Skip to main content
Top
Published in: Respiratory Research 1/2019

Open Access 01-12-2019 | Macrolide | Research

Critical combination of initial markers for predicting refractory Mycoplasma pneumoniae pneumonia in children: a case control study

Authors: Young-Jin Choi, Ju-Hee Jeon, Jae-Won Oh

Published in: Respiratory Research | Issue 1/2019

Login to get access

Abstract

Background

It is unclear whether the responses of refractory and common Mycoplasma pneumoniae (MP) pneumonia to macrolides differ. Hence, this study aimed to identify biomarkers that may be used to distinguish refractory and common pneumonias caused by MP in children at hospital admission.

Methods

The study included 123 children divided into five groups according to infection agent and treatment protocol: Group I included those with MP infection without documented viral infection, treated with only macrolides; Group II included those with MP infection without documented viral infection, treated with a combination of macrolides and methylprednisolone; Group III included those with MP infection and documented viral infection, treated with only macrolides; Group IV included those with viral pneumonia without documented MP infection; Group V was the control group composed of admitted children without MP or a documented viral infection. These five groups were further subdivided into Groups A (including Groups I, III, IV, and V) and B (Group II) according to the responses to macrolide treatment. Concentrations of cytokines interleukin 6, interleukin 17, interleukin 18, and tumor necrosis factor-α, and lactate dehydrogenase, and ferritin of all children were evaluated, and these levels were compared among the groups. Statistical comparisons were made using Kruskal Wallis test and Mann-Whitney U test.

Results

Serum lactate dehydrogenase, interleukin 18, and ferritin concentrations were significantly higher in Group II than in Groups I, III, IV, and V and were significantly higher in Group B than in Group A. When the serum lactate dehydrogenase concentration was 350 IU/L or higher, the sensitivity and specificity for diagnosing refractory MP pneumonia were 73 and 80%, respectively. When the interleukin 18 level was 360 pg/mL or higher, the sensitivity and specificity for diagnosing refractory MP pneumonia were 93 and 70%, respectively. When the ferritin level was 230 pg/mL or higher, the sensitivity and specificity for diagnosing refractory MP pneumonia were 67 and 67%, respectively.

Conclusion

These results suggest that serum lactate dehydrogenase, interleukin 18, and ferritin constitute the critical combination of biomarkers useful for predicting refractory MP pneumonia in children at hospital admission.
Literature
1.
go back to reference Miyashita N, Obase Y, Ouchi K, Kawasaki K, Kawai Y, Kobashi Y, et al. Clinical features of severe Mycoplasma pneumoniae pneumonia in adults admitted to an intensive care unit. J Med Microbiol. 2007;56:1625–9.CrossRef Miyashita N, Obase Y, Ouchi K, Kawasaki K, Kawai Y, Kobashi Y, et al. Clinical features of severe Mycoplasma pneumoniae pneumonia in adults admitted to an intensive care unit. J Med Microbiol. 2007;56:1625–9.CrossRef
2.
go back to reference Tamura A, Matsubara K, Tanaka T, Nigami H, Yura K, Fukaya T. Methylpredonisolone pulse therapy for refractory Mycoplasma pneumoniae pneumonia in children. J Inf Secur. 2008;57:223–8. Tamura A, Matsubara K, Tanaka T, Nigami H, Yura K, Fukaya T. Methylpredonisolone pulse therapy for refractory Mycoplasma pneumoniae pneumonia in children. J Inf Secur. 2008;57:223–8.
3.
go back to reference Lee KY, Lee HS, Hong JH, Lee MH, Lee JS, Burgner D, et al. Role of prednisolone treatment in severe Mycoplasma pneumoniae pneumonia in children. Pediatr Pulmonol. 2006;41:263–8.CrossRef Lee KY, Lee HS, Hong JH, Lee MH, Lee JS, Burgner D, et al. Role of prednisolone treatment in severe Mycoplasma pneumoniae pneumonia in children. Pediatr Pulmonol. 2006;41:263–8.CrossRef
4.
go back to reference Lu A, Wang L, Zhang X, Zhang M. Combined treatment for child refractory Mycoplasma pneumoniae pneumonia with ciproxacin and glucocorticoid. Pediatr Pulmonol. 2011;46:1093–7.CrossRef Lu A, Wang L, Zhang X, Zhang M. Combined treatment for child refractory Mycoplasma pneumoniae pneumonia with ciproxacin and glucocorticoid. Pediatr Pulmonol. 2011;46:1093–7.CrossRef
5.
go back to reference Radisic M, Torn A, Gutierrez P, Defranchi HA, Pardo P. Severe acute lung injury caused by Mycoplasma pneumoniae: potential role for steroid pulses in treatment. Clin Infect Dis. 2000;31:1507–11.CrossRef Radisic M, Torn A, Gutierrez P, Defranchi HA, Pardo P. Severe acute lung injury caused by Mycoplasma pneumoniae: potential role for steroid pulses in treatment. Clin Infect Dis. 2000;31:1507–11.CrossRef
6.
go back to reference Jeong YC, Yeo MS, Kim JH, Lee HB, Oh JW. Mycoplasma pneumoniae infection affects the serum levels of vascular endothelial growth factor and interleukin-5 in atopic children. Allergy, Asthma Immunol Res. 2012;4:92–7.CrossRef Jeong YC, Yeo MS, Kim JH, Lee HB, Oh JW. Mycoplasma pneumoniae infection affects the serum levels of vascular endothelial growth factor and interleukin-5 in atopic children. Allergy, Asthma Immunol Res. 2012;4:92–7.CrossRef
7.
go back to reference Seo Y, Yu BK, Oh YJ, Lee Y, Yoo Y, Choung JT, et al. Increased vascular endothelial growth factor in children with acute Mycoplasma pneumoniae pneumonia and wheezing. Korean J Pediatr. 2008;51:487–91.CrossRef Seo Y, Yu BK, Oh YJ, Lee Y, Yoo Y, Choung JT, et al. Increased vascular endothelial growth factor in children with acute Mycoplasma pneumoniae pneumonia and wheezing. Korean J Pediatr. 2008;51:487–91.CrossRef
8.
go back to reference Nisar N, Guleria R, Kumar S, Chawla TC, Biswas NR. Mycoplasma pneumoniae and its role in asthma. Postgrad Med J. 2007;83:100–4.CrossRef Nisar N, Guleria R, Kumar S, Chawla TC, Biswas NR. Mycoplasma pneumoniae and its role in asthma. Postgrad Med J. 2007;83:100–4.CrossRef
9.
go back to reference Tanaka H, Narita M, Teramoto S, Saikai T, Oashi K, Igarashi T, et al. Role of interleukin-18 and T-helper type 1 cytokines in the development of Mycoplasma pneumoniae pneumonia in adults. Chest. 2002;121:1493–7.CrossRef Tanaka H, Narita M, Teramoto S, Saikai T, Oashi K, Igarashi T, et al. Role of interleukin-18 and T-helper type 1 cytokines in the development of Mycoplasma pneumoniae pneumonia in adults. Chest. 2002;121:1493–7.CrossRef
10.
go back to reference Hsieh CC, Tang RB, Tsai CH, Chen W. Serum interleukin-6 and tumor necrosis factor-a concentrations in children with mycoplasma pneumonia. J Microbiol Immunol Infect. 2001;34:109–12.PubMed Hsieh CC, Tang RB, Tsai CH, Chen W. Serum interleukin-6 and tumor necrosis factor-a concentrations in children with mycoplasma pneumonia. J Microbiol Immunol Infect. 2001;34:109–12.PubMed
11.
go back to reference Youn YS, Lee KY. Mycoplasma pneumoniae pneumonia in children. Korean J Pediatr. 2012;55:42–7.CrossRef Youn YS, Lee KY. Mycoplasma pneumoniae pneumonia in children. Korean J Pediatr. 2012;55:42–7.CrossRef
12.
go back to reference Inamura N, Miyashita N, Hasegawa S, Kato A, Fukuda Y, Saitoh A, et al. Management of refractory Mycoplasma pneumoniae pneumonia: utility of measuring serum lactate dehydrogenase level. J Infect Chemother. 2014;20:270–3.CrossRef Inamura N, Miyashita N, Hasegawa S, Kato A, Fukuda Y, Saitoh A, et al. Management of refractory Mycoplasma pneumoniae pneumonia: utility of measuring serum lactate dehydrogenase level. J Infect Chemother. 2014;20:270–3.CrossRef
13.
go back to reference Lu A, Wang C, Zang X, Wang L, Qian L. Lactate dehydrogenase as a biomarker for prediction of refractory Mycoplasma pneumoniae pneumonia in children. Respir Care. 2015;60:1469–75.CrossRef Lu A, Wang C, Zang X, Wang L, Qian L. Lactate dehydrogenase as a biomarker for prediction of refractory Mycoplasma pneumoniae pneumonia in children. Respir Care. 2015;60:1469–75.CrossRef
14.
go back to reference Hirao S, Wada H, Nakagaki K, Saraya T, Kurai D, Mikura S, et al. Inflammation provoked by Mycoplasma pneumoniae extract: implications for combination treatment with clarithromycin and dexamethasone. Immunol Med Microbiol. 2011;62:182–9.CrossRef Hirao S, Wada H, Nakagaki K, Saraya T, Kurai D, Mikura S, et al. Inflammation provoked by Mycoplasma pneumoniae extract: implications for combination treatment with clarithromycin and dexamethasone. Immunol Med Microbiol. 2011;62:182–9.CrossRef
15.
go back to reference Tagliabue C, Salvatore CM, Techasaensiri C, Mejías A, Torres JP, Katz K, et al. The impact of steroids given with macrolide therapy on experimental Mycoplasma pneumoniae respiratory infection. J Infect Dis. 2008;198:1180–8.CrossRef Tagliabue C, Salvatore CM, Techasaensiri C, Mejías A, Torres JP, Katz K, et al. The impact of steroids given with macrolide therapy on experimental Mycoplasma pneumoniae respiratory infection. J Infect Dis. 2008;198:1180–8.CrossRef
16.
go back to reference Miyashita N, Kawaia Y, Inamura N, Tanaka T, Akaike H, Teranishi H, et al. Setting a standard for the initiation of steroid therapy in refractory or severe Mycoplasma pneumoniae pneumonia in adolescents and adults. J Infect Chemother. 2015;21:153–60.CrossRef Miyashita N, Kawaia Y, Inamura N, Tanaka T, Akaike H, Teranishi H, et al. Setting a standard for the initiation of steroid therapy in refractory or severe Mycoplasma pneumoniae pneumonia in adolescents and adults. J Infect Chemother. 2015;21:153–60.CrossRef
17.
go back to reference Daisuke K, Kazuhide N, Hiroo W, Saraya T, Kamiya S, Fujioka, et al. Mycoplasma pneumoniae extract induces an IL-17-associated inflammatory reaction in murine lung: Implication for Mycoplasma pneumonia. Inflammation. 2013;36:285–93.CrossRef Daisuke K, Kazuhide N, Hiroo W, Saraya T, Kamiya S, Fujioka, et al. Mycoplasma pneumoniae extract induces an IL-17-associated inflammatory reaction in murine lung: Implication for Mycoplasma pneumonia. Inflammation. 2013;36:285–93.CrossRef
18.
go back to reference Oishi T, Narita M, Matsui K, Shirai T, Mastsuo M, Negishi J, et al. Clinical implications of interleukin-18 levels in pediatric patients with Mycoplasma pneumoniae pneumonia. J Infect Chemother. 2011;17:803–6.CrossRef Oishi T, Narita M, Matsui K, Shirai T, Mastsuo M, Negishi J, et al. Clinical implications of interleukin-18 levels in pediatric patients with Mycoplasma pneumoniae pneumonia. J Infect Chemother. 2011;17:803–6.CrossRef
19.
go back to reference Narita M, Tanaka H, Abe S, Yamada S, Kubota M, Togashi T. Close association between pulmonary disease manifestation in Mycoplasma pneumoniae infection and enhanced local production of interleukin-18 in the lung, independent of gamma interferon. Clin Diagn Lab Immunol. 2000;7(6):909–14.CrossRef Narita M, Tanaka H, Abe S, Yamada S, Kubota M, Togashi T. Close association between pulmonary disease manifestation in Mycoplasma pneumoniae infection and enhanced local production of interleukin-18 in the lung, independent of gamma interferon. Clin Diagn Lab Immunol. 2000;7(6):909–14.CrossRef
20.
go back to reference Kawamata R, Yokoyama K, Sato M, Goto M, Nozaki Y, Takagi T, et al. Utility of serum ferritin and lactate dehydrogenase as surrogate markers for steroid therapy for Mycoplasma pneumoniae pneumonia. J Infect Chemother. 2015;21:783–9.CrossRef Kawamata R, Yokoyama K, Sato M, Goto M, Nozaki Y, Takagi T, et al. Utility of serum ferritin and lactate dehydrogenase as surrogate markers for steroid therapy for Mycoplasma pneumoniae pneumonia. J Infect Chemother. 2015;21:783–9.CrossRef
21.
go back to reference Luo Z, Luo J, Liu E, Xu X, Liu Y, Zeng F, et al. Effects of prednisolone on refractory Mycoplasma pneumoniae pneumonia in children. Pediatr Pulmonol. 2014;49:377–80.CrossRef Luo Z, Luo J, Liu E, Xu X, Liu Y, Zeng F, et al. Effects of prednisolone on refractory Mycoplasma pneumoniae pneumonia in children. Pediatr Pulmonol. 2014;49:377–80.CrossRef
22.
go back to reference Lan Y, Yang D, Chen Z, Tang L, Xu Y, Cheng Y. Effectiveness of methylprednisolone in treatment of children with refractory Mycoplasma pneumoniae pneumonia and its relationship with bronchoalveolar lavage cytokine levels. Chinese J Pediatr. 2015;53:779–83. Lan Y, Yang D, Chen Z, Tang L, Xu Y, Cheng Y. Effectiveness of methylprednisolone in treatment of children with refractory Mycoplasma pneumoniae pneumonia and its relationship with bronchoalveolar lavage cytokine levels. Chinese J Pediatr. 2015;53:779–83.
23.
go back to reference Kim S, Um TH, Cho CR. Evaluation of chorus Mycoplasma pneumoniae IgM assay for the serological diagnosis of Mycoplasma pneumoniae infection. J Lab Med Qual Assur. 2012;34:57–62. Kim S, Um TH, Cho CR. Evaluation of chorus Mycoplasma pneumoniae IgM assay for the serological diagnosis of Mycoplasma pneumoniae infection. J Lab Med Qual Assur. 2012;34:57–62.
24.
go back to reference Matteo B, Garnacho M, Artur P. When antibiotic treatment fails. Intensive Care Med. 2018;44:73–5.CrossRef Matteo B, Garnacho M, Artur P. When antibiotic treatment fails. Intensive Care Med. 2018;44:73–5.CrossRef
Metadata
Title
Critical combination of initial markers for predicting refractory Mycoplasma pneumoniae pneumonia in children: a case control study
Authors
Young-Jin Choi
Ju-Hee Jeon
Jae-Won Oh
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2019
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-019-1152-5

Other articles of this Issue 1/2019

Respiratory Research 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.