Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Research

The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study

Authors: Magdo Bortole, Anusha Venkatakrishnan, Fangshi Zhu, Juan C Moreno, Gerard E Francisco, Jose L Pons, Jose L Contreras-Vidal

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Background

Stroke significantly affects thousands of individuals annually, leading to considerable physical impairment and functional disability. Gait is one of the most important activities of daily living affected in stroke survivors. Recent technological developments in powered robotics exoskeletons can create powerful adjunctive tools for rehabilitation and potentially accelerate functional recovery. Here, we present the development and evaluation of a novel lower limb robotic exoskeleton, namely H2 (Technaid S.L., Spain), for gait rehabilitation in stroke survivors.

Methods

H2 has six actuated joints and is designed to allow intensive overground gait training. An assistive gait control algorithm was developed to create a force field along a desired trajectory, only applying torque when patients deviate from the prescribed movement pattern. The device was evaluated in 3 hemiparetic stroke patients across 4 weeks of training per individual (approximately 12 sessions). The study was approved by the Institutional Review Board at the University of Houston. The main objective of this initial pre-clinical study was to evaluate the safety and usability of the exoskeleton. A Likert scale was used to measure patient’s perception about the easy of use of the device.

Results

Three stroke patients completed the study. The training was well tolerated and no adverse events occurred. Early findings demonstrate that H2 appears to be safe and easy to use in the participants of this study. The overground training environment employed as a means to enhance active patient engagement proved to be challenging and exciting for patients. These results are promising and encourage future rehabilitation training with a larger cohort of patients.

Conclusions

The developed exoskeleton enables longitudinal overground training of walking in hemiparetic patients after stroke. The system is robust and safe when applied to assist a stroke patient performing an overground walking task. Such device opens the opportunity to study means to optimize a rehabilitation treatment that can be customized for individuals.
Trial registration: This study was registered at ClinicalTrials.gov (https://​clinicaltrials.​gov/​show/​NCT02114450).
Literature
1.
go back to reference Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009; 8:355–69.PubMedCrossRef Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009; 8:355–69.PubMedCrossRef
2.
go back to reference Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Executive summary: Heart disease and stroke statistics - 2011 update. Circulation. 2011; 123:459–63.CrossRef Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Executive summary: Heart disease and stroke statistics - 2011 update. Circulation. 2011; 123:459–63.CrossRef
3.
go back to reference Duncan PW, Zorowitz R, Bates B, Choi JY, Glasberg JJ, Graham GD, et al. Management of adult stroke rehabilitation care: a clinical practice guideline. Stroke. 2005; 36:100–43.CrossRef Duncan PW, Zorowitz R, Bates B, Choi JY, Glasberg JJ, Graham GD, et al. Management of adult stroke rehabilitation care: a clinical practice guideline. Stroke. 2005; 36:100–43.CrossRef
4.
go back to reference Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the copenhagen stroke study. Arch Phys Med Rehabil. 1995; 76:27–32.PubMedCrossRef Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the copenhagen stroke study. Arch Phys Med Rehabil. 1995; 76:27–32.PubMedCrossRef
5.
go back to reference Lau KW, Mak MK. Speed-dependent treadmill training is effective to improve gait and balance performance in patients with sub-acute stroke. J Rehabil Med. 2011; 43:709–13.PubMedCrossRef Lau KW, Mak MK. Speed-dependent treadmill training is effective to improve gait and balance performance in patients with sub-acute stroke. J Rehabil Med. 2011; 43:709–13.PubMedCrossRef
6.
go back to reference Franceschini M, Carda S, Agosti M, Antenucci r, Malgrati D, Cisari C. Walking after stroke: What does treadmill training with body weight support add to overground gait training in patients early after stroke?: A single-blind, randomized, controlled trial. Stroke. 2009; 40:3079–085.PubMedCrossRef Franceschini M, Carda S, Agosti M, Antenucci r, Malgrati D, Cisari C. Walking after stroke: What does treadmill training with body weight support add to overground gait training in patients early after stroke?: A single-blind, randomized, controlled trial. Stroke. 2009; 40:3079–085.PubMedCrossRef
7.
go back to reference Moseley AM, Stark A, Cameron ID, Pollock A. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2005. 4. Moseley AM, Stark A, Cameron ID, Pollock A. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2005. 4.
8.
go back to reference Díaz I, Gil JJ, Sánchez E. Lower-limb robotic rehabilitation: literature review and challenges. J Robot. 2011. 2001: Article ID 759764. Díaz I, Gil JJ, Sánchez E. Lower-limb robotic rehabilitation: literature review and challenges. J Robot. 2011. 2001: Article ID 759764.
9.
go back to reference Dollar AM, Herr H. Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Trans Robot. 2008; 24:144–58.CrossRef Dollar AM, Herr H. Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Trans Robot. 2008; 24:144–58.CrossRef
10.
go back to reference Herr H. Exoskeletons and orthoses: classification, design, challenges and future directions. J NeuroEngineering Rehabil. 2009; 6:21. Herr H. Exoskeletons and orthoses: classification, design, challenges and future directions. J NeuroEngineering Rehabil. 2009; 6:21.
11.
go back to reference Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000; 37(6):693–700.PubMed Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000; 37(6):693–700.PubMed
12.
go back to reference Banala SK, Agrawal SK, Kim SH, Scholz JP. Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans Mechatron. 2010; 15(2):216–25.CrossRef Banala SK, Agrawal SK, Kim SH, Scholz JP. Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans Mechatron. 2010; 15(2):216–25.CrossRef
13.
go back to reference Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, van der Kooij H. Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007; 15:379–86.PubMedCrossRef Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, van der Kooij H. Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007; 15:379–86.PubMedCrossRef
14.
go back to reference Kaelin-Lang A, Sawaki L, Cohen LG. Role of voluntary drive in encoding an elementary motor memory. J Neurophysiol. 2004; 93(2):1099–1103.PubMedCrossRef Kaelin-Lang A, Sawaki L, Cohen LG. Role of voluntary drive in encoding an elementary motor memory. J Neurophysiol. 2004; 93(2):1099–1103.PubMedCrossRef
15.
go back to reference Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Develop. 2000; 37:701–8. Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Develop. 2000; 37:701–8.
16.
go back to reference Schmidt H, Werner C, Bernhardt R, Hesse S, Kruger J. Gait rehabilitation machines based on programable footplates. J NeuroEngineering Rehabil. 2007; 4:2. Schmidt H, Werner C, Bernhardt R, Hesse S, Kruger J. Gait rehabilitation machines based on programable footplates. J NeuroEngineering Rehabil. 2007; 4:2.
17.
go back to reference Belda-Lois JM, del Horno SM, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, et al.Rehabilitation of gait after stroke: a review towards a top-down approach. J NeuroEngineering Rehabil. 2011; 8(66). Belda-Lois JM, del Horno SM, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, et al.Rehabilitation of gait after stroke: a review towards a top-down approach. J NeuroEngineering Rehabil. 2011; 8(66).
18.
go back to reference Kawamoto H, Sankai Y. Power assist method based on phase sequence and muscle force condition for hal. Adv Robot. 2005; 19(7):717–34.CrossRef Kawamoto H, Sankai Y. Power assist method based on phase sequence and muscle force condition for hal. Adv Robot. 2005; 19(7):717–34.CrossRef
19.
go back to reference Tsukahara A, Kawanishi R, Hasegawa Y, Y S. Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit hal. Adv Robot. 2010; 24(11):1615–1638.CrossRef Tsukahara A, Kawanishi R, Hasegawa Y, Y S. Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit hal. Adv Robot. 2010; 24(11):1615–1638.CrossRef
20.
go back to reference Kawamoto H, Hayashi T, Sakurai T, Eguchi K, Y S. Development of single leg version of hal for hemiplegia. In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 3-6 September 2009. Minneapolis: 2009. p. 5038–043. Kawamoto H, Hayashi T, Sakurai T, Eguchi K, Y S. Development of single leg version of hal for hemiplegia. In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 3-6 September 2009. Minneapolis: 2009. p. 5038–043.
21.
go back to reference Maeshima S, Osawa A, Nishio D, Hirano Y, Takeda K, Kigawa H, et al. Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report. BMC Neurology. 2011; 11:116. Maeshima S, Osawa A, Nishio D, Hirano Y, Takeda K, Kigawa H, et al. Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report. BMC Neurology. 2011; 11:116.
22.
go back to reference Nilsson A, Vreede KS, Haglund V, Kawamoto H, Sankai Y, Borg J. Gait training early after stroke with a new exoskeleton - the hybrid assistive limb: a study of safety and feasibility. J NeuroEngineering Rehabil. 2014; 11:92. Nilsson A, Vreede KS, Haglund V, Kawamoto H, Sankai Y, Borg J. Gait training early after stroke with a new exoskeleton - the hybrid assistive limb: a study of safety and feasibility. J NeuroEngineering Rehabil. 2014; 11:92.
23.
go back to reference Jimenez-Fabian R, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys. 2012; 34(4):397–408.PubMedCrossRef Jimenez-Fabian R, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys. 2012; 34(4):397–408.PubMedCrossRef
24.
go back to reference Guizzo E, Goldstein H. The rise of the body bots. IEEE Spectrum. 2005; 42(10):50–6.CrossRef Guizzo E, Goldstein H. The rise of the body bots. IEEE Spectrum. 2005; 42(10):50–6.CrossRef
25.
go back to reference Esquenazi A, Talaty M, Packel A, Saulino M. The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012; 91(11):911–21.PubMedCrossRef Esquenazi A, Talaty M, Packel A, Saulino M. The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012; 91(11):911–21.PubMedCrossRef
26.
go back to reference Farris RJ, Quintero HA, Goldfarb M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng. 2011; 19(6):652–9.PubMedCentralPubMedCrossRef Farris RJ, Quintero HA, Goldfarb M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng. 2011; 19(6):652–9.PubMedCentralPubMedCrossRef
27.
go back to reference Strausser KA, Swift TA, Zoss AB, Kazerooni H. Prototype medical exoskeleton for paraplegic mobility: first experimental results. In: In Proceedings of ASME 2010 Dynamic Systems and Control Conference: 12-15 September 2010. Massachusetts: 2010. p. 453–8. Strausser KA, Swift TA, Zoss AB, Kazerooni H. Prototype medical exoskeleton for paraplegic mobility: first experimental results. In: In Proceedings of ASME 2010 Dynamic Systems and Control Conference: 12-15 September 2010. Massachusetts: 2010. p. 453–8.
28.
go back to reference del-Ama AJ, Gil-Agudo A, Pons JL, Moreno JC. Hybrid fes-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J NeuroEngineering Rehabil. 2014; 11(27). del-Ama AJ, Gil-Agudo A, Pons JL, Moreno JC. Hybrid fes-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J NeuroEngineering Rehabil. 2014; 11(27).
31.
go back to reference Rea R, Beck C, Rovekamp RN, Diftler MA, Neuhaus P. X1: a Robotic Exoskeleton for In-space Countermeasures and Dynamometry. In: AIAA Space Conference: 2013. Rea R, Beck C, Rovekamp RN, Diftler MA, Neuhaus P. X1: a Robotic Exoskeleton for In-space Countermeasures and Dynamometry. In: AIAA Space Conference: 2013.
32.
go back to reference He Y, Nathan K, Venkatakrishnan A, Rovekamp R, Beck C, Ozdemir R, et al. An integrated neuro-robotic interface for stroke rehabilitation using the nasa x1 powered lower limb exoskeleton. In: Proceedings of 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 26-30 August 2014. Chicago: 2014. He Y, Nathan K, Venkatakrishnan A, Rovekamp R, Beck C, Ozdemir R, et al. An integrated neuro-robotic interface for stroke rehabilitation using the nasa x1 powered lower limb exoskeleton. In: Proceedings of 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 26-30 August 2014. Chicago: 2014.
33.
go back to reference Bortole M, del Ama A, Rocon E, Moreno JC, Brunetti F, Pons JL. A robotic exoskeleton for overground gait rehabilitation. In: In Proceedings of 2013 IEEE International Conference on Robotics and Automation: 6-10 May 2013. Karlsruhe: 2013. p. 3356–361. Bortole M, del Ama A, Rocon E, Moreno JC, Brunetti F, Pons JL. A robotic exoskeleton for overground gait rehabilitation. In: In Proceedings of 2013 IEEE International Conference on Robotics and Automation: 6-10 May 2013. Karlsruhe: 2013. p. 3356–361.
34.
go back to reference Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with active leg exoskeleton (alex). In: In Proceedings of 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics: 19-22 October 2008. Scottsdale: 2008. p. 653–8. Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with active leg exoskeleton (alex). In: In Proceedings of 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics: 19-22 October 2008. Scottsdale: 2008. p. 653–8.
35.
go back to reference Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain. 2003; 126(4):866–72.PubMedCrossRef Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain. 2003; 126(4):866–72.PubMedCrossRef
36.
go back to reference Venkatakrishnan A, Francisco GE, Contreras-Vidal JL. Applications of brain-machine interface systems in stroke recovery and rehabilitation. Curr Phys Med Rehabil Rep. 2014; 2:93–105.PubMedCentralPubMedCrossRef Venkatakrishnan A, Francisco GE, Contreras-Vidal JL. Applications of brain-machine interface systems in stroke recovery and rehabilitation. Curr Phys Med Rehabil Rep. 2014; 2:93–105.PubMedCentralPubMedCrossRef
37.
go back to reference Onen U, Botsali FM, Kalyoncu M, Tinkir M, Yilmaz N, Sahin Y. Design and actuator selection of a lower extremity exoskeleton. IEEE/ASME Trans Mechatron. 2013; 99:1–10. Onen U, Botsali FM, Kalyoncu M, Tinkir M, Yilmaz N, Sahin Y. Design and actuator selection of a lower extremity exoskeleton. IEEE/ASME Trans Mechatron. 2013; 99:1–10.
38.
go back to reference Winter DA. Biomechanics and Motor Control of Human Movement, 4th edn.: John Wiley & Sons; 2009. Winter DA. Biomechanics and Motor Control of Human Movement, 4th edn.: John Wiley & Sons; 2009.
39.
go back to reference Hong YW, King Y, Yeo W, Ting C, Chuah Y, Lee J, et al. Lower extremity exoskeleton: review and challenges surrounding the technology and its role in rehabilitation of lower limbs. Australian J Basic Appl Sci. 2013; 7(7):520–4. Hong YW, King Y, Yeo W, Ting C, Chuah Y, Lee J, et al. Lower extremity exoskeleton: review and challenges surrounding the technology and its role in rehabilitation of lower limbs. Australian J Basic Appl Sci. 2013; 7(7):520–4.
40.
go back to reference Zoss AB, Kazerooni H, Chu A. Biomechanical design of the berkeley lower extremity mechatronics. IEEE/ASME Trans Mechatron. 2006; 11(2):128–38.CrossRef Zoss AB, Kazerooni H, Chu A. Biomechanical design of the berkeley lower extremity mechatronics. IEEE/ASME Trans Mechatron. 2006; 11(2):128–38.CrossRef
41.
go back to reference Vallery H, Veneman J, van Asseldonk E, Ekkelenkamp R, Buss M, van Der Kooij H. Compliant actuation of rehabilitation robots. IEEE Robot Automation Mag. 2008; 15:60–9.CrossRef Vallery H, Veneman J, van Asseldonk E, Ekkelenkamp R, Buss M, van Der Kooij H. Compliant actuation of rehabilitation robots. IEEE Robot Automation Mag. 2008; 15:60–9.CrossRef
42.
go back to reference Fan Y, Yin Y. Active and progressive exoskeleton rehabilitation using multisource information fusion from emg and force-position epp. IEEE Trans Biomed Eng. 2013; 60(12):3314–321.CrossRef Fan Y, Yin Y. Active and progressive exoskeleton rehabilitation using multisource information fusion from emg and force-position epp. IEEE Trans Biomed Eng. 2013; 60(12):3314–321.CrossRef
43.
go back to reference Zoss AB. Design of an electrically actuated lower extremity exoskeleton. Adv Robot. 2006; 20:967–88.CrossRef Zoss AB. Design of an electrically actuated lower extremity exoskeleton. Adv Robot. 2006; 20:967–88.CrossRef
44.
go back to reference Gams A, Petric T, Debevec T, Babic J. Effects of robotic knee exoskeleton on human energy expenditure. IEEE Trans Biomed Eng. 2013; 60(6):1636–44.PubMedCrossRef Gams A, Petric T, Debevec T, Babic J. Effects of robotic knee exoskeleton on human energy expenditure. IEEE Trans Biomed Eng. 2013; 60(6):1636–44.PubMedCrossRef
45.
go back to reference Hussain S, Xie SQ, Liu G. Robot assisted treadmill training: mechanisms and training strategies. Med Eng Phys. 2011; 33(5):527–33.PubMedCrossRef Hussain S, Xie SQ, Liu G. Robot assisted treadmill training: mechanisms and training strategies. Med Eng Phys. 2011; 33(5):527–33.PubMedCrossRef
46.
go back to reference Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007; 15(3):387–400.PubMedCrossRef Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007; 15(3):387–400.PubMedCrossRef
47.
go back to reference Wisneski KJ, Johnson MJ. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted adl tasks. J NeuroEngineering Rehabil. 2007; 4:7. Wisneski KJ, Johnson MJ. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted adl tasks. J NeuroEngineering Rehabil. 2007; 4:7.
48.
go back to reference Montagner A, Frisoli A, Borelli L, Procopio C, Bergamasco M, Carboncini MC, et al. A pilot clinical study on robotic assisted rehabilitation in vr with an arm exoskeleton device. In: Proceedings of Virtual Rehabilitation: 27-29 September 2007. Venice: 2007. p. 57–64. Montagner A, Frisoli A, Borelli L, Procopio C, Bergamasco M, Carboncini MC, et al. A pilot clinical study on robotic assisted rehabilitation in vr with an arm exoskeleton device. In: Proceedings of Virtual Rehabilitation: 27-29 September 2007. Venice: 2007. p. 57–64.
49.
go back to reference Pietrusinski M, Cajigas I, Severini G, Bonato P, Mavroidis C. Robotic gait rehabilitation trainer. IEEE/ASME Trans Mechatron. 2014; 19(2):490–9.CrossRef Pietrusinski M, Cajigas I, Severini G, Bonato P, Mavroidis C. Robotic gait rehabilitation trainer. IEEE/ASME Trans Mechatron. 2014; 19(2):490–9.CrossRef
Metadata
Title
The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study
Authors
Magdo Bortole
Anusha Venkatakrishnan
Fangshi Zhu
Juan C Moreno
Gerard E Francisco
Jose L Pons
Jose L Contreras-Vidal
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-015-0048-y

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue