt A. Intralimb coordination as a sensitive indicator of motor-control impairment after spinal cord injury. Front Hum Neurosci. 2014;8(March):148.PubMedPubMedCentral Awai L, Curt A. Intralimb coordination as a sensitive indicator of motor-control impairment after spinal cord injury. Front Hum Neurosci. 2014;8(March):148.PubMedPubMedCentral
179.
go back to reference Hedel HJA V, Wirz M, Curt A. Improving walking assessment in subjects with an incomplete spinal cord injury : responsiveness. 2006. p. 352–6. Hedel HJA V, Wirz M, Curt A. Improving walking assessment in subjects with an incomplete spinal cord injury : responsiveness. 2006. p. 352–6.
180.
go back to reference van Hedel HJ, Wirz M, Dietz V. Standardized assessment of walking capacity after spinal cord injury: the European network approach. Neurol Res. 2008;30:61–73.PubMedCrossRef van Hedel HJ, Wirz M, Dietz V. Standardized assessment of walking capacity after spinal cord injury: the European network approach. Neurol Res. 2008;30:61–73.PubMedCrossRef
181.
go back to reference Van Hedel HJ, Wirz M, Dietz V. Assessing Walking Ability in Subjects With Spinal Cord Injury : Validity and Reliability of 3 Walking Tests. Arch Phys Med Rehabil. 2005;86:190–6. Van Hedel HJ, Wirz M, Dietz V. Assessing Walking Ability in Subjects With Spinal Cord Injury : Validity and Reliability of 3 Walking Tests. Arch Phys Med Rehabil. 2005;86:190–6.
182.
go back to reference Jackson AB, Carnel CT, Ditunno JF, Read MS, Boninger ML, Schmeler MR, Apt OTRL, Williams SR, Donovan WH. Outcome measures for gait and ambulation in the spinal cord injury population. J Spinal Cord Med. 2008;31:487–99.PubMedPubMedCentral Jackson AB, Carnel CT, Ditunno JF, Read MS, Boninger ML, Schmeler MR, Apt OTRL, Williams SR, Donovan WH. Outcome measures for gait and ambulation in the spinal cord injury population. J Spinal Cord Med. 2008;31:487–99.PubMedPubMedCentral
183.
go back to reference Schmid A, Duncan PW, Studenski S, Lai SM, Richards L, Perera S, Wu SS. Improvements in speed-based gait classifications are meaningful. Stroke. 2007;38:2096–100.PubMedCrossRef Schmid A, Duncan PW, Studenski S, Lai SM, Richards L, Perera S, Wu SS. Improvements in speed-based gait classifications are meaningful. Stroke. 2007;38:2096–100.PubMedCrossRef
184.
go back to reference Awai L, Bolliger M, Ferguson AR, Courtine G, Curt A. Influence of spinal cord integrity on gait control in human spinal cord injury. Neurorehabil Neural Repair. 2015. Awai L, Bolliger M, Ferguson AR, Courtine G, Curt A. Influence of spinal cord integrity on gait control in human spinal cord injury. Neurorehabil Neural Repair. 2015.
185.
go back to reference Jasiewicz JM, Allum JHJ, Middleton JW, Barriskill A, Condie P, Purcell B, Li RCT. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture. 2006;24:502–9.PubMedCrossRef Jasiewicz JM, Allum JHJ, Middleton JW, Barriskill A, Condie P, Purcell B, Li RCT. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture. 2006;24:502–9.PubMedCrossRef
186.
go back to reference Rueterbories J, Spaich EG, Larsen B, Andersen OK. Methods for gait event detection and analysis in ambulatory systems. Med Eng Phys. 2010;32:545–52.PubMedCrossRef Rueterbories J, Spaich EG, Larsen B, Andersen OK. Methods for gait event detection and analysis in ambulatory systems. Med Eng Phys. 2010;32:545–52.PubMedCrossRef
187.
go back to reference Aminian K, Najafi B, Büla C, Leyvraz P-F, Robert P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech. 2002;35:689–99.PubMedCrossRef Aminian K, Najafi B, Büla C, Leyvraz P-F, Robert P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech. 2002;35:689–99.PubMedCrossRef
188.
go back to reference Bilney B, Morris M, Webster K. Concurrent related validity of the GAITRite walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture. 2003;17:68–74.PubMedCrossRef Bilney B, Morris M, Webster K. Concurrent related validity of the GAITRite walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture. 2003;17:68–74.PubMedCrossRef
189.
go back to reference Micó-Amigo ME, Kingma I, Ainsworth E, Walgaard S, Niessen M, van Lummel RC, van Dieën JH. A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly. J Neuroeng Rehabil. 2016;13:38.PubMedPubMedCentralCrossRef Micó-Amigo ME, Kingma I, Ainsworth E, Walgaard S, Niessen M, van Lummel RC, van Dieën JH. A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly. J Neuroeng Rehabil. 2016;13:38.PubMedPubMedCentralCrossRef
190.
go back to reference Boutaayamou M, Schwartz C, Stamatakis J, Denoël V, Maquet D, Forthomme B, Croisier JL, Macq B, Verly JG, Garraux G, Brüls O. Development and validation of an accelerometer-based method for quantifying gait events. Med Eng Phys. 2015;37:226–32.PubMedCrossRef Boutaayamou M, Schwartz C, Stamatakis J, Denoël V, Maquet D, Forthomme B, Croisier JL, Macq B, Verly JG, Garraux G, Brüls O. Development and validation of an accelerometer-based method for quantifying gait events. Med Eng Phys. 2015;37:226–32.PubMedCrossRef
191.
go back to reference Mariani B, Rouhani H, Crevoisier X, Aminian K. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait Posture. 2013;37:229–34.PubMedCrossRef Mariani B, Rouhani H, Crevoisier X, Aminian K. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait Posture. 2013;37:229–34.PubMedCrossRef
192.
go back to reference Hausdorff JM. Gait variability: methods, modeling and meaning. J Neuroeng Rehabil. 2005;9:1–9. Hausdorff JM. Gait variability: methods, modeling and meaning. J Neuroeng Rehabil. 2005;9:1–9.
193.
go back to reference Allen JL, Kautz S, Neptune RR. Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture. 2011;33:538–43.PubMedPubMedCentralCrossRef Allen JL, Kautz S, Neptune RR. Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture. 2011;33:538–43.PubMedPubMedCentralCrossRef
194.
go back to reference Chen G, Patten C, Kothari DH, Zajac FE. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22:51–6.PubMedCrossRef Chen G, Patten C, Kothari DH, Zajac FE. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22:51–6.PubMedCrossRef
195.
go back to reference Olney SJ, Richards C. Hemiparetic gait following stroke.Part I : Characteristics. Gait Posture. 1996;4:136–48.CrossRef Olney SJ, Richards C. Hemiparetic gait following stroke.Part I : Characteristics. Gait Posture. 1996;4:136–48.CrossRef
198.
go back to reference Awai L, Curt A. Intralimb coordination as a sensitive indicator of motor-control impairment after spinal cord injury. Front Hum Neurosci. 2014;8(March):1–8. Awai L, Curt A. Intralimb coordination as a sensitive indicator of motor-control impairment after spinal cord injury. Front Hum Neurosci. 2014;8(March):1–8.
199.
go back to reference Hidler J, Wisman W, Neckel N. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomech (Bristol, Avon). 2008;23:1251–9.CrossRef Hidler J, Wisman W, Neckel N. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomech (Bristol, Avon). 2008;23:1251–9.CrossRef
200.
go back to reference Koopman B, van Asseldonk EHF, van der Kooij H. Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton. J Neuroeng Rehabil. 2013;10:3.PubMedPubMedCentralCrossRef Koopman B, van Asseldonk EHF, van der Kooij H. Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton. J Neuroeng Rehabil. 2013;10:3.PubMedPubMedCentralCrossRef
201.
go back to reference Emken JL, Harkema SJ, Beres-jones JA, Ferreira CK, Reinkensmeyer DJ. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Biomed Eng. 2008;55:322–34.PubMedCrossRef Emken JL, Harkema SJ, Beres-jones JA, Ferreira CK, Reinkensmeyer DJ. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Biomed Eng. 2008;55:322–34.PubMedCrossRef
202.
go back to reference Duschau-Wicke A, von Zitzewitz J, Caprez A, Luenenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans neural Syst Rehabil Eng. 2010;18:38–48.PubMedCrossRef Duschau-Wicke A, von Zitzewitz J, Caprez A, Luenenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans neural Syst Rehabil Eng. 2010;18:38–48.PubMedCrossRef
203.
go back to reference Krishnan C, Ranganathan R, Dhaher YY, Rymer WZ. A pilot study on the feasibility of robot-aided Leg motor training to facilitate active participation. PLoS One. 2013;8:e77370.PubMedPubMedCentralCrossRef Krishnan C, Ranganathan R, Dhaher YY, Rymer WZ. A pilot study on the feasibility of robot-aided Leg motor training to facilitate active participation. PLoS One. 2013;8:e77370.PubMedPubMedCentralCrossRef
204.
go back to reference Park YL, Chen BR, Young D, Stirling L, Wood RJ, Goldfield E, Nagpal R. Bio-inspired active soft orthotic device for ankle foot pathologies. IEEE Int Conf Intell Robot Syst. 2011;4488–95. Park YL, Chen BR, Young D, Stirling L, Wood RJ, Goldfield E, Nagpal R. Bio-inspired active soft orthotic device for ankle foot pathologies. IEEE Int Conf Intell Robot Syst. 2011;4488–95.
205.
go back to reference Bartenbach V, Schmidt K, Naef M, Wyss D, Riener R. Concept of a Soft Exosuit for the Support of Leg Function in Rehabilitation. Singapore: IEEE International Conference on Rehabilitation Robotics; 2015.CrossRef Bartenbach V, Schmidt K, Naef M, Wyss D, Riener R. Concept of a Soft Exosuit for the Support of Leg Function in Rehabilitation. Singapore: IEEE International Conference on Rehabilitation Robotics; 2015.CrossRef
206.
go back to reference Maggioni S, Lunenburger L, Riener R, Melendez-Calderon A. Robot-aided assessment of walking function based on an adaptive algorithm. In: Rehabilitation Robotics (ICORR), 2015 IEEE International Conference on. 2015. p. 804–9.CrossRef Maggioni S, Lunenburger L, Riener R, Melendez-Calderon A. Robot-aided assessment of walking function based on an adaptive algorithm. In: Rehabilitation Robotics (ICORR), 2015 IEEE International Conference on. 2015. p. 804–9.CrossRef
207.
go back to reference Duschau-Wicke A, Felsenstein S, Riener R. Adaptive body weight support controls human activity during robot-aided gait training. Kyoto: 2009 IEEE 11th International Conference on Rehabilitation Robotics; 2009. p. 413–8. Duschau-Wicke A, Felsenstein S, Riener R. Adaptive body weight support controls human activity during robot-aided gait training. Kyoto: 2009 IEEE 11th International Conference on Rehabilitation Robotics; 2009. p. 413–8.
208.
go back to reference Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008;16:286–97.PubMedCrossRef Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008;16:286–97.PubMedCrossRef
209.
go back to reference Neckel ND, Blonien N, Nichols D, Hidler J. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. J Neuroeng Rehabil. 2008;13:1–13. Neckel ND, Blonien N, Nichols D, Hidler J. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. J Neuroeng Rehabil. 2008;13:1–13.
210.
go back to reference Niu X, Varoqui D, Kindig M, Mirbagheri MM. Prediction of gait recovery in spinal cord injured individuals trained with robotic gait orthosis. J Neuroeng Rehabil. 2014;11:1–9.CrossRef Niu X, Varoqui D, Kindig M, Mirbagheri MM. Prediction of gait recovery in spinal cord injured individuals trained with robotic gait orthosis. J Neuroeng Rehabil. 2014;11:1–9.CrossRef
212.
go back to reference Hallgren KA. Computing inter-rater reliability for observational data: an overview and tutorial. Tutor Quant Methods Psychol. 2012;8:23–34.PubMedPubMedCentral Hallgren KA. Computing inter-rater reliability for observational data: an overview and tutorial. Tutor Quant Methods Psychol. 2012;8:23–34.PubMedPubMedCentral
213.
go back to reference Shrout PE, Fleiss JL. Intraclass correlations : uses in assessing rater reliability. Psychon Bull. 1979;86:420–8.CrossRef Shrout PE, Fleiss JL. Intraclass correlations : uses in assessing rater reliability. Psychon Bull. 1979;86:420–8.CrossRef
214.
go back to reference Shrout PE. Measurement reliability and agreement in psychiatry. Stat Methods Med Res. 1998;7:301–17.PubMedCrossRef Shrout PE. Measurement reliability and agreement in psychiatry. Stat Methods Med Res. 1998;7:301–17.PubMedCrossRef
215.
go back to reference McHugh ML. Interrater reliability: the kappa statistic. Biochemia Medica. 2012;276–282. McHugh ML. Interrater reliability: the kappa statistic. Biochemia Medica. 2012;276–282.
216.
go back to reference Sivan M, Connor RJO, Makower S, Hons BA, Phys D, Levesley M, Bhakta B. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med. 2011;43:181–9.PubMedCrossRef Sivan M, Connor RJO, Makower S, Hons BA, Phys D, Levesley M, Bhakta B. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med. 2011;43:181–9.PubMedCrossRef
217.
go back to reference Husted JA, Cook RJ, Farewell VT, Gladman DD. Methods for assessing responsiveness : a critical review and recommendations. J. Clin. Epidemiol. 2000;53:459–68. Husted JA, Cook RJ, Farewell VT, Gladman DD. Methods for assessing responsiveness : a critical review and recommendations. J. Clin. Epidemiol. 2000;53:459–68.
218.
go back to reference Wright A, Hannon J, Hegedus EJ, Kavchak AE. Clinimetrics corner : a closer look at the minimal clinically important difference (MCID). J Man Manip Ther. 2012;20:160–6.PubMedPubMedCentralCrossRef Wright A, Hannon J, Hegedus EJ, Kavchak AE. Clinimetrics corner : a closer look at the minimal clinically important difference (MCID). J Man Manip Ther. 2012;20:160–6.PubMedPubMedCentralCrossRef
219.
go back to reference Gogia PP, Braatz JH, Rose SJ, Norton BJ. Reliability and validity of goniometric measurements at the knee. Phys Ther. 1987;67:192–5.PubMed Gogia PP, Braatz JH, Rose SJ, Norton BJ. Reliability and validity of goniometric measurements at the knee. Phys Ther. 1987;67:192–5.PubMed
220.
go back to reference Currier LL, Froehlich PJ, Carow SD, McAndrew RK, Cliborne AV, Boyles RE, Mansfield LT, Wainner RS. Development of a clinical prediction rule to identify patients with knee pain and clinical evidence of knee osteoarthritis Who demonstrate a favorable short-term response to Hip mobilization. Phys Ther. 2007;87:1106–19.PubMedCrossRef Currier LL, Froehlich PJ, Carow SD, McAndrew RK, Cliborne AV, Boyles RE, Mansfield LT, Wainner RS. Development of a clinical prediction rule to identify patients with knee pain and clinical evidence of knee osteoarthritis Who demonstrate a favorable short-term response to Hip mobilization. Phys Ther. 2007;87:1106–19.PubMedCrossRef
221.
go back to reference Poulsen E, Christensen HW, Penny JØ, Overgaard S, Vach W, Hartvigsen J. Reproducibility of range of motion and muscle strength measurements in patients with hip osteoarthritis - an inter-rater study. BMC Musculoskelet Disord. 2012;13:242.PubMedPubMedCentralCrossRef Poulsen E, Christensen HW, Penny JØ, Overgaard S, Vach W, Hartvigsen J. Reproducibility of range of motion and muscle strength measurements in patients with hip osteoarthritis - an inter-rater study. BMC Musculoskelet Disord. 2012;13:242.PubMedPubMedCentralCrossRef
222.
go back to reference Elveru RA, Rothstein JM, Lamb RL. Goniometric reliability in a clinical setting. Phys Ther. 1988;68:672.PubMed Elveru RA, Rothstein JM, Lamb RL. Goniometric reliability in a clinical setting. Phys Ther. 1988;68:672.PubMed
223.
go back to reference Watkins MA, Riddle DL, Lamb RL, Personius WJ. Reliability of goniometric measurements and visual estimates of ankle joint active range of motion obtained in a clinical setting. Phys Ther. 1991;71:90–6.PubMed Watkins MA, Riddle DL, Lamb RL, Personius WJ. Reliability of goniometric measurements and visual estimates of ankle joint active range of motion obtained in a clinical setting. Phys Ther. 1991;71:90–6.PubMed
224.
go back to reference Wakefield CB, Halls A, Difilippo N, Cottrell GT. Reliability of goniometric and trigonometric techniques for measuring Hip-extension range of motion using the modified thomas test. J Athl Train. 2015;50:150219105224004.CrossRef Wakefield CB, Halls A, Difilippo N, Cottrell GT. Reliability of goniometric and trigonometric techniques for measuring Hip-extension range of motion using the modified thomas test. J Athl Train. 2015;50:150219105224004.CrossRef
225.
go back to reference Hayes KW, Petersen CM. Reliability of assessing end-feel and pain and resistance sequence in subjects with painful shoulders and knees. J Orthop Sports Phys Ther. 2001;31:432–45.PubMedCrossRef Hayes KW, Petersen CM. Reliability of assessing end-feel and pain and resistance sequence in subjects with painful shoulders and knees. J Orthop Sports Phys Ther. 2001;31:432–45.PubMedCrossRef
226.
go back to reference Fan E, Ciesla ND, Truong AD, Bhoopathi V, Zeger SL, Needham DM. Inter-rater reliability of manual muscle strength testing in ICU survivors and simulated patients. Intensive Care Med. 2010;36:1038–43.PubMedPubMedCentralCrossRef Fan E, Ciesla ND, Truong AD, Bhoopathi V, Zeger SL, Needham DM. Inter-rater reliability of manual muscle strength testing in ICU survivors and simulated patients. Intensive Care Med. 2010;36:1038–43.PubMedPubMedCentralCrossRef
227.
go back to reference Escolar DM, Henricson EK, Mayhew J, Florence J, Leshner R, Patel KM, Clemens PR. Clinical evaluator reliability for quantitative and manual muscle testing measures of strength in children. Muscle Nerve. 2001;24:787–93.PubMedCrossRef Escolar DM, Henricson EK, Mayhew J, Florence J, Leshner R, Patel KM, Clemens PR. Clinical evaluator reliability for quantitative and manual muscle testing measures of strength in children. Muscle Nerve. 2001;24:787–93.PubMedCrossRef
228.
go back to reference Jain M, Smith M, Cintas H, Koziol D, Wesley R, Harris-Love M, Lovell D, Rider LG, Hicks J: Intra-Rater and Inter-Rater Reliability of the 10- Point Manual Muscle Test (MMT) of Strength in Children with Juvenile Idiopathic Inflammatory Myopathies (JIIM). Phys Occup Ther Pediatr 2006;26:1541–3144. Jain M, Smith M, Cintas H, Koziol D, Wesley R, Harris-Love M, Lovell D, Rider LG, Hicks J: Intra-Rater and Inter-Rater Reliability of the 10- Point Manual Muscle Test (MMT) of Strength in Children with Juvenile Idiopathic Inflammatory Myopathies (JIIM). Phys Occup Ther Pediatr 2006;26:1541–3144.
229.
go back to reference Schache MB, McClelland JA, Webster KE. Reliability of measuring hip abductor strength following total knee arthroplasty using a hand-held dynamometer. Disabil Rehabil. 2015;38:597.PubMedCrossRef Schache MB, McClelland JA, Webster KE. Reliability of measuring hip abductor strength following total knee arthroplasty using a hand-held dynamometer. Disabil Rehabil. 2015;38:597.PubMedCrossRef
231.
go back to reference Lam T, Noonan VK, Eng JJ. SCIRE research team: a systematic review of functional ambulation outcome measures in spinal cord injury. Spinal Cord. 2008;46:246–54.PubMedCrossRef Lam T, Noonan VK, Eng JJ. SCIRE research team: a systematic review of functional ambulation outcome measures in spinal cord injury. Spinal Cord. 2008;46:246–54.PubMedCrossRef
232.
go back to reference Zhang M, Davies TC, Nandakumar A, Quan S. A novel assessment technique for measuring ankle orientation and stiffness. J Biomech. 2015;48:3527–9.PubMedCrossRef Zhang M, Davies TC, Nandakumar A, Quan S. A novel assessment technique for measuring ankle orientation and stiffness. J Biomech. 2015;48:3527–9.PubMedCrossRef
233.
go back to reference Chesworth BM, Vandervoort AA. Age and passive ankle stiffness in healthy women. Phys Ther. 1989;69:217–24.PubMed Chesworth BM, Vandervoort AA. Age and passive ankle stiffness in healthy women. Phys Ther. 1989;69:217–24.PubMed
Metadata
Title
Robot-aided assessment of lower extremity functions: a review
Authors
Serena Maggioni
Alejandro Melendez-Calderon
Edwin van Asseldonk
Verena Klamroth-Marganska
Lars Lünenburger
Robert Riener
Herman van der Kooij
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2016
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-016-0180-3

Other articles of this Issue 1/2016

Journal of NeuroEngineering and Rehabilitation 1/2016 Go to the issue