Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton

Authors: Bram Koopman, Edwin HF van Asseldonk, Herman van der Kooij

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Robot-aided gait training is an emerging clinical tool for gait rehabilitation of neurological patients. This paper deals with a novel method of offering gait assistance, using an impedance controlled exoskeleton (LOPES). The provided assistance is based on a recent finding that, in the control of walking, different modules can be discerned that are associated with different subtasks. In this study, a Virtual Model Controller (VMC) for supporting one of these subtasks, namely the foot clearance, is presented and evaluated.

Methods

The developed VMC provides virtual support at the ankle, to increase foot clearance. Therefore, we first developed a new method to derive reference trajectories of the ankle position. These trajectories consist of splines between key events, which are dependent on walking speed and body height. Subsequently, the VMC was evaluated in twelve healthy subjects and six chronic stroke survivors. The impedance levels, of the support, were altered between trials to investigate whether the controller allowed gradual and selective support. Additionally, an adaptive algorithm was tested, that automatically shaped the amount of support to the subjects’ needs. Catch trials were introduced to determine whether the subjects tended to rely on the support. We also assessed the additional value of providing visual feedback.

Results

With the VMC, the step height could be selectively and gradually influenced. The adaptive algorithm clearly shaped the support level to the specific needs of every stroke survivor. The provided support did not result in reliance on the support for both groups. All healthy subjects and most patients were able to utilize the visual feedback to increase their active participation.

Conclusion

The presented approach can provide selective control on one of the essential subtasks of walking. This module is the first in a set of modules to control all subtasks. This enables the therapist to focus the support on the subtasks that are impaired, and leave the other subtasks up to the patient, encouraging him to participate more actively in the training. Additionally, the speed-dependent reference patterns provide the therapist with the tools to easily adapt the treadmill speed to the capabilities and progress of the patient.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kwakkel G, Van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P: Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke 2004, 35: 2529-2539. 10.1161/01.STR.0000143153.76460.7dCrossRefPubMed Kwakkel G, Van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P: Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke 2004, 35: 2529-2539. 10.1161/01.STR.0000143153.76460.7dCrossRefPubMed
2.
go back to reference Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC: Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke 1997, 28: 1550-1556. 10.1161/01.STR.28.8.1550CrossRefPubMed Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC: Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke 1997, 28: 1550-1556. 10.1161/01.STR.28.8.1550CrossRefPubMed
3.
go back to reference Teasell R, Bitensky J, Salter K, Bayona NA: The role of timing and intensity of rehabilitation therapies. Top Stroke Rehabil 2005, 12: 46-57. 10.1310/ETDP-6DR4-D617-VMVFCrossRefPubMed Teasell R, Bitensky J, Salter K, Bayona NA: The role of timing and intensity of rehabilitation therapies. Top Stroke Rehabil 2005, 12: 46-57. 10.1310/ETDP-6DR4-D617-VMVFCrossRefPubMed
4.
go back to reference Hidler J, Nichols D, Pelliccio M, Brady K: Advances in the understanding and treatment of stroke impairment using robotic devices. Top Stroke Rehabil 2005, 12: 22-35. 10.1310/RYT5-62N4-CTVX-8JTECrossRefPubMed Hidler J, Nichols D, Pelliccio M, Brady K: Advances in the understanding and treatment of stroke impairment using robotic devices. Top Stroke Rehabil 2005, 12: 22-35. 10.1310/RYT5-62N4-CTVX-8JTECrossRefPubMed
5.
go back to reference Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hoolig G, Koch R, Hesse S: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (Deutsche GangtrainerStudie, DEGAS). Clin Rehabil 2007, 21: 17-27. 10.1177/0269215506071281CrossRefPubMed Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hoolig G, Koch R, Hesse S: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (Deutsche GangtrainerStudie, DEGAS). Clin Rehabil 2007, 21: 17-27. 10.1177/0269215506071281CrossRefPubMed
6.
go back to reference Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair 2007, 21: 307-314. 10.1177/1545968307300697CrossRefPubMed Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair 2007, 21: 307-314. 10.1177/1545968307300697CrossRefPubMed
7.
go back to reference Westlake KP, Patten C: Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil 2009, 6: 18. 10.1186/1743-0003-6-18PubMedCentralCrossRefPubMed Westlake KP, Patten C: Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil 2009, 6: 18. 10.1186/1743-0003-6-18PubMedCentralCrossRefPubMed
8.
go back to reference Werner C, Von Frankenberg S, Treig T, Konrad M, Hesse S: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke 2002, 33: 2895-2901. 10.1161/01.STR.0000035734.61539.F6CrossRefPubMed Werner C, Von Frankenberg S, Treig T, Konrad M, Hesse S: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke 2002, 33: 2895-2901. 10.1161/01.STR.0000035734.61539.F6CrossRefPubMed
9.
go back to reference Husemann B, Muller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 2007, 38: 349-354. 10.1161/01.STR.0000254607.48765.cbCrossRefPubMed Husemann B, Muller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 2007, 38: 349-354. 10.1161/01.STR.0000254607.48765.cbCrossRefPubMed
10.
go back to reference Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 2008, 39: 1786-1792. 10.1161/STROKEAHA.107.504779CrossRefPubMed Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 2008, 39: 1786-1792. 10.1161/STROKEAHA.107.504779CrossRefPubMed
11.
go back to reference Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 2009, 23: 5-13.CrossRefPubMed Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 2009, 23: 5-13.CrossRefPubMed
12.
go back to reference Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG: Motor learning elicited by voluntary drive. Brain 2003, 126: 866-872. 10.1093/brain/awg079CrossRefPubMed Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG: Motor learning elicited by voluntary drive. Brain 2003, 126: 866-872. 10.1093/brain/awg079CrossRefPubMed
13.
go back to reference Kaelin-Lang A, Sawaki L, Cohen LG: Role of voluntary drive in encoding an elementary motor memory. J Neurophysiol 2005, 93: 1099-1103.CrossRefPubMed Kaelin-Lang A, Sawaki L, Cohen LG: Role of voluntary drive in encoding an elementary motor memory. J Neurophysiol 2005, 93: 1099-1103.CrossRefPubMed
14.
go back to reference Taub E, Uswatte G, Elbert T: New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci 2002, 3: 228-236.CrossRefPubMed Taub E, Uswatte G, Elbert T: New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci 2002, 3: 228-236.CrossRefPubMed
15.
go back to reference Perez MA, Lungholt BK, Nyborg K, Nielsen JB: Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 2004, 159: 197-205. 10.1007/s00221-004-1947-5CrossRefPubMed Perez MA, Lungholt BK, Nyborg K, Nielsen JB: Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 2004, 159: 197-205. 10.1007/s00221-004-1947-5CrossRefPubMed
16.
go back to reference Israel JF, Campbell DD, Kahn JH, Hornby TG: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther 2006, 86: 1466-1478. 10.2522/ptj.20050266CrossRefPubMed Israel JF, Campbell DD, Kahn JH, Hornby TG: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther 2006, 86: 1466-1478. 10.2522/ptj.20050266CrossRefPubMed
17.
go back to reference Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech (Bristol, Avon) 2005, 20: 184-193. 10.1016/j.clinbiomech.2004.09.016CrossRef Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech (Bristol, Avon) 2005, 20: 184-193. 10.1016/j.clinbiomech.2004.09.016CrossRef
18.
go back to reference Cai LL, Fong AJ, Otoshi CK, Liang YQ, Cham JG, Zhong H, Roy RR, Edgerton VR, Burdick JW Proc. 2005 IEEE 9th Int. Conf. Rehabil. Robotics. In Effects of consistency vs. variability in robotically controlled training of stepping in adult spinal mice. Chicago, IL, USA; 2005:575-579. June 28 - July 1, 2005 Cai LL, Fong AJ, Otoshi CK, Liang YQ, Cham JG, Zhong H, Roy RR, Edgerton VR, Burdick JW Proc. 2005 IEEE 9th Int. Conf. Rehabil. Robotics. In Effects of consistency vs. variability in robotically controlled training of stepping in adult spinal mice. Chicago, IL, USA; 2005:575-579. June 28 - July 1, 2005
19.
go back to reference Jezernik S, Scharer R, Colombo G, Morari M: Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals. Spinal Cord 2003, 41: 657-666. 10.1038/sj.sc.3101518CrossRefPubMed Jezernik S, Scharer R, Colombo G, Morari M: Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals. Spinal Cord 2003, 41: 657-666. 10.1038/sj.sc.3101518CrossRefPubMed
20.
go back to reference Emken JL, Reinkensmeyer DJ: Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng 2005, 13: 33-39. 10.1109/TNSRE.2004.843173CrossRefPubMed Emken JL, Reinkensmeyer DJ: Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng 2005, 13: 33-39. 10.1109/TNSRE.2004.843173CrossRefPubMed
21.
go back to reference Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng 2007, 15: 387-400.CrossRefPubMed Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng 2007, 15: 387-400.CrossRefPubMed
22.
go back to reference Emken JL, Wynne JH, Harkema SJ, Reinkensmeyer DJ: A robotic device for manipulating human stepping. IEEE Trans Robot 2006, 22: 185.CrossRef Emken JL, Wynne JH, Harkema SJ, Reinkensmeyer DJ: A robotic device for manipulating human stepping. IEEE Trans Robot 2006, 22: 185.CrossRef
23.
go back to reference Emken JL, Bobrow JE, Reinkensmeyer DJ Proc. 2005 IEEE 9th Int. Conf. Rehabil. Robotics. In Robotic movement training as an optimization problem: designing a controller that assists only as needed. Chicago, IL, USA; 2005:307-312. June 28 - July 1, 2005 Emken JL, Bobrow JE, Reinkensmeyer DJ Proc. 2005 IEEE 9th Int. Conf. Rehabil. Robotics. In Robotic movement training as an optimization problem: designing a controller that assists only as needed. Chicago, IL, USA; 2005:307-312. June 28 - July 1, 2005
24.
go back to reference Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 2005, 13: 380-394. 10.1109/TNSRE.2005.848628CrossRefPubMed Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 2005, 13: 380-394. 10.1109/TNSRE.2005.848628CrossRefPubMed
25.
go back to reference Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R: Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2010, 18: 38-48.CrossRefPubMed Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R: Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2010, 18: 38-48.CrossRefPubMed
26.
go back to reference Kim SH, Banala SK, Brackbill EA, Agrawal SK, Krishnamoorthy V, Scholz JP: Robot-assisted modifications of gait in healthy individuals. Exp Brain Res 2010, 202: 809-824. 10.1007/s00221-010-2187-5CrossRefPubMed Kim SH, Banala SK, Brackbill EA, Agrawal SK, Krishnamoorthy V, Scholz JP: Robot-assisted modifications of gait in healthy individuals. Exp Brain Res 2010, 202: 809-824. 10.1007/s00221-010-2187-5CrossRefPubMed
27.
go back to reference Emken JL, Harkema SJ, Beres-Jones JA, Ferreira CK, Reinkensmeyer DJ: Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE transactions on bio-medical engineering 2008, 55: 322-334.CrossRefPubMed Emken JL, Harkema SJ, Beres-Jones JA, Ferreira CK, Reinkensmeyer DJ: Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE transactions on bio-medical engineering 2008, 55: 322-334.CrossRefPubMed
28.
go back to reference Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, Van der Kooij H: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2007, 15: 379-386.CrossRefPubMed Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, Van der Kooij H: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2007, 15: 379-386.CrossRefPubMed
29.
go back to reference Banala SK, Kim SH, Agrawal SK, Scholz JP: Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 2009, 17: 2-8.CrossRefPubMed Banala SK, Kim SH, Agrawal SK, Scholz JP: Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 2009, 17: 2-8.CrossRefPubMed
30.
go back to reference Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, Edgerton VR: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci 2006, 26: 10564-10568. 10.1523/JNEUROSCI.2266-06.2006CrossRefPubMed Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, Edgerton VR: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci 2006, 26: 10564-10568. 10.1523/JNEUROSCI.2266-06.2006CrossRefPubMed
31.
go back to reference Van Asseldonk EHF, Ekkelenkamp R, Veneman JF, Van der Helm FCT, Van der Kooij H Proc. 2007 IEEE 10th Int. Conf. Rehabil. Robotics. In Selective control of a subtask of walking in a robotic gait trainer(LOPES). Noordwijk, Netherlands; 2007:841-848. June 12–15, 2007 Van Asseldonk EHF, Ekkelenkamp R, Veneman JF, Van der Helm FCT, Van der Kooij H Proc. 2007 IEEE 10th Int. Conf. Rehabil. Robotics. In Selective control of a subtask of walking in a robotic gait trainer(LOPES). Noordwijk, Netherlands; 2007:841-848. June 12–15, 2007
32.
33.
go back to reference McGowan CP, Neptune RR, Clark DJ, Kautz SA: Modular control of human walking: adaptations to altered mechanical demands. J Biomech 2010, 43: 412-419. 10.1016/j.jbiomech.2009.10.009PubMedCentralCrossRefPubMed McGowan CP, Neptune RR, Clark DJ, Kautz SA: Modular control of human walking: adaptations to altered mechanical demands. J Biomech 2010, 43: 412-419. 10.1016/j.jbiomech.2009.10.009PubMedCentralCrossRefPubMed
34.
go back to reference Pratt JE: Virtual model control of a biped walking robot. MIT; 1995. Pratt JE: Virtual model control of a biped walking robot. MIT; 1995.
35.
go back to reference Van Asseldonk EHF, Koopman B, Buurke JH, Simons CD, Van der Kooij H Proc. 2009 IEEE 11th Int. Conf. Rehabil. Robotics. In Selective and adaptive robotic support of foot clearance for training stroke survivors with stiff knee gait. Kyoto, Japan; 2009:701-706. June 23–26, 2009 Van Asseldonk EHF, Koopman B, Buurke JH, Simons CD, Van der Kooij H Proc. 2009 IEEE 11th Int. Conf. Rehabil. Robotics. In Selective and adaptive robotic support of foot clearance for training stroke survivors with stiff knee gait. Kyoto, Japan; 2009:701-706. June 23–26, 2009
36.
go back to reference Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 2008, 16: 286-297.CrossRefPubMed Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 2008, 16: 286-297.CrossRefPubMed
37.
go back to reference Koopman B, Grootenboer HJ, de Jongh HJ: An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking. J Biomech 1995, 28: 1369-1376. 10.1016/0021-9290(94)00185-7CrossRefPubMed Koopman B, Grootenboer HJ, de Jongh HJ: An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking. J Biomech 1995, 28: 1369-1376. 10.1016/0021-9290(94)00185-7CrossRefPubMed
38.
go back to reference Zeni JA Jr, Richards JG, Higginson JS: Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 2008, 27: 710-714. 10.1016/j.gaitpost.2007.07.007PubMedCentralCrossRefPubMed Zeni JA Jr, Richards JG, Higginson JS: Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 2008, 27: 710-714. 10.1016/j.gaitpost.2007.07.007PubMedCentralCrossRefPubMed
39.
go back to reference Draper NR, Smith H: Applied regression analysis. Hoboken, NJ: Wiley-Interscience; 1998.CrossRef Draper NR, Smith H: Applied regression analysis. Hoboken, NJ: Wiley-Interscience; 1998.CrossRef
40.
go back to reference Street JO, Carroll RJ, Ruppert D: A note on computing robust regression estimates via iteratively reweighted least squares. Am Stat 1988, 42: 152-154. Street JO, Carroll RJ, Ruppert D: A note on computing robust regression estimates via iteratively reweighted least squares. Am Stat 1988, 42: 152-154.
41.
go back to reference Vallery H, Ekkelenkamp R, Van der Kooij H, Buss M IEEE international conference on intelligent robots and systems; october/november. In Passive and accurate torque control of series elastic actuators. San Diego, USA; 2007:3534-3538. Vallery H, Ekkelenkamp R, Van der Kooij H, Buss M IEEE international conference on intelligent robots and systems; october/november. In Passive and accurate torque control of series elastic actuators. San Diego, USA; 2007:3534-3538.
42.
go back to reference van Asseldonk EH, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FC, van der Kooij H: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng 2008, 16: 360-370.CrossRefPubMed van Asseldonk EH, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FC, van der Kooij H: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng 2008, 16: 360-370.CrossRefPubMed
43.
go back to reference Titianova EB, Tarkka IM: Asymmetry in walking performance and postural sway in patients with chronic unilateral cerebral infarction. J Rehabil Res Dev 1995, 32: 236-244.PubMed Titianova EB, Tarkka IM: Asymmetry in walking performance and postural sway in patients with chronic unilateral cerebral infarction. J Rehabil Res Dev 1995, 32: 236-244.PubMed
44.
go back to reference Yano H, Kasai K, Saitou H, Iwata H: Development of a gait rehabilitation system using a locomotion interface. J Visual Comp Animat 2003, 14: 243-252. 10.1002/vis.321CrossRef Yano H, Kasai K, Saitou H, Iwata H: Development of a gait rehabilitation system using a locomotion interface. J Visual Comp Animat 2003, 14: 243-252. 10.1002/vis.321CrossRef
45.
go back to reference Stauffer Y, Allemand Y, Bouri M, Fournier J, Clavel R, Metrailler P, Brodard R, Reynard F: The WalkTrainer–a new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Trans Neural Syst Rehabil Eng 2009, 17: 38-45.CrossRefPubMed Stauffer Y, Allemand Y, Bouri M, Fournier J, Clavel R, Metrailler P, Brodard R, Reynard F: The WalkTrainer–a new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Trans Neural Syst Rehabil Eng 2009, 17: 38-45.CrossRefPubMed
46.
go back to reference Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 2000, 37: 693-700.PubMed Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 2000, 37: 693-700.PubMed
47.
go back to reference Vallery H, van Asseldonk EH, Buss M, van der Kooij H: Reference trajectory generation for rehabilitation robots: complementary limb motion estimation. IEEE Trans Neural Syst Rehabil Eng 2009, 17: 23-30.CrossRefPubMed Vallery H, van Asseldonk EH, Buss M, van der Kooij H: Reference trajectory generation for rehabilitation robots: complementary limb motion estimation. IEEE Trans Neural Syst Rehabil Eng 2009, 17: 23-30.CrossRefPubMed
48.
go back to reference Jezernik S, Colombo G, Morani M: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis. IEEE Trans Robot Autom 2004, 20: 574-2004. 10.1109/TRA.2004.825515CrossRef Jezernik S, Colombo G, Morani M: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis. IEEE Trans Robot Autom 2004, 20: 574-2004. 10.1109/TRA.2004.825515CrossRef
49.
go back to reference Molloy M, Salazar-Torres J, Kerr C, McDowell BC, Cosgrove AP: The effects of industry standard averaging and filtering techniques in kinematic gait analysis. Gait Posture 2008, 28: 559-562. 10.1016/j.gaitpost.2008.03.012CrossRefPubMed Molloy M, Salazar-Torres J, Kerr C, McDowell BC, Cosgrove AP: The effects of industry standard averaging and filtering techniques in kinematic gait analysis. Gait Posture 2008, 28: 559-562. 10.1016/j.gaitpost.2008.03.012CrossRefPubMed
50.
go back to reference Von Zitzewitz J, Bernhardt M, Riener R: A novel method for automatic treadmill speed adaptation. IEEE Trans Neural Syst Rehabil Eng 2007, 15: 401-409.CrossRefPubMed Von Zitzewitz J, Bernhardt M, Riener R: A novel method for automatic treadmill speed adaptation. IEEE Trans Neural Syst Rehabil Eng 2007, 15: 401-409.CrossRefPubMed
51.
go back to reference Lelas JL, Merriman GJ, Riley PO, Kerrigan DC: Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture 2003, 17: 106-112. 10.1016/S0966-6362(02)00060-7CrossRefPubMed Lelas JL, Merriman GJ, Riley PO, Kerrigan DC: Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture 2003, 17: 106-112. 10.1016/S0966-6362(02)00060-7CrossRefPubMed
52.
go back to reference Stoquart G, Detrembleur C, Lejeune T: Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophysiol Clin 2008, 38: 105-116. 10.1016/j.neucli.2008.02.002CrossRefPubMed Stoquart G, Detrembleur C, Lejeune T: Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophysiol Clin 2008, 38: 105-116. 10.1016/j.neucli.2008.02.002CrossRefPubMed
53.
go back to reference Kerrigan DC, Todd MK, Della Croce U: Gender differences in joint biomechanics during walking: normative study in young adults. Am J Phys Med Rehabil 1998, 77: 2-7. 10.1097/00002060-199801000-00002CrossRefPubMed Kerrigan DC, Todd MK, Della Croce U: Gender differences in joint biomechanics during walking: normative study in young adults. Am J Phys Med Rehabil 1998, 77: 2-7. 10.1097/00002060-199801000-00002CrossRefPubMed
54.
go back to reference Anderson FC, Goldberg SR, Pandy MG, Delp SL: Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis. J Biomech 2004, 37: 731-737. 10.1016/j.jbiomech.2003.09.018CrossRefPubMed Anderson FC, Goldberg SR, Pandy MG, Delp SL: Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis. J Biomech 2004, 37: 731-737. 10.1016/j.jbiomech.2003.09.018CrossRefPubMed
55.
go back to reference Kerrigan DC, Gronley J, Perry J: Stiff-legged gait in spastic paresis. A study of quadriceps and hamstrings muscle activity. Am J Phys Med Rehabil 1991, 70: 294-300.CrossRefPubMed Kerrigan DC, Gronley J, Perry J: Stiff-legged gait in spastic paresis. A study of quadriceps and hamstrings muscle activity. Am J Phys Med Rehabil 1991, 70: 294-300.CrossRefPubMed
56.
go back to reference Riley PO, Kerrigan DC: Torque action of two-joint muscles in the swing period of stiff-legged gait: a forward dynamic model analysis. J Biomech 1998, 31: 835-840. 10.1016/S0021-9290(98)00107-9CrossRefPubMed Riley PO, Kerrigan DC: Torque action of two-joint muscles in the swing period of stiff-legged gait: a forward dynamic model analysis. J Biomech 1998, 31: 835-840. 10.1016/S0021-9290(98)00107-9CrossRefPubMed
57.
go back to reference Reinkensmeyer DJ, Aoyagi D, Emken JL, Galvez JA, Ichinose W, Kerdanyan G, Maneekobkunwong S, Minakata K, Nessler JA, Weber R: Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev 2006, 43: 657-670. 10.1682/JRRD.2005.04.0073CrossRefPubMed Reinkensmeyer DJ, Aoyagi D, Emken JL, Galvez JA, Ichinose W, Kerdanyan G, Maneekobkunwong S, Minakata K, Nessler JA, Weber R: Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev 2006, 43: 657-670. 10.1682/JRRD.2005.04.0073CrossRefPubMed
58.
go back to reference Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ: Motor adaptation as a greedy optimization of error and effort. J Neurophysiol 2007, 97: 3997-4006. 10.1152/jn.01095.2006CrossRefPubMed Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ: Motor adaptation as a greedy optimization of error and effort. J Neurophysiol 2007, 97: 3997-4006. 10.1152/jn.01095.2006CrossRefPubMed
59.
go back to reference Emken JL, Benitez R, Reinkensmeyer DJ: Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J Neuroengineering Rehabil 2007, 4: 8. 10.1186/1743-0003-4-8PubMedCentralCrossRef Emken JL, Benitez R, Reinkensmeyer DJ: Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J Neuroengineering Rehabil 2007, 4: 8. 10.1186/1743-0003-4-8PubMedCentralCrossRef
60.
61.
go back to reference Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 2006, 168: 368-383. 10.1007/s00221-005-0097-8CrossRefPubMed Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 2006, 168: 368-383. 10.1007/s00221-005-0097-8CrossRefPubMed
62.
go back to reference Teasell RW, Bhogal SK, Foley NC, Speechley MR: Gait retraining post stroke. Top Stroke Rehabil 2003, 10: 34-65.CrossRefPubMed Teasell RW, Bhogal SK, Foley NC, Speechley MR: Gait retraining post stroke. Top Stroke Rehabil 2003, 10: 34-65.CrossRefPubMed
63.
go back to reference Banz R, Bolliger M, Colombo G, Dietz V, Lunenburger L: Computerized visual feedback: an adjunct to robotic-assisted gait training. Phys Ther 2008, 88: 1135-1145. 10.2522/ptj.20070203CrossRefPubMed Banz R, Bolliger M, Colombo G, Dietz V, Lunenburger L: Computerized visual feedback: an adjunct to robotic-assisted gait training. Phys Ther 2008, 88: 1135-1145. 10.2522/ptj.20070203CrossRefPubMed
64.
go back to reference DeQuervain IAK, Simon SR, Leurgans S, Pease WS, McAllister D: Gait pattern in the early recovery period after stroke. J Bone Joint Surg Am 1996, 78A: 1506-1514. DeQuervain IAK, Simon SR, Leurgans S, Pease WS, McAllister D: Gait pattern in the early recovery period after stroke. J Bone Joint Surg Am 1996, 78A: 1506-1514.
65.
go back to reference Kwakkel G, Kollen B, Lindeman E: Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci 2004, 22: 281-299.PubMed Kwakkel G, Kollen B, Lindeman E: Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci 2004, 22: 281-299.PubMed
66.
go back to reference Chen G, Patten C, Kothari DH, Zajac FE: Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005, 22: 51-56. 10.1016/j.gaitpost.2004.06.009CrossRefPubMed Chen G, Patten C, Kothari DH, Zajac FE: Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005, 22: 51-56. 10.1016/j.gaitpost.2004.06.009CrossRefPubMed
67.
go back to reference Kerrigan DC, Frates EP, Rogan S, Riley PO: Hip hiking and circumduction: quantitative definitions. Am J Phys Med Rehabil 2000, 79: 247-252. 10.1097/00002060-200005000-00006CrossRefPubMed Kerrigan DC, Frates EP, Rogan S, Riley PO: Hip hiking and circumduction: quantitative definitions. Am J Phys Med Rehabil 2000, 79: 247-252. 10.1097/00002060-200005000-00006CrossRefPubMed
68.
go back to reference Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA: Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke 2006, 37: 872-876. 10.1161/01.STR.0000204063.75779.8dCrossRefPubMed Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA: Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke 2006, 37: 872-876. 10.1161/01.STR.0000204063.75779.8dCrossRefPubMed
69.
go back to reference Buurke JH, Nene AV, Kwakkel G, Erren-Wolters V, IJzerman MJ, Hermens HJ: Recovery of gait after stroke: what changes? Neurorehabil Neural Repair 2008, 22: 676-683. 10.1177/1545968308317972CrossRefPubMed Buurke JH, Nene AV, Kwakkel G, Erren-Wolters V, IJzerman MJ, Hermens HJ: Recovery of gait after stroke: what changes? Neurorehabil Neural Repair 2008, 22: 676-683. 10.1177/1545968308317972CrossRefPubMed
70.
go back to reference Kelly BM, Pangilinan PH Jr, Rodriguez GM: The stroke rehabilitation paradigm. Phys Med Rehabil Clin N Am 2007, 18: 631-650. v 10.1016/j.pmr.2007.07.006CrossRefPubMed Kelly BM, Pangilinan PH Jr, Rodriguez GM: The stroke rehabilitation paradigm. Phys Med Rehabil Clin N Am 2007, 18: 631-650. v 10.1016/j.pmr.2007.07.006CrossRefPubMed
71.
go back to reference Duschau-Wicke A, Von Zitzewitz J, Banz R, Riener R Proc. 2007 IEEE 10th Int. Conf. Rehabil. Robotics. In Iterative learning synchronization of robotic rehabilitation tasks. Volketswil: ETH Zurich; 2007:335-340. 13-15 June, 2007 Duschau-Wicke A, Von Zitzewitz J, Banz R, Riener R Proc. 2007 IEEE 10th Int. Conf. Rehabil. Robotics. In Iterative learning synchronization of robotic rehabilitation tasks. Volketswil: ETH Zurich; 2007:335-340. 13-15 June, 2007
72.
go back to reference Hesse S, Helm B, Krajnik J, Gregoric M, Mauritz KH: Treadmill training with partial body weight support: influence of body weight release on the gait of hemiparetic patients. J Neurol Rehabil 1997, 11: 15-20. Hesse S, Helm B, Krajnik J, Gregoric M, Mauritz KH: Treadmill training with partial body weight support: influence of body weight release on the gait of hemiparetic patients. J Neurol Rehabil 1997, 11: 15-20.
73.
go back to reference Dietz V, Muller R, Colombo G: Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 2002, 125: 2626-2634. 10.1093/brain/awf273CrossRefPubMed Dietz V, Muller R, Colombo G: Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 2002, 125: 2626-2634. 10.1093/brain/awf273CrossRefPubMed
74.
go back to reference Van Der Kooij H, Koopman B, Van Asseldonck EHF Proc. 2008 IEEE EMBS 30th Annual Int. Conf. Eng Med Biol Soc. In Body weight support by virtual model control of an impedance controlled exoskeleton (LOPES) for gait training. Vancouver, Canada; 2008:1969-1972. August 20–24 Van Der Kooij H, Koopman B, Van Asseldonck EHF Proc. 2008 IEEE EMBS 30th Annual Int. Conf. Eng Med Biol Soc. In Body weight support by virtual model control of an impedance controlled exoskeleton (LOPES) for gait training. Vancouver, Canada; 2008:1969-1972. August 20–24
Metadata
Title
Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton
Authors
Bram Koopman
Edwin HF van Asseldonk
Herman van der Kooij
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-3

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue