Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model

Authors: Shaffi Manchanda, Gurcharan Kaur

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Sedentary lifestyle, psychological stress and labor saving devices in this current society often disrupts the energy gain and expenditure balance leading to obesity. High caloric diet is associated with the high prevalence of cognitive dysfunction and neuropsychiatric disorders in addition to cardiovascular and metabolic abnormalities. The present study was aimed to elucidate the potential beneficial effect of dry leaf powder of Withania somnifera (Ashwagandha) in preventing the cognitive decline associated with diet induced obesity.

Methods

Experiments were performed on four groups of young adult female rats: [Low fat diet (LFD) rats fed on regular low fat chow, High fat diet (HFD) rats on feed containing 30% fat by weight, Low fat diet extract (LFDE) rats given regular chow and dry leaf powder of Ashwagandha 1 mg/g of body weight (ASH) and high fat diet extract (HFDE) rats fed on diet containing high fat and dry leaf powder of ASH. All the rats were kept on their respective diet regimen for 12 weeks.

Results

ASH treated rats showed significant improvement in their working memory and locomotor coordination during behavioral studies as compared to HFD rats. At the molecular level, ASH treatment was observed to restore the levels of BDNF and its receptor TRKB as well as the expression of other synaptic regulators, which are highly implicated in synaptic plasticity. Further, ASH triggered the activation of PI3/AKT pathway of cell survival and plasticity by enhancing the levels of phosphorylated Akt-1 and immediate early genes viz. c-Jun and c-fos.

Conclusions

ASH could be a key regulator in maintaining the synaptic plasticity in HFD induced obesity and can serve as a nootropic candidate against obesity induced cognitive impairments.
Literature
1.
go back to reference South T, Holmes NM, Martire SI, Westbrook RF, Morris MJ. Rats eat a cafeteria-style diet to excess but eat smaller amounts and less frequently when tested with chow. PLoS One. 2014;9:e93506.CrossRefPubMedPubMedCentral South T, Holmes NM, Martire SI, Westbrook RF, Morris MJ. Rats eat a cafeteria-style diet to excess but eat smaller amounts and less frequently when tested with chow. PLoS One. 2014;9:e93506.CrossRefPubMedPubMedCentral
2.
go back to reference Sharma S, Fulton S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes. 2013;37:382–9.CrossRef Sharma S, Fulton S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes. 2013;37:382–9.CrossRef
3.
go back to reference Mansur RB, Brietzke E, McIntyre RS. Is there a “metabolic-mood syndrome”? A review of the relationship between obesity and mood disorders. Neurosci Biobehav Rev. 2015;52:89–104.CrossRefPubMed Mansur RB, Brietzke E, McIntyre RS. Is there a “metabolic-mood syndrome”? A review of the relationship between obesity and mood disorders. Neurosci Biobehav Rev. 2015;52:89–104.CrossRefPubMed
4.
go back to reference Kim TW, Choi HH, Chung YR. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice. Journal of Exercise Rehabilitation. 2016;12(3):156.CrossRefPubMedPubMedCentral Kim TW, Choi HH, Chung YR. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice. Journal of Exercise Rehabilitation. 2016;12(3):156.CrossRefPubMedPubMedCentral
5.
go back to reference Restivo MR, McKinnon MC, Frey BN, Hall GB, Taylor VH. Effect of obesity on cognition in adults with and without a mood disorder: study design and methods. BMJ Open. 2016;6(2):e009347.CrossRefPubMedPubMedCentral Restivo MR, McKinnon MC, Frey BN, Hall GB, Taylor VH. Effect of obesity on cognition in adults with and without a mood disorder: study design and methods. BMJ Open. 2016;6(2):e009347.CrossRefPubMedPubMedCentral
6.
go back to reference Craft S. Insulin resistance syndrome and Alzheimer’s disease: age-and obesity-related effects on memory, amyloid, and inflammation. Neurobiol Aging. 2005;26(1):65–9.CrossRefPubMed Craft S. Insulin resistance syndrome and Alzheimer’s disease: age-and obesity-related effects on memory, amyloid, and inflammation. Neurobiol Aging. 2005;26(1):65–9.CrossRefPubMed
7.
go back to reference Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, et al. Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol. 2010;219(1):25–32.CrossRefPubMed Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, et al. Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol. 2010;219(1):25–32.CrossRefPubMed
8.
go back to reference Castanon N, Lasselin J, Capuron L. Neuropsychiatric comorbidity in obesity: role of inflammatory processes. Front Endocrinol. 2014;5:74.CrossRef Castanon N, Lasselin J, Capuron L. Neuropsychiatric comorbidity in obesity: role of inflammatory processes. Front Endocrinol. 2014;5:74.CrossRef
9.
go back to reference Smith E, Hay P, Campbell L, Trollor JN. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev. 2011;12(9):740–55.CrossRefPubMed Smith E, Hay P, Campbell L, Trollor JN. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev. 2011;12(9):740–55.CrossRefPubMed
10.
go back to reference Reinert KR, Poe EK, Barkin SL. The relationship between executive function and obesity in children and adolescents: a systematic literature review. J Obes. 2013;2013:820956. Reinert KR, Poe EK, Barkin SL. The relationship between executive function and obesity in children and adolescents: a systematic literature review. J Obes. 2013;2013:820956.
11.
go back to reference Mary NK, Babu BH, Padikkala J. Antiatherogenic effect of Caps HT2, a herbal Ayurvedic medicine formulation. Phytomedicine. 2003;10(6):474–82.CrossRefPubMed Mary NK, Babu BH, Padikkala J. Antiatherogenic effect of Caps HT2, a herbal Ayurvedic medicine formulation. Phytomedicine. 2003;10(6):474–82.CrossRefPubMed
12.
go back to reference Ghosal S, Lal J, Srivastava R, Bhattacharya SK, Upadhyay SN. Immunomodulatory and CNS effects of sitoindosides IX and X two new glycowithanolides from Withania somnifera. Phytother Res. 1989;3:201–6.CrossRef Ghosal S, Lal J, Srivastava R, Bhattacharya SK, Upadhyay SN. Immunomodulatory and CNS effects of sitoindosides IX and X two new glycowithanolides from Withania somnifera. Phytother Res. 1989;3:201–6.CrossRef
13.
go back to reference Bhattacharya SK, Kumar A, Ghosal S. Effects of glycowithanolides from Withania somnifera on animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother Res. 1995;9:110–3.CrossRef Bhattacharya SK, Kumar A, Ghosal S. Effects of glycowithanolides from Withania somnifera on animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother Res. 1995;9:110–3.CrossRef
14.
15.
go back to reference Konar A, Shah N, Singh R, Saxena N, Kaul SC, Wadhwa R, et al. Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One. 2011;6(11):e27265.CrossRefPubMedPubMedCentral Konar A, Shah N, Singh R, Saxena N, Kaul SC, Wadhwa R, et al. Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One. 2011;6(11):e27265.CrossRefPubMedPubMedCentral
16.
go back to reference Patnaik N. Role of medicinal plants (brahmi and ashwagandha) in the treatment of Alzheimer’s. Int J Life Sci Scienti Res. 2016;2(1):15–7. Patnaik N. Role of medicinal plants (brahmi and ashwagandha) in the treatment of Alzheimer’s. Int J Life Sci Scienti Res. 2016;2(1):15–7.
17.
go back to reference Soman S, Korah PK, Jayanarayanan S, Mathew J, Paulose CS. Oxidative stress induced NMDA receptor alteration leads to spatial memory deficits in temporal lobe epilepsy: ameliorative effects of Withania somnifera and Withanolide A. Neurochem Res. 2012;37(9):1915–27.CrossRefPubMed Soman S, Korah PK, Jayanarayanan S, Mathew J, Paulose CS. Oxidative stress induced NMDA receptor alteration leads to spatial memory deficits in temporal lobe epilepsy: ameliorative effects of Withania somnifera and Withanolide A. Neurochem Res. 2012;37(9):1915–27.CrossRefPubMed
18.
go back to reference Sood A, Kumar A, Dhawan DK, Sandhir R. Propensity of Withania somnifera to Attenuate Behavioural, Biochemical, and Histological Alterations in Experimental Model of Stroke. Cell Mol Neurobiol. 2016;36(7):1123-38. Sood A, Kumar A, Dhawan DK, Sandhir R. Propensity of Withania somnifera to Attenuate Behavioural, Biochemical, and Histological Alterations in Experimental Model of Stroke. Cell Mol Neurobiol. 2016;36(7):1123-38.
19.
go back to reference Tohda C, Kuboyama T, Komatsu K. Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK‐N‐SH cells. Neuroreport. 2000;11(9):1981–5.CrossRefPubMed Tohda C, Kuboyama T, Komatsu K. Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK‐N‐SH cells. Neuroreport. 2000;11(9):1981–5.CrossRefPubMed
20.
go back to reference Srivastava AN, Ahmad R, Khan MA. Evaluation and comparison of the in vitro cytotoxic activity of Withania somnifera Methanolic and ethanolic extracts against MDA-MB-231 and Vero cell lines. Sci Pharm. 2016;84(1):41.CrossRefPubMed Srivastava AN, Ahmad R, Khan MA. Evaluation and comparison of the in vitro cytotoxic activity of Withania somnifera Methanolic and ethanolic extracts against MDA-MB-231 and Vero cell lines. Sci Pharm. 2016;84(1):41.CrossRefPubMed
21.
go back to reference Kataria H, Gupta M, Lakhman S, Kaur G. Withania somnifera aqueous extract facilitates the expression and release of GnRH: in vitro and in vivo study. Neurochem Int. 2015;89:111–9.CrossRefPubMed Kataria H, Gupta M, Lakhman S, Kaur G. Withania somnifera aqueous extract facilitates the expression and release of GnRH: in vitro and in vivo study. Neurochem Int. 2015;89:111–9.CrossRefPubMed
22.
go back to reference Manchanda S, Mishra R, Singh R, Kaur T, Kaur G. Aqueous leaf extract of Withania somnifera as a potential neuroprotective agent in sleep-deprived rats: a mechanistic study. Mol Neurobiol. 2016:1-12. [Epub ahead of print] doi:10.1007/s12035-016-9883-5. Manchanda S, Mishra R, Singh R, Kaur T, Kaur G. Aqueous leaf extract of Withania somnifera as a potential neuroprotective agent in sleep-deprived rats: a mechanistic study. Mol Neurobiol. 2016:1-12. [Epub ahead of print] doi:10.​1007/​s12035-016-9883-5.
23.
go back to reference Gupta M, Kaur G. Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: a mechanistic study. J Neuroinflammation. 2016;13(1):193.CrossRefPubMedPubMedCentral Gupta M, Kaur G. Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: a mechanistic study. J Neuroinflammation. 2016;13(1):193.CrossRefPubMedPubMedCentral
24.
go back to reference Horwood JM, Dufour F, Laroche S, Davis S. Signalling mechanisms mediated by the phosphoinositide 3‐kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci. 2006;23(12):3375–84.CrossRefPubMed Horwood JM, Dufour F, Laroche S, Davis S. Signalling mechanisms mediated by the phosphoinositide 3‐kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci. 2006;23(12):3375–84.CrossRefPubMed
25.
go back to reference Martin B, Pearson M, Kebejian L, et al. Sex-dependent metabolic, neuroendocrine, and cognitive responses to dietary energy restriction and excess. Endocrinology. 2007;148:4318–33.CrossRefPubMedPubMedCentral Martin B, Pearson M, Kebejian L, et al. Sex-dependent metabolic, neuroendocrine, and cognitive responses to dietary energy restriction and excess. Endocrinology. 2007;148:4318–33.CrossRefPubMedPubMedCentral
26.
go back to reference Hwang LL, Wang CH, Li TL, Chang SD, Lin LC, Chen CP, et al. Sex differences in high‐fat diet‐induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obesity. 2010;18(3):463–9.CrossRefPubMed Hwang LL, Wang CH, Li TL, Chang SD, Lin LC, Chen CP, et al. Sex differences in high‐fat diet‐induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obesity. 2010;18(3):463–9.CrossRefPubMed
27.
go back to reference Shi H, Strader AD, Sorrell JE, et al. Sexually different actions of leptin in proopiomelanocortin neurons to regulate glucose homeostasis. Am J Physiol Endocrinol Metab. 2008;294:E630–9.CrossRefPubMed Shi H, Strader AD, Sorrell JE, et al. Sexually different actions of leptin in proopiomelanocortin neurons to regulate glucose homeostasis. Am J Physiol Endocrinol Metab. 2008;294:E630–9.CrossRefPubMed
28.
go back to reference Choudhary D, Bhattacharyya S, Joshi K. Body weight management in adults under chronic stress through treatment with ashwagandha root extract a double-blind, randomized, placebo-controlled trial. J Evid Based Complementary Altern Med. 2017;22(1):96-106. Choudhary D, Bhattacharyya S, Joshi K. Body weight management in adults under chronic stress through treatment with ashwagandha root extract a double-blind, randomized, placebo-controlled trial. J Evid Based Complementary Altern Med. 2017;22(1):96-106.
29.
go back to reference Balderas I, Rodriguez-Ortiz CJ, Salgado-Tonda P, Chavez-Hurtado J, McGaugh JL, Bermudez-Rattoni F. The consolidation of object and context recognition memory involve different regions of the temporal lobe. Learn Mem. 2008;15(9):618–24.CrossRefPubMedPubMedCentral Balderas I, Rodriguez-Ortiz CJ, Salgado-Tonda P, Chavez-Hurtado J, McGaugh JL, Bermudez-Rattoni F. The consolidation of object and context recognition memory involve different regions of the temporal lobe. Learn Mem. 2008;15(9):618–24.CrossRefPubMedPubMedCentral
30.
31.
go back to reference Kalueff AV, Tuohimaa P. The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J Neurosci Methods. 2005;143(2):169–77.CrossRefPubMed Kalueff AV, Tuohimaa P. The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J Neurosci Methods. 2005;143(2):169–77.CrossRefPubMed
32.
go back to reference Kalueff AV, Tuohimaa P. Grooming analysis algorithm for neurobehavioural stress research. Brain Res Brain Res Protoc. 2004;13:151–8.CrossRefPubMed Kalueff AV, Tuohimaa P. Grooming analysis algorithm for neurobehavioural stress research. Brain Res Brain Res Protoc. 2004;13:151–8.CrossRefPubMed
33.
go back to reference Lever C, Burton S, O’Keefe J. Rearing on hind legs, environmental novelty and the hippocampal formation. Rev Neurosci. 2006;17:111–33.PubMed Lever C, Burton S, O’Keefe J. Rearing on hind legs, environmental novelty and the hippocampal formation. Rev Neurosci. 2006;17:111–33.PubMed
34.
go back to reference Underwood EL, Thompson LT. A high-fat diet causes impairment in hippocampal memory and sex-dependent alterations in peripheral metabolism. Neural Plast. 2016;2015:1–10.CrossRef Underwood EL, Thompson LT. A high-fat diet causes impairment in hippocampal memory and sex-dependent alterations in peripheral metabolism. Neural Plast. 2016;2015:1–10.CrossRef
35.
go back to reference Livingstone DE, Jones GC, Smith K, Jamieson PM, Andrew R, Kenyon CJ, et al. Understanding the role of glucocorticoids in obesity: Tissue-specific alterations of corticosterone metabolism in obese zucker rats. Endocrinology. 2000;141(2):560–3. Livingstone DE, Jones GC, Smith K, Jamieson PM, Andrew R, Kenyon CJ, et al. Understanding the role of glucocorticoids in obesity: Tissue-specific alterations of corticosterone metabolism in obese zucker rats. Endocrinology. 2000;141(2):560–3.
36.
go back to reference la Fleur SE, Akana SF, Manalo SL, Dallman MF. Interaction between corticosterone and insulin in obesity: regulation of lard intake and fat stores. Endocrinology. 2004;145(5):2174–85.CrossRefPubMed la Fleur SE, Akana SF, Manalo SL, Dallman MF. Interaction between corticosterone and insulin in obesity: regulation of lard intake and fat stores. Endocrinology. 2004;145(5):2174–85.CrossRefPubMed
37.
go back to reference Kulkarni SK, Verma A. Evidence for nootropic effect of BR-16A (Mentat [R]), a herbal psychotropic preparation, in mice. Indian J Physiol Pharmacol. 1992;36:29.PubMed Kulkarni SK, Verma A. Evidence for nootropic effect of BR-16A (Mentat [R]), a herbal psychotropic preparation, in mice. Indian J Physiol Pharmacol. 1992;36:29.PubMed
38.
go back to reference Schliebs R, Liebmann A, Bhattacharya SK, Kumar A, Ghosal S, Bigl V. Systemic administration of defined extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem Int. 1997;30:181–90.CrossRefPubMed Schliebs R, Liebmann A, Bhattacharya SK, Kumar A, Ghosal S, Bigl V. Systemic administration of defined extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem Int. 1997;30:181–90.CrossRefPubMed
39.
go back to reference Parihar MS, Chaudhary M, Shetty R, Hemnani T. Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice prevention by extracts of Withania somnifera and Aloe vera. J Clin Neurosci. 2004;11:397–402.CrossRefPubMed Parihar MS, Chaudhary M, Shetty R, Hemnani T. Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice prevention by extracts of Withania somnifera and Aloe vera. J Clin Neurosci. 2004;11:397–402.CrossRefPubMed
40.
go back to reference Sandi C, Merino JJ, Cordero MI, Touyarot K, Venero C. Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1. Neuroscience. 2001;102(2):329–39.CrossRefPubMed Sandi C, Merino JJ, Cordero MI, Touyarot K, Venero C. Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1. Neuroscience. 2001;102(2):329–39.CrossRefPubMed
41.
go back to reference Nacher J, Pham K, Gil-Fernandez V, McEwen BS. Chronic restraint stress and chronic corticosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex. Neuroscience. 2004;126(2):503–9.CrossRefPubMed Nacher J, Pham K, Gil-Fernandez V, McEwen BS. Chronic restraint stress and chronic corticosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex. Neuroscience. 2004;126(2):503–9.CrossRefPubMed
42.
go back to reference Stoenica L, Senkov O, Gerardy‐Schahn R, Weinhold B, Schachner M, Dityatev A. In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid. Eur J Neurosci. 2006;23(9):2255–64.CrossRefPubMed Stoenica L, Senkov O, Gerardy‐Schahn R, Weinhold B, Schachner M, Dityatev A. In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid. Eur J Neurosci. 2006;23(9):2255–64.CrossRefPubMed
43.
go back to reference Kong Q, Min X, Sun R, Gao J, Liang R, Li L, Chu X. Effects of pharmacological treatments on hippocampal NCAM1 and ERK2 expression in epileptic rats with cognitive dysfunction. Oncol Lett. 2016;12:1783–91.PubMedPubMedCentral Kong Q, Min X, Sun R, Gao J, Liang R, Li L, Chu X. Effects of pharmacological treatments on hippocampal NCAM1 and ERK2 expression in epileptic rats with cognitive dysfunction. Oncol Lett. 2016;12:1783–91.PubMedPubMedCentral
44.
go back to reference Alzoubi KH, Aleisa AM, Alkadhi KA. Impairment of long-term potentiation in the CA1, but not dentate gyrus, of the hippocampus in Obese Zucker rats. J Mol Neurosci. 2005;27(3):337–46.CrossRefPubMed Alzoubi KH, Aleisa AM, Alkadhi KA. Impairment of long-term potentiation in the CA1, but not dentate gyrus, of the hippocampus in Obese Zucker rats. J Mol Neurosci. 2005;27(3):337–46.CrossRefPubMed
45.
go back to reference Winder DG, Mansuy IM, Osman M, Moallem TM, Kandel ER. Genetic and pharmacological evidence for a novel, intermediate phase of longterm potentiation suppressed by calcineurin. Cell. 1998;92:25–37.CrossRefPubMed Winder DG, Mansuy IM, Osman M, Moallem TM, Kandel ER. Genetic and pharmacological evidence for a novel, intermediate phase of longterm potentiation suppressed by calcineurin. Cell. 1998;92:25–37.CrossRefPubMed
46.
go back to reference Thiels E, Kanterewicz BI, Knapp LT, Barrionuevo G, Klann E. Protein phosphatase-mediated regulation of protein kinase C during long-term depression in the adult hippocampus in vivo. J Neurosci. 2000;20:7199–207.PubMed Thiels E, Kanterewicz BI, Knapp LT, Barrionuevo G, Klann E. Protein phosphatase-mediated regulation of protein kinase C during long-term depression in the adult hippocampus in vivo. J Neurosci. 2000;20:7199–207.PubMed
47.
go back to reference Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, et al. Diet‐induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle‐aged rats. Hippocampus. 2008;18(11):1085–8.CrossRefPubMedPubMedCentral Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, et al. Diet‐induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle‐aged rats. Hippocampus. 2008;18(11):1085–8.CrossRefPubMedPubMedCentral
48.
go back to reference Tozuka Y, Kumon M, Wada E, Onodera M, Mochizuki H, Wada K. Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochem Int. 2010;57(3):235–47.CrossRefPubMed Tozuka Y, Kumon M, Wada E, Onodera M, Mochizuki H, Wada K. Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochem Int. 2010;57(3):235–47.CrossRefPubMed
51.
go back to reference Schaaf MJ, de Jong J, de Kloet ER, Vreugdenhil E. Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Res. 1998;813:112–20.CrossRefPubMed Schaaf MJ, de Jong J, de Kloet ER, Vreugdenhil E. Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Res. 1998;813:112–20.CrossRefPubMed
52.
go back to reference Hansson AC, Sommer WH, Metsis M, Stromberg I, Agnati LF, Fuxe K. Corticosterone actions on the hippocampal brain-derived neurotrophic factor expression are mediated by exon IV promoter. J Neuroendocrinol. 2006;18:104–14.CrossRefPubMed Hansson AC, Sommer WH, Metsis M, Stromberg I, Agnati LF, Fuxe K. Corticosterone actions on the hippocampal brain-derived neurotrophic factor expression are mediated by exon IV promoter. J Neuroendocrinol. 2006;18:104–14.CrossRefPubMed
53.
go back to reference Boulanger LM, Poo MM. Presynaptic depolarization facilitates neurotrophin induced synaptic potentiation. Nat Neurosci. 1999;2:346–51.CrossRefPubMed Boulanger LM, Poo MM. Presynaptic depolarization facilitates neurotrophin induced synaptic potentiation. Nat Neurosci. 1999;2:346–51.CrossRefPubMed
54.
go back to reference Wu A, Ying Z, Gomez-Pinilla F. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci. 2004;19:1699–707.CrossRefPubMed Wu A, Ying Z, Gomez-Pinilla F. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci. 2004;19:1699–707.CrossRefPubMed
Metadata
Title
Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model
Authors
Shaffi Manchanda
Gurcharan Kaur
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1652-0

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue