Skip to main content
Top
Published in: Journal of Translational Medicine 1/2023

Open Access 01-12-2023 | Primary Myelofibrosis | Review

Fibrosis and bone marrow: understanding causation and pathobiology

Authors: Kanjaksha Ghosh, Durjoy K. Shome, Bipin Kulkarni, Malay K. Ghosh, Kinjalka Ghosh

Published in: Journal of Translational Medicine | Issue 1/2023

Login to get access

Abstract

Bone marrow fibrosis represents an important structural change in the marrow that interferes with some of its normal functions. The aetiopathogenesis of fibrosis is not well established except in its primary form. The present review consolidates current understanding of marrow fibrosis. We searched PubMed without time restriction using key words: bone marrow and fibrosis as the main stem against the terms: growth factors, cytokines and chemokines, morphology, megakaryocytes and platelets, myeloproliferative disorders, myelodysplastic syndrome, collagen biosynthesis, mesenchymal stem cells, vitamins and minerals and hormones, and mechanism of tissue fibrosis. Tissue marrow fibrosis-related papers were short listed and analysed for the review. It emerged that bone marrow fibrosis is the outcome of complex interactions between growth factors, cytokines, chemokines and hormones together with their facilitators and inhibitors. Fibrogenesis is initiated by mobilisation of special immunophenotypic subsets of mesenchymal stem cells in the marrow that transform into fibroblasts. Fibrogenic stimuli may arise from neoplastic haemopoietic or non-hematopoietic cells, as well as immune cells involved in infections and inflammatory conditions. Autoimmunity is involved in a small subset of patients with marrow fibrosis. Megakaryocytes and platelets are either directly involved or are important intermediaries in stimulating mesenchymal stem cells. MMPs, TIMPs, TGF-β, PDGRF, and basic FGF and CRCXL4 chemokines are involved in these processes. Genetic and epigenetic changes underlie many of these conditions.
Literature
1.
2.
go back to reference Ramakrishnan A, Deeg HJ. A novel role for the marrow microenvironment in initiating and sustaining hematopoietic disease. Expert Opin Biol Ther. 2009;9:21–8.PubMedPubMedCentralCrossRef Ramakrishnan A, Deeg HJ. A novel role for the marrow microenvironment in initiating and sustaining hematopoietic disease. Expert Opin Biol Ther. 2009;9:21–8.PubMedPubMedCentralCrossRef
3.
go back to reference Bauermeister DE. Quantitation of bone marrow reticulin–a normal range. Am J Clin Pathol. 1971;56:24–31.PubMedCrossRef Bauermeister DE. Quantitation of bone marrow reticulin–a normal range. Am J Clin Pathol. 1971;56:24–31.PubMedCrossRef
4.
go back to reference Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90:1128–32.PubMed Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90:1128–32.PubMed
5.
go back to reference Yamazaki K, Allen TD. The structure and function of the blood-marrow barrier. Early ultrastructural changes in irradiated bone marrow sinus endothelial cells detected by vascular perfusion fixation. Blood Cells. 1992;18(2):215–21.PubMed Yamazaki K, Allen TD. The structure and function of the blood-marrow barrier. Early ultrastructural changes in irradiated bone marrow sinus endothelial cells detected by vascular perfusion fixation. Blood Cells. 1992;18(2):215–21.PubMed
6.
go back to reference Itkin T, Ludin A, Gradus B, Gur-Cohen S, Kalinkovich A, Schajnovitz A, Ovadya Y, Kollet O, Canaani J, Shezen E, et al. FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation. Blood. 2012;120:1843–55.PubMedCrossRef Itkin T, Ludin A, Gradus B, Gur-Cohen S, Kalinkovich A, Schajnovitz A, Ovadya Y, Kollet O, Canaani J, Shezen E, et al. FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation. Blood. 2012;120:1843–55.PubMedCrossRef
7.
go back to reference Wang JC. Importance of plasma matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinase (TIMP) in development of fibrosis in agnogenic myeloid metaplasia. Leuk Lymphoma. 2005;46:1261–8.PubMedCrossRef Wang JC. Importance of plasma matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinase (TIMP) in development of fibrosis in agnogenic myeloid metaplasia. Leuk Lymphoma. 2005;46:1261–8.PubMedCrossRef
8.
go back to reference Kuter DJ, Bain B, Mufti G, Bagg A, Hasserjian RP. Bone marrow fibrosis: pathophysiology and clinical significance of increased bone marrow stromal fibres. Br J Haematol. 2007;139:351–62.PubMedCrossRef Kuter DJ, Bain B, Mufti G, Bagg A, Hasserjian RP. Bone marrow fibrosis: pathophysiology and clinical significance of increased bone marrow stromal fibres. Br J Haematol. 2007;139:351–62.PubMedCrossRef
9.
go back to reference Bain BJ, Clark DM, Lampert IA, Wilkins BS. Bone marrow pathology. 2nd ed. London: Blackwell Science Ltd; 2001.CrossRef Bain BJ, Clark DM, Lampert IA, Wilkins BS. Bone marrow pathology. 2nd ed. London: Blackwell Science Ltd; 2001.CrossRef
13.
go back to reference Suess PM, Smith SA, Morrissey JH. Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation. J Thromb Haemost. 2020;18:3043–52.PubMedPubMedCentralCrossRef Suess PM, Smith SA, Morrissey JH. Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation. J Thromb Haemost. 2020;18:3043–52.PubMedPubMedCentralCrossRef
14.
go back to reference Ho YH, Del Toro R, Rivera-Torres J, Rak J, Korn C, García-García A, Macías D, González-Gómez C, Del Monte A, Wittner M, Waller AK, et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell. 2019;25(3):407–18.PubMedPubMedCentralCrossRef Ho YH, Del Toro R, Rivera-Torres J, Rak J, Korn C, García-García A, Macías D, González-Gómez C, Del Monte A, Wittner M, Waller AK, et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell. 2019;25(3):407–18.PubMedPubMedCentralCrossRef
16.
go back to reference Spivak JL, Bender BS, Quinn TC. Hematologic abnormalities in the acquired immune deficiency syndrome. Am J Med. 1984;77(2):224–8.PubMedCrossRef Spivak JL, Bender BS, Quinn TC. Hematologic abnormalities in the acquired immune deficiency syndrome. Am J Med. 1984;77(2):224–8.PubMedCrossRef
17.
go back to reference Viallard JF, Parrens M, Boiron JM, Texier J, Mercie P, Pellegrin JL. Reversible myelofibrosis induced by tuberculosis. Clin Infect Dis. 2002;34(12):1641–3.PubMedCrossRef Viallard JF, Parrens M, Boiron JM, Texier J, Mercie P, Pellegrin JL. Reversible myelofibrosis induced by tuberculosis. Clin Infect Dis. 2002;34(12):1641–3.PubMedCrossRef
19.
go back to reference Crispin P, Holmes A. Clinical and pathological feature of bone marrow granulomas: a modern Australian series. Int J Lab Hematol. 2018;40(2):123–7.PubMedCrossRef Crispin P, Holmes A. Clinical and pathological feature of bone marrow granulomas: a modern Australian series. Int J Lab Hematol. 2018;40(2):123–7.PubMedCrossRef
21.
go back to reference Bradding P, Pejler G. The controversial role of mast cells in fibrosis. Immunol Rev. 2018;282:198–231.PubMedCrossRef Bradding P, Pejler G. The controversial role of mast cells in fibrosis. Immunol Rev. 2018;282:198–231.PubMedCrossRef
22.
go back to reference Marcellino B, El Jamal SM, Mascarenhas JO. Distinguishing autoimmune myelofibrosis from primary myelofibrosis. Clin Adv Hemat & Onc. 2018;16:619–26. Marcellino B, El Jamal SM, Mascarenhas JO. Distinguishing autoimmune myelofibrosis from primary myelofibrosis. Clin Adv Hemat & Onc. 2018;16:619–26.
23.
go back to reference Fliedner TM, Nothdurft W, Calvo W. The development of radiation late effects to the bone marrow after single and chronic exposure. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;49:35–46.PubMedCrossRef Fliedner TM, Nothdurft W, Calvo W. The development of radiation late effects to the bone marrow after single and chronic exposure. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;49:35–46.PubMedCrossRef
25.
go back to reference Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331:1286–92.PubMedCrossRef Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331:1286–92.PubMedCrossRef
26.
go back to reference Zahr AA, Salama ME, Carreau N, Tremblay D, Verstovsek S, Mesa R, Hoffman R, Mascarenhas J. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica. 2016;101(6):660–71.PubMedPubMedCentralCrossRef Zahr AA, Salama ME, Carreau N, Tremblay D, Verstovsek S, Mesa R, Hoffman R, Mascarenhas J. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica. 2016;101(6):660–71.PubMedPubMedCentralCrossRef
29.
go back to reference Longhitano L, Tibullo D, Vicario N, Giallongo C, La Spina E, Romano A, Lombardo S, Moretti M, Masia F, Coda ARD, et al. IGFBP-6/sonic hedgehog/TLR4 signalling axis drives bone marrow fibrotic transformation in primary myelofibrosis. Aging. 2021;13(23):25055–71.PubMedPubMedCentralCrossRef Longhitano L, Tibullo D, Vicario N, Giallongo C, La Spina E, Romano A, Lombardo S, Moretti M, Masia F, Coda ARD, et al. IGFBP-6/sonic hedgehog/TLR4 signalling axis drives bone marrow fibrotic transformation in primary myelofibrosis. Aging. 2021;13(23):25055–71.PubMedPubMedCentralCrossRef
32.
go back to reference Li D, Wu M. Pattern recognition receptors in health and diseases. Sig Transduct Target Ther. 2021;291(6):1–18. Li D, Wu M. Pattern recognition receptors in health and diseases. Sig Transduct Target Ther. 2021;291(6):1–18.
33.
go back to reference Borthwick LA, Wynn TA, Andrew J, et al. Cytokine mediated tissue fibrosis. Biochim Biophys Acta. 2013;1832(7):1049–60.PubMedCrossRef Borthwick LA, Wynn TA, Andrew J, et al. Cytokine mediated tissue fibrosis. Biochim Biophys Acta. 2013;1832(7):1049–60.PubMedCrossRef
34.
go back to reference Dutta A, Nath D, Yang Y, Le BT, Rahman MF, Faughnan P, Wang Z, Stuver M, He R, Tan W, et al. Genetic ablation of Pim1 or pharmacologic inhibition with TP-3654 ameliorates myelofibrosis in murine models. Leukemia. 2022;36(3):746–59.PubMedCrossRef Dutta A, Nath D, Yang Y, Le BT, Rahman MF, Faughnan P, Wang Z, Stuver M, He R, Tan W, et al. Genetic ablation of Pim1 or pharmacologic inhibition with TP-3654 ameliorates myelofibrosis in murine models. Leukemia. 2022;36(3):746–59.PubMedCrossRef
37.
go back to reference Tanaka H, Maehama S, Imanaka F, Sakai A, Abe K, Hamada M, Yamashita J, Kimura A, Imamura N, Fujimura K, et al. Pachydermoperiostosis with myelofibrosis and anemia: report of a case of anemia of multifactorial causes and its improvement with steroid pulse and iron therapy. Jpn J Med. 1991;30:73–80.PubMedCrossRef Tanaka H, Maehama S, Imanaka F, Sakai A, Abe K, Hamada M, Yamashita J, Kimura A, Imamura N, Fujimura K, et al. Pachydermoperiostosis with myelofibrosis and anemia: report of a case of anemia of multifactorial causes and its improvement with steroid pulse and iron therapy. Jpn J Med. 1991;30:73–80.PubMedCrossRef
38.
go back to reference Secchin P, Fernandes NC, Quintella DC, Silva JAR, Medrado J, Magalhães TC. Pachydermoperiostosis associated with myelofibrosis: a rare case report. Indian J Dermatol. 2019;64:501–3.PubMedPubMedCentralCrossRef Secchin P, Fernandes NC, Quintella DC, Silva JAR, Medrado J, Magalhães TC. Pachydermoperiostosis associated with myelofibrosis: a rare case report. Indian J Dermatol. 2019;64:501–3.PubMedPubMedCentralCrossRef
40.
go back to reference Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast:one function, multiple origins. Am J Pathol. 2007;170:1807–16.PubMedPubMedCentralCrossRef Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast:one function, multiple origins. Am J Pathol. 2007;170:1807–16.PubMedPubMedCentralCrossRef
41.
go back to reference Wen Q, Goldenson B, Silver SJ, Schenone M, Dancik V, Huang Z, Wang LZ, Lewis TA, An WF, Li X, et al. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell. 2012;150(3):575–89.PubMedPubMedCentralCrossRef Wen Q, Goldenson B, Silver SJ, Schenone M, Dancik V, Huang Z, Wang LZ, Lewis TA, An WF, Li X, et al. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell. 2012;150(3):575–89.PubMedPubMedCentralCrossRef
42.
go back to reference Geddis AE, Kaushasky K. Megakaryocytes express functional aurora-B kinase in endomitosis. Blood. 2004;104(4):1017–24.PubMedCrossRef Geddis AE, Kaushasky K. Megakaryocytes express functional aurora-B kinase in endomitosis. Blood. 2004;104(4):1017–24.PubMedCrossRef
45.
go back to reference Lis-López L, Bauset C, Seco-Cervera M, Cosín-Roger J. Is the macrophage phenotype determinant for fibrosis development? Biomedicines. 2021;9(12):1747.PubMedPubMedCentralCrossRef Lis-López L, Bauset C, Seco-Cervera M, Cosín-Roger J. Is the macrophage phenotype determinant for fibrosis development? Biomedicines. 2021;9(12):1747.PubMedPubMedCentralCrossRef
47.
48.
go back to reference Ahmed A, Powers MP, Youker KA, Rice L, Ewton A, Dunphy CH, Chang CC. Mast cell burden and reticulin fibrosis in the myeloproliferative neoplasms: a computer-assisted image analysis study. Pathol Res Pract. 2009;205(9):634–8.PubMedCrossRef Ahmed A, Powers MP, Youker KA, Rice L, Ewton A, Dunphy CH, Chang CC. Mast cell burden and reticulin fibrosis in the myeloproliferative neoplasms: a computer-assisted image analysis study. Pathol Res Pract. 2009;205(9):634–8.PubMedCrossRef
49.
go back to reference Karna E, Szoka L, Huynh TYL. Palka JA Proline-dependent regulation of collagen metabolism. Cell Mol Life Sci. 2020;77:1911–8.PubMedCrossRef Karna E, Szoka L, Huynh TYL. Palka JA Proline-dependent regulation of collagen metabolism. Cell Mol Life Sci. 2020;77:1911–8.PubMedCrossRef
50.
51.
go back to reference Narayanan S, Page RC, Swanson J. Collagen synthesis by human fibroblasts Regulation by transforming growth factor-beta in the presence of other inflammatory mediators A. Biochem J. 1989;260:463–9.PubMedPubMedCentralCrossRef Narayanan S, Page RC, Swanson J. Collagen synthesis by human fibroblasts Regulation by transforming growth factor-beta in the presence of other inflammatory mediators A. Biochem J. 1989;260:463–9.PubMedPubMedCentralCrossRef
52.
go back to reference Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, et al. Hypoxia promotes fibrogenesis invivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117:3810–20.PubMedPubMedCentral Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, et al. Hypoxia promotes fibrogenesis invivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117:3810–20.PubMedPubMedCentral
53.
go back to reference Kim W, Barron DA, San Martin R, Chan KS, Tran LL, Yang F, Ressler SJ, Rowley DR. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci USA. 2014;111(46):16389–94.PubMedPubMedCentralCrossRef Kim W, Barron DA, San Martin R, Chan KS, Tran LL, Yang F, Ressler SJ, Rowley DR. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci USA. 2014;111(46):16389–94.PubMedPubMedCentralCrossRef
55.
go back to reference Le Bousse-Kerdilès MC, Martyré MC, Samson M. Cellular and molecular mechanisms underlying bone marrow and liver fibrosis: a review. Eur Cytokine Network. 2008;19(2):69–80. Le Bousse-Kerdilès MC, Martyré MC, Samson M. Cellular and molecular mechanisms underlying bone marrow and liver fibrosis: a review. Eur Cytokine Network. 2008;19(2):69–80.
56.
57.
go back to reference Kucharz EJ. Hormonal control of collagen metabolism–part I. Endocrinologie. 1988;26(2):69–79.PubMed Kucharz EJ. Hormonal control of collagen metabolism–part I. Endocrinologie. 1988;26(2):69–79.PubMed
58.
go back to reference Kucharz EJ. Hormonal control of collagen metabolism. Part II Endocrinol. 1988;26(4):229–37. Kucharz EJ. Hormonal control of collagen metabolism. Part II Endocrinol. 1988;26(4):229–37.
61.
go back to reference Scotton CJ, Krupiczojc MA, Königshoff M, Mercer PF, Lee YC, Kaminski N, Morser J, Post JM, Maher TM, Nicholson AG, et al. Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J Clin Invest. 2009;119:2550–63.PubMedPubMedCentral Scotton CJ, Krupiczojc MA, Königshoff M, Mercer PF, Lee YC, Kaminski N, Morser J, Post JM, Maher TM, Nicholson AG, et al. Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J Clin Invest. 2009;119:2550–63.PubMedPubMedCentral
63.
go back to reference Vincenti MP, White LA, Schroen DJ, Benbow U, Brinckerhoff CE. Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit Rev Eukaryot Gene Expr. 1996;6(4):391–411.PubMedCrossRef Vincenti MP, White LA, Schroen DJ, Benbow U, Brinckerhoff CE. Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit Rev Eukaryot Gene Expr. 1996;6(4):391–411.PubMedCrossRef
64.
go back to reference Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2008;69(3):562–73.CrossRef Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2008;69(3):562–73.CrossRef
65.
go back to reference Wakahashi K, Minagawa K, Kawano Y, Kawano H, Suzuki T, Ishii S, Sada A, Asada N, Sato M, Kato S, et al. Vitamin D receptor-mediated skewed differentiation of macrophages initiates myelofibrosis and subsequent osteosclerosis. Blood. 2019;133(15):1619–29.PubMedCrossRef Wakahashi K, Minagawa K, Kawano Y, Kawano H, Suzuki T, Ishii S, Sada A, Asada N, Sato M, Kato S, et al. Vitamin D receptor-mediated skewed differentiation of macrophages initiates myelofibrosis and subsequent osteosclerosis. Blood. 2019;133(15):1619–29.PubMedCrossRef
66.
go back to reference Löffek S, Schilling O, Franzke C-W. Biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38(1):191–208.PubMedCrossRef Löffek S, Schilling O, Franzke C-W. Biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38(1):191–208.PubMedCrossRef
67.
69.
go back to reference Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002;115(Pt 19):3719–27.PubMedCrossRef Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002;115(Pt 19):3719–27.PubMedCrossRef
71.
go back to reference Cao-Sy L, Obara N, Sakamoto T, et al. Prominence of nestin-expressing Schwann cells in bone marrow of patients with myelodysplastic syndromes with severe fibrosis. Int J Hematol. 2019;109(3):309–18.PubMedCrossRef Cao-Sy L, Obara N, Sakamoto T, et al. Prominence of nestin-expressing Schwann cells in bone marrow of patients with myelodysplastic syndromes with severe fibrosis. Int J Hematol. 2019;109(3):309–18.PubMedCrossRef
72.
go back to reference Klassert TE, Patel SA, Rameshwar P. Tachykinins and neurokinin receptors in bone marrow functions: neural-hematopoietic link. J Receptor Ligand Channel Res. 2010;3:51–61. Klassert TE, Patel SA, Rameshwar P. Tachykinins and neurokinin receptors in bone marrow functions: neural-hematopoietic link. J Receptor Ligand Channel Res. 2010;3:51–61.
73.
go back to reference Gleitz HF, Kramann R, Schneider RK. Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis. J Pathol. 2018;245(2):138–46.PubMedPubMedCentralCrossRef Gleitz HF, Kramann R, Schneider RK. Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis. J Pathol. 2018;245(2):138–46.PubMedPubMedCentralCrossRef
74.
go back to reference Zeisberg M, Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol. 2013;304(3):216–25.CrossRef Zeisberg M, Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol. 2013;304(3):216–25.CrossRef
75.
go back to reference Ahmady Phoulady H, Goldgof D, Hall LO, Mouton PR. Automatic ground truth for deep learning stereology of immunostained neurons and microglia in mouse neocortex. J Chem Neuroanat. 2019;98:1–7.PubMedCrossRef Ahmady Phoulady H, Goldgof D, Hall LO, Mouton PR. Automatic ground truth for deep learning stereology of immunostained neurons and microglia in mouse neocortex. J Chem Neuroanat. 2019;98:1–7.PubMedCrossRef
76.
go back to reference Rao DS, Shih MS, Mohini R. Effect of serum parathyroid hormone and bone marrow fibrosis on the response to erythropoietin in uremia. N Engl J Med. 1993;328(3):171–5.PubMedCrossRef Rao DS, Shih MS, Mohini R. Effect of serum parathyroid hormone and bone marrow fibrosis on the response to erythropoietin in uremia. N Engl J Med. 1993;328(3):171–5.PubMedCrossRef
77.
go back to reference Rizvi H, Butler T, Calaminici M, Doobaree IU, Nandigam RC, Bennett D, Provan D, Newland AC. United Kingdom immune thrombocytopenia registry: retrospective evaluation of bone marrow fibrosis in adult patients with primary immune thrombocytopenia and correlation with clinical findings. Br J Haematol. 2015;169(4):590–4.PubMedCrossRef Rizvi H, Butler T, Calaminici M, Doobaree IU, Nandigam RC, Bennett D, Provan D, Newland AC. United Kingdom immune thrombocytopenia registry: retrospective evaluation of bone marrow fibrosis in adult patients with primary immune thrombocytopenia and correlation with clinical findings. Br J Haematol. 2015;169(4):590–4.PubMedCrossRef
78.
go back to reference Gleitz HFE, Dugourd AJF, Leimkühler NB, Snoeren IAM, Fuchs SNR, Menzel S, Ziegler S, Kröger N, Triviai I, Büsche G, et al. Increased CXCL4 expression in hematopoietic cells links inflammation and progression of bone marrow fibrosis in MPN. Blood. 2020;136(18):2051–64.PubMedPubMedCentralCrossRef Gleitz HFE, Dugourd AJF, Leimkühler NB, Snoeren IAM, Fuchs SNR, Menzel S, Ziegler S, Kröger N, Triviai I, Büsche G, et al. Increased CXCL4 expression in hematopoietic cells links inflammation and progression of bone marrow fibrosis in MPN. Blood. 2020;136(18):2051–64.PubMedPubMedCentralCrossRef
79.
go back to reference Wernig G, Chen SY, Cui L, Van Neste C, Tsai JM, Kambham N, Vogel H, Natkunam Y, Gilliland DG, Nolan G, Weissman IL. Unifying mechanism for different fibrotic diseases. Proc Natl Acad Sci USA. 2017;114(18):4757–62.PubMedPubMedCentralCrossRef Wernig G, Chen SY, Cui L, Van Neste C, Tsai JM, Kambham N, Vogel H, Natkunam Y, Gilliland DG, Nolan G, Weissman IL. Unifying mechanism for different fibrotic diseases. Proc Natl Acad Sci USA. 2017;114(18):4757–62.PubMedPubMedCentralCrossRef
80.
go back to reference Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ. Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia. 2005;19:1118–27.PubMedCrossRef Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ. Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia. 2005;19:1118–27.PubMedCrossRef
82.
go back to reference Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018;37(1):107–24.PubMedPubMedCentralCrossRef Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018;37(1):107–24.PubMedPubMedCentralCrossRef
Metadata
Title
Fibrosis and bone marrow: understanding causation and pathobiology
Authors
Kanjaksha Ghosh
Durjoy K. Shome
Bipin Kulkarni
Malay K. Ghosh
Kinjalka Ghosh
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2023
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04393-z

Other articles of this Issue 1/2023

Journal of Translational Medicine 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine