Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2017

Open Access 01-12-2017 | Research

Withania somnifera as a potential candidate to ameliorate high fat diet-induced anxiety and neuroinflammation

Authors: Taranjeet Kaur, Gurcharan Kaur

Published in: Journal of Neuroinflammation | Issue 1/2017

Login to get access

Abstract

Background

The epidemic of obesity has reached alarming levels in both developing and developed nations. Excessive calorie intake and sedentary lifestyle due to technological advancements are the main causal factors for overweight and obesity among the human population. Obesity has been associated with a number of co-morbidities such as hypertension, type 2 diabetes mellitus, cardiovascular diseases, and neurodegeneration and dementia. The progression of neurological disorders in obese subjects has been mainly attributed to neuroinflammation. Withania somnifera has been used in numerous Ayurvedic formulations owing to its wide array of health-promoting properties. The current study was designed to test the hypothesis whether dry leaf powder of W. somnifera has anxiolytic and anti-neuroinflammatory potential in diet-induced obesity.

Methods

Young adult female rats were divided into four groups: low fat diet group (LFD) fed with regular chow feed, high fat diet group (HFD) fed with diet containing 30% fat by weight, low fat diet plus extract group (LFDE) fed with regular chow feed supplemented with dry leaf powder of W. somnifera 1 mg/g of body weight (ASH), and high fat diet plus extract group (HFDE) fed with diet containing 30% fat by weight and supplemented with ASH. All the animals were kept on respective feeding regimen for 12 weeks; following which, the animals were tested for their anxiety-like behavior using elevated plus maze test. The animals were sacrificed and used to study various inflammatory markers such as GFAP, Iba1, PPARγ, iNOS, MCP-1, TNFα, IL-1β, IL-6, and various markers of NF-κB pathway by Western blotting and quantitative real-time PCR. Serum levels of leptin, insulin and pro-inflammatory cytokines were also assayed.

Results

ASH treated rats showed less anxiety levels as compared to HFD animals. At molecular level, ASH ameliorated the HFD-induced reactive gliosis and microgliosis and suppressed the expression of inflammatory markers such as PPARγ, iNOS, MCP-1, TNFα, IL-1β, and IL-6. Further, ASH ameliorated leptin and insulin resistance and prevented HFD-induced apoptosis.

Conclusions

Dry leaf powder of W. somnifera may prove to be a potential therapeutic agent to attenuate neuroinflammation associated with obesity and may prevent its co-morbidities.
Literature
1.
go back to reference Dinh CH, Szabo A, Camer D, Yu Y, Wang H, Huang XF. Bardoxolone methyl prevents fat deposition and inflammation in the visceral fat of mice fed a high-fat diet. Chem Biol Interact. 2015;229:1–8.CrossRefPubMed Dinh CH, Szabo A, Camer D, Yu Y, Wang H, Huang XF. Bardoxolone methyl prevents fat deposition and inflammation in the visceral fat of mice fed a high-fat diet. Chem Biol Interact. 2015;229:1–8.CrossRefPubMed
2.
go back to reference Guillemot-Legris O, Masquelier J, Everard A, Cani PD, Alhouayek M, Muccioli GG. High-fat diet feeding differentially affects the development of inflammation in the central nervous system. J Neuroinflammation. 2016;13:206.CrossRefPubMedPubMedCentral Guillemot-Legris O, Masquelier J, Everard A, Cani PD, Alhouayek M, Muccioli GG. High-fat diet feeding differentially affects the development of inflammation in the central nervous system. J Neuroinflammation. 2016;13:206.CrossRefPubMedPubMedCentral
3.
go back to reference Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001;60:329–39.CrossRefPubMed Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001;60:329–39.CrossRefPubMed
4.
go back to reference Sen T, Cawthon CR, Ihde BT, Hajnal A, DiLorenzo PM, Claire B, Czaja K. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol Behav. 2017;173:305–17.CrossRefPubMed Sen T, Cawthon CR, Ihde BT, Hajnal A, DiLorenzo PM, Claire B, Czaja K. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol Behav. 2017;173:305–17.CrossRefPubMed
5.
go back to reference Bastien M, Poirier P, Lemieux I, Després JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56:369–81.CrossRefPubMed Bastien M, Poirier P, Lemieux I, Després JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56:369–81.CrossRefPubMed
6.
go back to reference Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, et al. Low-grade systemic inflammation and the development of type 2 diabetes. Diabetes. 2003;52:1799–805.CrossRefPubMed Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, et al. Low-grade systemic inflammation and the development of type 2 diabetes. Diabetes. 2003;52:1799–805.CrossRefPubMed
7.
8.
go back to reference Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol. 2014;10:455–65.CrossRefPubMedPubMedCentral Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol. 2014;10:455–65.CrossRefPubMedPubMedCentral
9.
go back to reference Castanon N, Lasselin J, Capuron L. Neuropsychiatric comorbidity in obesity: role of inflammatory processes. Front Endocrinol. 2014;5:74.CrossRef Castanon N, Lasselin J, Capuron L. Neuropsychiatric comorbidity in obesity: role of inflammatory processes. Front Endocrinol. 2014;5:74.CrossRef
10.
go back to reference Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KRR, et al. Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry. 2005;58:175–89.CrossRefPubMed Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KRR, et al. Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry. 2005;58:175–89.CrossRefPubMed
11.
go back to reference Sharma S, Fulton S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes. 2013;37:382–9.CrossRef Sharma S, Fulton S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes. 2013;37:382–9.CrossRef
12.
go back to reference Derosa G, Maffioli P. Anti-obesity drugs: a review about their effects and their safety. Expert Opin Drug Saf. 2012;11:459–71.CrossRefPubMed Derosa G, Maffioli P. Anti-obesity drugs: a review about their effects and their safety. Expert Opin Drug Saf. 2012;11:459–71.CrossRefPubMed
13.
go back to reference Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet. 2007;370:1706–13.CrossRefPubMed Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet. 2007;370:1706–13.CrossRefPubMed
14.
go back to reference Singh N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med. 2011;8:208–13.PubMedPubMedCentral Singh N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med. 2011;8:208–13.PubMedPubMedCentral
15.
go back to reference Choudhary B, Shetty A, Langade DG. Efficacy of Ashwagandha (Withania somnifera [L.] Dunal) in improving cardiorespiratory endurance in healthy athletic adults. Ayu. 2015;36:63–8.CrossRefPubMedPubMedCentral Choudhary B, Shetty A, Langade DG. Efficacy of Ashwagandha (Withania somnifera [L.] Dunal) in improving cardiorespiratory endurance in healthy athletic adults. Ayu. 2015;36:63–8.CrossRefPubMedPubMedCentral
16.
go back to reference Chandrasekhar K, Kapoor J, Anishetty S. A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian J Psychol Med. 2012;34:255–62.CrossRefPubMedPubMedCentral Chandrasekhar K, Kapoor J, Anishetty S. A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian J Psychol Med. 2012;34:255–62.CrossRefPubMedPubMedCentral
17.
go back to reference Andallu B, Radhika B. Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J Exp Biol. 2000;38:607–9.PubMed Andallu B, Radhika B. Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J Exp Biol. 2000;38:607–9.PubMed
18.
go back to reference Kushwaha S, Betsy A, Chawla P. Effect of Ashwagandha (Withania somnifera) root powder supplementation in treatment of hypertension. Ethno Med. 2012;6:111–5. Kushwaha S, Betsy A, Chawla P. Effect of Ashwagandha (Withania somnifera) root powder supplementation in treatment of hypertension. Ethno Med. 2012;6:111–5.
19.
go back to reference Choudhary D, Bhattacharyya S, Joshi K. Body weight management in adults under chronic stress through treatment with Ashwagandha root extract: a double-blind, randomized, placebo-controlled trial. J Evid Based Complement Altern Med. 2017;22:96–106.CrossRef Choudhary D, Bhattacharyya S, Joshi K. Body weight management in adults under chronic stress through treatment with Ashwagandha root extract: a double-blind, randomized, placebo-controlled trial. J Evid Based Complement Altern Med. 2017;22:96–106.CrossRef
20.
go back to reference Anwer T, Sharma M, Pillai KK, Khan G. Protective effect of Withania somnifera against oxidative stress and pancreatic beta-cell damage in type 2 diabetic rats. Acta Pol Pharm. 2012;69:1095–101.PubMed Anwer T, Sharma M, Pillai KK, Khan G. Protective effect of Withania somnifera against oxidative stress and pancreatic beta-cell damage in type 2 diabetic rats. Acta Pol Pharm. 2012;69:1095–101.PubMed
21.
go back to reference Gupta M, Kaur G. Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: a mechanistic study. J Neuroinflammation. 2016;13:193.CrossRefPubMedPubMedCentral Gupta M, Kaur G. Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: a mechanistic study. J Neuroinflammation. 2016;13:193.CrossRefPubMedPubMedCentral
22.
go back to reference Kaur T, Singh H, Mishra R, Manchanda S, Gupta M, Saini V, et al. Withania somnifera as a potential anxiolytic and immunomodulatory agent in acute sleep deprived female Wistar rats. Mol Cell Biochem. 2017;427:91–101.CrossRefPubMed Kaur T, Singh H, Mishra R, Manchanda S, Gupta M, Saini V, et al. Withania somnifera as a potential anxiolytic and immunomodulatory agent in acute sleep deprived female Wistar rats. Mol Cell Biochem. 2017;427:91–101.CrossRefPubMed
23.
go back to reference Kataria H, Kumar S, Chaudhary H, Kaur G. Withania somnifera suppresses tumor growth of intracranial allograft of glioma cells. Mol Neurobiol. 2016;53:4143–58.CrossRefPubMed Kataria H, Kumar S, Chaudhary H, Kaur G. Withania somnifera suppresses tumor growth of intracranial allograft of glioma cells. Mol Neurobiol. 2016;53:4143–58.CrossRefPubMed
24.
go back to reference Kataria H, Gupta M, Lakhman S, Kaur G. Withania somnifera aqueous extract facilitates the expression and release of GnRH: in vitro and in vivo study. Neurochem Int. 2015;89:111–9.CrossRefPubMed Kataria H, Gupta M, Lakhman S, Kaur G. Withania somnifera aqueous extract facilitates the expression and release of GnRH: in vitro and in vivo study. Neurochem Int. 2015;89:111–9.CrossRefPubMed
25.
go back to reference Kataria H, Shah N, Kaul SC, Wadhwa R, Kaur G. Water extract of ashwagandha leaves limits proliferation and migration, and induces differentiation in glioma cells. Evid Based Complement Alternat Med. 2011;2011:267614.CrossRefPubMedPubMedCentral Kataria H, Shah N, Kaul SC, Wadhwa R, Kaur G. Water extract of ashwagandha leaves limits proliferation and migration, and induces differentiation in glioma cells. Evid Based Complement Alternat Med. 2011;2011:267614.CrossRefPubMedPubMedCentral
26.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the \( {2}^{-\Delta \Delta {\mathrm{C}}_{\mathrm{T}}} \) method. Methods. 2001;25:402–8. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the \( {2}^{-\Delta \Delta {\mathrm{C}}_{\mathrm{T}}} \) method. Methods. 2001;25:402–8.
27.
go back to reference Wunderlich CM, Hövelmeyer N, Wunderlich FT. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. JAKSTAT. 2013;2:e23878. Wunderlich CM, Hövelmeyer N, Wunderlich FT. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. JAKSTAT. 2013;2:e23878.
28.
go back to reference Sullivan EL, Grayson B, Takahashi D, Robertson N, Maier A, Bethea CL, et al. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci. 2010;30:3826–30.CrossRefPubMedPubMedCentral Sullivan EL, Grayson B, Takahashi D, Robertson N, Maier A, Bethea CL, et al. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci. 2010;30:3826–30.CrossRefPubMedPubMedCentral
29.
go back to reference Dutheil S, Ota KT, Wohleb ES, Rasmussen K, Duman RS. High-fat diet induced anxiety and anhedonia: impact on brain homeostasis and inflammation. Neuropsychopharmacology. 2016;41:1874–87.CrossRefPubMedPubMedCentral Dutheil S, Ota KT, Wohleb ES, Rasmussen K, Duman RS. High-fat diet induced anxiety and anhedonia: impact on brain homeostasis and inflammation. Neuropsychopharmacology. 2016;41:1874–87.CrossRefPubMedPubMedCentral
30.
go back to reference Lykouras L, Michopoulos J. Anxiety disorders and obesity. Psychiatriki. 2011;22:307–13.PubMed Lykouras L, Michopoulos J. Anxiety disorders and obesity. Psychiatriki. 2011;22:307–13.PubMed
31.
go back to reference Dalrymple KL, Galione J, Hrabosky J, Chelminski I, Young D, O'brien E, Zimmerman M. Diagnosing social anxiety disorder in the presence of obesity: implications for a proposed change in DSM-5. Depress Anxiety. 2011;28:377–82.CrossRefPubMed Dalrymple KL, Galione J, Hrabosky J, Chelminski I, Young D, O'brien E, Zimmerman M. Diagnosing social anxiety disorder in the presence of obesity: implications for a proposed change in DSM-5. Depress Anxiety. 2011;28:377–82.CrossRefPubMed
32.
go back to reference Manchanda S, Kaur G. Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model. BMC Complement Altern Med. 2017;17:136.CrossRefPubMedPubMedCentral Manchanda S, Kaur G. Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model. BMC Complement Altern Med. 2017;17:136.CrossRefPubMedPubMedCentral
33.
go back to reference Freeman LR, Haley-Zitlin V, Rosenberger DS, Granholm AC. Damaging effects of a high-fat diet to the brain and cognition: a review of proposed mechanisms. Nutr Neurosci. 2014;17:241–51.CrossRefPubMed Freeman LR, Haley-Zitlin V, Rosenberger DS, Granholm AC. Damaging effects of a high-fat diet to the brain and cognition: a review of proposed mechanisms. Nutr Neurosci. 2014;17:241–51.CrossRefPubMed
34.
go back to reference Boitard C, Cavaroc A, Sauvant J, Aubert A, Castanon N, Layé S, Ferreira G. Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav Immun. 2014;40:9–17.CrossRefPubMed Boitard C, Cavaroc A, Sauvant J, Aubert A, Castanon N, Layé S, Ferreira G. Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav Immun. 2014;40:9–17.CrossRefPubMed
35.
go back to reference Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009;296:E1003–12.CrossRefPubMed Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009;296:E1003–12.CrossRefPubMed
36.
go back to reference Yi CX, Al-Massadi O, Donelan E, Lehti M, Weber J, Ress C, et al. Exercise protects against high-fat diet-induced hypothalamic inflammation. Physiol Behav. 2012;106:485–90.CrossRefPubMed Yi CX, Al-Massadi O, Donelan E, Lehti M, Weber J, Ress C, et al. Exercise protects against high-fat diet-induced hypothalamic inflammation. Physiol Behav. 2012;106:485–90.CrossRefPubMed
38.
go back to reference Nerurkar PV, Johns LM, Buesa LM, Kipyakwai G, Volper E, Sato R, et al. Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J Neuroinflammation. 2011;8:64.CrossRefPubMedPubMedCentral Nerurkar PV, Johns LM, Buesa LM, Kipyakwai G, Volper E, Sato R, et al. Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J Neuroinflammation. 2011;8:64.CrossRefPubMedPubMedCentral
39.
go back to reference Wan G, Ohnomi S, Kato N. Increased hepatic activity of inducible nitric oxide synthase in rats fed on a high-fat diet. Biosci Biotechnol Biochem. 2000;64:555–61.CrossRefPubMed Wan G, Ohnomi S, Kato N. Increased hepatic activity of inducible nitric oxide synthase in rats fed on a high-fat diet. Biosci Biotechnol Biochem. 2000;64:555–61.CrossRefPubMed
40.
go back to reference Ha SK, Chae C. Inducible nitric oxide distribution in the fatty liver of a mouse with high fat diet-induced obesity. Exp Anim. 2010;59:595–604.CrossRefPubMed Ha SK, Chae C. Inducible nitric oxide distribution in the fatty liver of a mouse with high fat diet-induced obesity. Exp Anim. 2010;59:595–604.CrossRefPubMed
41.
go back to reference Ivey R, Desai M, Green K, Sinha-Hikim I, Friedman TC, Sinha-Hikim AP. Additive effects of nicotine and high-fat diet on hepatocellular apoptosis in mice: involvement of caspase 2 and inducible nitric oxide synthase-mediated intrinsic pathway signaling. Horm Metab Res. 2014;46:568–73.CrossRefPubMedPubMedCentral Ivey R, Desai M, Green K, Sinha-Hikim I, Friedman TC, Sinha-Hikim AP. Additive effects of nicotine and high-fat diet on hepatocellular apoptosis in mice: involvement of caspase 2 and inducible nitric oxide synthase-mediated intrinsic pathway signaling. Horm Metab Res. 2014;46:568–73.CrossRefPubMedPubMedCentral
42.
go back to reference Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem. 2006;281:26602–14.CrossRefPubMed Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem. 2006;281:26602–14.CrossRefPubMed
43.
go back to reference Higa JK, Liu W, Berry MJ, Panee J. Supplement of bamboo extract lowers serum monocyte chemoattractant protein-1 concentration in mice fed a diet containing a high level of saturated fat. Br J Nutr. 2011;106:1810–3.CrossRefPubMedPubMedCentral Higa JK, Liu W, Berry MJ, Panee J. Supplement of bamboo extract lowers serum monocyte chemoattractant protein-1 concentration in mice fed a diet containing a high level of saturated fat. Br J Nutr. 2011;106:1810–3.CrossRefPubMedPubMedCentral
44.
go back to reference Farmer SR. Regulation of PPARγ activity during adipogenesis. Int J Obes. 2005;29:S13–6.CrossRef Farmer SR. Regulation of PPARγ activity during adipogenesis. Int J Obes. 2005;29:S13–6.CrossRef
46.
47.
go back to reference Wakita T, Shintani F, Yagi G, Asai M, Nozawa S. Combination of inflammatory cytokines increases nitrite and nitrate levels in the paraventricular nucleus of conscious rats. Brain Res. 2001;905:12–20.CrossRefPubMed Wakita T, Shintani F, Yagi G, Asai M, Nozawa S. Combination of inflammatory cytokines increases nitrite and nitrate levels in the paraventricular nucleus of conscious rats. Brain Res. 2001;905:12–20.CrossRefPubMed
48.
go back to reference Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med. 2012;52:556–92.CrossRefPubMed Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med. 2012;52:556–92.CrossRefPubMed
49.
go back to reference Salim S, Sarraj N, Taneja M, Saha K, Tejada-Simon MV, Chugh G. Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats. Behav Brain Res. 2010;208:545–52.CrossRefPubMed Salim S, Sarraj N, Taneja M, Saha K, Tejada-Simon MV, Chugh G. Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats. Behav Brain Res. 2010;208:545–52.CrossRefPubMed
50.
go back to reference Baitharu I, Jain V, Deep SN, Hota KB, Hota SK, Prasad D, Ilavazhagan G. Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. J Ethnopharmacol. 2013;145:431–41.CrossRefPubMed Baitharu I, Jain V, Deep SN, Hota KB, Hota SK, Prasad D, Ilavazhagan G. Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. J Ethnopharmacol. 2013;145:431–41.CrossRefPubMed
51.
go back to reference Sivamani S, Joseph B, Kar B. Anti-inflammatory activity of Withania somnifera leaf extract in stainless steel implant induced inflammation in adult zebrafish. J Genet Eng Biotechnol. 2014;12:1–6.CrossRef Sivamani S, Joseph B, Kar B. Anti-inflammatory activity of Withania somnifera leaf extract in stainless steel implant induced inflammation in adult zebrafish. J Genet Eng Biotechnol. 2014;12:1–6.CrossRef
52.
go back to reference Elsisi NS, Darling-Reed S, Lee EY, Oriaku, Soliman KF. Ibuprofen and apigenin induce apoptosis and cell cycle arrest in activated microglia. Neurosci Lett. 2005;375:91–6.CrossRefPubMed Elsisi NS, Darling-Reed S, Lee EY, Oriaku, Soliman KF. Ibuprofen and apigenin induce apoptosis and cell cycle arrest in activated microglia. Neurosci Lett. 2005;375:91–6.CrossRefPubMed
53.
go back to reference Sainz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism. 2015;64:35–46.CrossRefPubMed Sainz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism. 2015;64:35–46.CrossRefPubMed
54.
go back to reference Choi YJ, Park SY, Kim JY, Won KC, Kim BR, Son JK, et al. Combined treatment of Betulinic acid, a PTP1B inhibitor, with Orthosiphon stamineus extract decreases body weight in high-fat–fed mice. J Med Food. 2013;16:2–8.CrossRefPubMed Choi YJ, Park SY, Kim JY, Won KC, Kim BR, Son JK, et al. Combined treatment of Betulinic acid, a PTP1B inhibitor, with Orthosiphon stamineus extract decreases body weight in high-fat–fed mice. J Med Food. 2013;16:2–8.CrossRefPubMed
55.
go back to reference Ramadhinara A, Widia F, Soegondo S, Setiawati A. The role of SOCS-3 in leptin resistance and obesity. Acta Med Indones. 2008;40:89–95. Ramadhinara A, Widia F, Soegondo S, Setiawati A. The role of SOCS-3 in leptin resistance and obesity. Acta Med Indones. 2008;40:89–95.
56.
go back to reference Bjørbæk C, El-Haschimi K, Frantz JD, Flier JS. The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem. 1999;274:30059–65.CrossRefPubMed Bjørbæk C, El-Haschimi K, Frantz JD, Flier JS. The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem. 1999;274:30059–65.CrossRefPubMed
57.
go back to reference Maeso Fortuny MDC, Brito Diaz B, Cabrera de Leon A. Leptin, estrogens and cancer. Mini Rev Med Chem. 2006;6:897–907.CrossRefPubMed Maeso Fortuny MDC, Brito Diaz B, Cabrera de Leon A. Leptin, estrogens and cancer. Mini Rev Med Chem. 2006;6:897–907.CrossRefPubMed
58.
go back to reference De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146:4192–9.CrossRefPubMed De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146:4192–9.CrossRefPubMed
59.
go back to reference Ueki K, Kondo T, Kahn CR. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol. 2004;24:5434–46.CrossRefPubMedPubMedCentral Ueki K, Kondo T, Kahn CR. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol. 2004;24:5434–46.CrossRefPubMedPubMedCentral
60.
go back to reference Ueki K, Kadowaki T, Kahn CR. Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic syndrome. Hepatol Res. 2005;33:185–92.CrossRefPubMed Ueki K, Kadowaki T, Kahn CR. Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic syndrome. Hepatol Res. 2005;33:185–92.CrossRefPubMed
61.
go back to reference Liao L, Zheng R, Wang C, Gao J, Ying Y, Ning Q, Luo X. The influence of down-regulation of suppressor of cellular signaling proteins by RNAi on glucose transport of intrauterine growth retardation rats. Pediatr Res. 2011;69:497–503.CrossRefPubMed Liao L, Zheng R, Wang C, Gao J, Ying Y, Ning Q, Luo X. The influence of down-regulation of suppressor of cellular signaling proteins by RNAi on glucose transport of intrauterine growth retardation rats. Pediatr Res. 2011;69:497–503.CrossRefPubMed
62.
go back to reference Gorelick J, Rosenberg R, Smotrich A, Hanuš L, Bernstein N. Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochemistry. 2015;116:283–9.CrossRefPubMed Gorelick J, Rosenberg R, Smotrich A, Hanuš L, Bernstein N. Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochemistry. 2015;116:283–9.CrossRefPubMed
63.
go back to reference Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 2009;29:359–70.CrossRefPubMed Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 2009;29:359–70.CrossRefPubMed
64.
go back to reference Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135:61–73.CrossRefPubMedPubMedCentral Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135:61–73.CrossRefPubMedPubMedCentral
66.
go back to reference Raghavan A, Shah ZA. Withania somnifera improves ischemic stroke outcomes by attenuating PARP1-AIF-mediated caspase-independent apoptosis. Mol Neurobiol. 2015;52:1093–105.CrossRefPubMed Raghavan A, Shah ZA. Withania somnifera improves ischemic stroke outcomes by attenuating PARP1-AIF-mediated caspase-independent apoptosis. Mol Neurobiol. 2015;52:1093–105.CrossRefPubMed
Metadata
Title
Withania somnifera as a potential candidate to ameliorate high fat diet-induced anxiety and neuroinflammation
Authors
Taranjeet Kaur
Gurcharan Kaur
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2017
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-017-0975-6

Other articles of this Issue 1/2017

Journal of Neuroinflammation 1/2017 Go to the issue