Skip to main content
Top
Published in: Current Oral Health Reports 2/2019

01-06-2019 | Oral Microbiota | Microbiology (C Genco, Section Editor)

Computational Analysis of Interactions of the Oral Microbiota

Author: Ryan S. McClure

Published in: Current Oral Health Reports | Issue 2/2019

Login to get access

Abstract

Purpose of Review

The human oral microbiome is a complex site containing many hundreds of species with the community response of these species having a large effect on human health. The complexity of this site speaks to the need for applying -omics techniques to better understand which microbial species are present, their interactions and contribution to the microbiome, and how this may change as a function of disease. Here, I review several recent studies that use computational analysis to examine and model the oral microbiome and determine its role in human health.

Recent Findings

Several studies have emerged in the past few years that use several -omics approaches to look specifically at points of interaction between microbiomes of the oral cavity and between these microbiomes and the human host. New techniques in sequencing have revealed a more detailed picture of who is present and their interactions. Network studies that attempt to link hundreds of species, transcripts, or proteins are also beginning to be inferred though their use, aside from species co-abundance networks, are still in the early stages.

Summary

The ability to collect -omics data of the oral microbiome has been well established. The future of this field will likely focus on the integration and use of this data to build models that reveal hundreds of interactions between species at the individual gene or protein level. A better understanding of these interactions, and how they contribute to disease states, will allow for better control and manipulation of the oral microbiome to improve human health.
Literature
1.
go back to reference Escapa IF, Chen T, Huang Y, Gajare P, Dewhirst FE, Lemon KP. New insights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): a resource for the microbiome of the human aerodigestive tract. mSystems. 2018;3(6). Escapa IF, Chen T, Huang Y, Gajare P, Dewhirst FE, Lemon KP. New insights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): a resource for the microbiome of the human aerodigestive tract. mSystems. 2018;3(6).
2.
go back to reference Jia G, Zhi A, Lai PFH, Wang G, Xia Y, Xiong Z, et al. The oral microbiota - a mechanistic role for systemic diseases. Br Dent J. 2018;224(6):447–55.CrossRefPubMed Jia G, Zhi A, Lai PFH, Wang G, Xia Y, Xiong Z, et al. The oral microbiota - a mechanistic role for systemic diseases. Br Dent J. 2018;224(6):447–55.CrossRefPubMed
4.
5.
go back to reference Gibson FC 3rd, Genco CA. Porphyromonas gingivalis mediated periodontal disease and atherosclerosis: disparate diseases with commonalities in pathogenesis through TLRs. Curr Pharm Des. 2007;13(36):3665–75.CrossRefPubMed Gibson FC 3rd, Genco CA. Porphyromonas gingivalis mediated periodontal disease and atherosclerosis: disparate diseases with commonalities in pathogenesis through TLRs. Curr Pharm Des. 2007;13(36):3665–75.CrossRefPubMed
6.
go back to reference Hayashi C, Viereck J, Hua N, Phinikaridou A, Madrigal AG, Gibson FC III, et al. Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis. 2011;215(1):52–9.CrossRefPubMed Hayashi C, Viereck J, Hua N, Phinikaridou A, Madrigal AG, Gibson FC III, et al. Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis. 2011;215(1):52–9.CrossRefPubMed
7.
go back to reference Kim HJ, Cha GS, Kim HJ, Kwon EY, Lee JY, Choi J, et al. Porphyromonas gingivalis accelerates atherosclerosis through oxidation of high-density lipoprotein. J Periodontal Implant Sci. 2018;48(1):60–8.CrossRefPubMedPubMedCentral Kim HJ, Cha GS, Kim HJ, Kwon EY, Lee JY, Choi J, et al. Porphyromonas gingivalis accelerates atherosclerosis through oxidation of high-density lipoprotein. J Periodontal Implant Sci. 2018;48(1):60–8.CrossRefPubMedPubMedCentral
8.
go back to reference • Ebbers M, Lübcke PM, Volzke J, Kriebel K, Hieke C, Engelmann R, et al. Interplay between P. gingivalis, F. nucleatum, and A. actinomycetemcomitans in murine alveolar bone loss, arthritis onset and progression. Sci Rep. 2018;8(1):15129 This paper describes specific interspecies interactions centered on pathogens that related to oral health. CrossRefPubMedPubMedCentral • Ebbers M, Lübcke PM, Volzke J, Kriebel K, Hieke C, Engelmann R, et al. Interplay between P. gingivalis, F. nucleatum, and A. actinomycetemcomitans in murine alveolar bone loss, arthritis onset and progression. Sci Rep. 2018;8(1):15129 This paper describes specific interspecies interactions centered on pathogens that related to oral health. CrossRefPubMedPubMedCentral
9.
go back to reference Lin M, et al. Different engagement of TLR2 and TLR4 in Porphyromonas gingivalis vs. ligature-induced periodontal bone loss. Braz Oral Res. 2017;31:e63.CrossRefPubMedPubMedCentral Lin M, et al. Different engagement of TLR2 and TLR4 in Porphyromonas gingivalis vs. ligature-induced periodontal bone loss. Braz Oral Res. 2017;31:e63.CrossRefPubMedPubMedCentral
10.
go back to reference Nises J, Rosander A, Pettersson A, Backhans A. The occurrence of Treponema spp. in gingival plaque from dogs with varying degree of periodontal disease. PLoS One. 2018;13(8):e0201888.CrossRefPubMedPubMedCentral Nises J, Rosander A, Pettersson A, Backhans A. The occurrence of Treponema spp. in gingival plaque from dogs with varying degree of periodontal disease. PLoS One. 2018;13(8):e0201888.CrossRefPubMedPubMedCentral
12.
go back to reference Siqueira JF Jr, Rocas IN. Community as the unit of pathogenicity: an emerging concept as to the microbial pathogenesis of apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(6):870–8.CrossRefPubMed Siqueira JF Jr, Rocas IN. Community as the unit of pathogenicity: an emerging concept as to the microbial pathogenesis of apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(6):870–8.CrossRefPubMed
13.
go back to reference Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137(2):588–97.CrossRefPubMed Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137(2):588–97.CrossRefPubMed
14.
go back to reference Kanasi E, Dewhirst FE, Chalmers NI, Kent R Jr, Moore A, Hughes CV, et al. Clonal analysis of the microbiota of severe early childhood caries. Caries Res. 2010;44(5):485–97.CrossRefPubMedPubMedCentral Kanasi E, Dewhirst FE, Chalmers NI, Kent R Jr, Moore A, Hughes CV, et al. Clonal analysis of the microbiota of severe early childhood caries. Caries Res. 2010;44(5):485–97.CrossRefPubMedPubMedCentral
15.
go back to reference Paster BJ, et al. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000. 2006;42:80–7.CrossRefPubMed Paster BJ, et al. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000. 2006;42:80–7.CrossRefPubMed
16.
go back to reference Kolenbrander PE, Palmer RJ, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010;8(7):471–80.CrossRefPubMed Kolenbrander PE, Palmer RJ, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010;8(7):471–80.CrossRefPubMed
17.
go back to reference Kuboniwa M, Tribble GD, James CE, Kilic AO, Tao L, Herzberg MC, et al. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol Microbiol. 2006;60(1):121–39.CrossRefPubMed Kuboniwa M, Tribble GD, James CE, Kilic AO, Tao L, Herzberg MC, et al. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol Microbiol. 2006;60(1):121–39.CrossRefPubMed
18.
go back to reference Kolenbrander PE, Andersen RN, Moore LV. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun. 1989;57(10):3194–203.PubMedPubMedCentral Kolenbrander PE, Andersen RN, Moore LV. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun. 1989;57(10):3194–203.PubMedPubMedCentral
19.
go back to reference Egland PG, Palmer RJ Jr, Kolenbrander PE. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci U S A. 2004;101(48):16917–22.CrossRefPubMedPubMedCentral Egland PG, Palmer RJ Jr, Kolenbrander PE. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci U S A. 2004;101(48):16917–22.CrossRefPubMedPubMedCentral
20.
go back to reference Simionato MR, Tucker CM, Kuboniwa M, Lamont G, Demuth DR, Tribble GD, et al. Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infect Immun. 2006;74(11):6419–28.CrossRefPubMedPubMedCentral Simionato MR, Tucker CM, Kuboniwa M, Lamont G, Demuth DR, Tribble GD, et al. Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infect Immun. 2006;74(11):6419–28.CrossRefPubMedPubMedCentral
21.
go back to reference •• Jasberg H, et al. Bifidobacteria inhibit the growth of Porphyromonas gingivalis but not of Streptococcus mutans in an in vitro biofilm model. Eur J Oral Sci. 2016;124(3):251–8 This paper described aspects of interactions that could be harnessed to improve oral health. CrossRefPubMed •• Jasberg H, et al. Bifidobacteria inhibit the growth of Porphyromonas gingivalis but not of Streptococcus mutans in an in vitro biofilm model. Eur J Oral Sci. 2016;124(3):251–8 This paper described aspects of interactions that could be harnessed to improve oral health. CrossRefPubMed
22.
go back to reference •• Kobayashi R, et al. Oral administration of Lactobacillus gasseri SBT2055 is effective in preventing Porphyromonas gingivalis-accelerated periodontal disease. Sci Rep. 2017;7(1):545 This paper describes the same but moves toward exploring a practical application. CrossRefPubMedPubMedCentral •• Kobayashi R, et al. Oral administration of Lactobacillus gasseri SBT2055 is effective in preventing Porphyromonas gingivalis-accelerated periodontal disease. Sci Rep. 2017;7(1):545 This paper describes the same but moves toward exploring a practical application. CrossRefPubMedPubMedCentral
23.
go back to reference Jakubovics NS, Gill SR, Iobst SE, Vickerman MM, Kolenbrander PE. Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol. 2008;190(10):3646–57.CrossRefPubMedPubMedCentral Jakubovics NS, Gill SR, Iobst SE, Vickerman MM, Kolenbrander PE. Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol. 2008;190(10):3646–57.CrossRefPubMedPubMedCentral
24.
go back to reference Bamford CV, d'Mello A, Nobbs AH, Dutton LC, Vickerman MM, Jenkinson HF. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun. 2009;77(9):3696–704.CrossRefPubMedPubMedCentral Bamford CV, d'Mello A, Nobbs AH, Dutton LC, Vickerman MM, Jenkinson HF. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun. 2009;77(9):3696–704.CrossRefPubMedPubMedCentral
25.
go back to reference Benn A, Heng NCK, Broadbent JM, Thomson WM. Studying the human oral microbiome: challenges and the evolution of solutions. Aust Dent J. 2018;63(1):14–24.CrossRefPubMed Benn A, Heng NCK, Broadbent JM, Thomson WM. Studying the human oral microbiome: challenges and the evolution of solutions. Aust Dent J. 2018;63(1):14–24.CrossRefPubMed
26.
go back to reference Hugo P, Potworowski EF. Dynamics of complex formation between thymocytes and thymic medullary epithelial cells. Scand J Immunol. 1989;29(4):399–408.CrossRefPubMed Hugo P, Potworowski EF. Dynamics of complex formation between thymocytes and thymic medullary epithelial cells. Scand J Immunol. 1989;29(4):399–408.CrossRefPubMed
27.
go back to reference Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200(4):525–40.CrossRefPubMed Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200(4):525–40.CrossRefPubMed
28.
go back to reference • Eren AM, Borisy GG, Huse SM, Mark Welch JL. Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci U S A. 2014;111(28):E2875–84 This paper applied a more stringent type of amplicon analysis to the oral cavity to better describe which specie are present. CrossRefPubMedPubMedCentral • Eren AM, Borisy GG, Huse SM, Mark Welch JL. Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci U S A. 2014;111(28):E2875–84 This paper applied a more stringent type of amplicon analysis to the oral cavity to better describe which specie are present. CrossRefPubMedPubMedCentral
29.
30.
go back to reference Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. MBio. 2014;5(2):e01012–4.CrossRefPubMedPubMedCentral Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. MBio. 2014;5(2):e01012–4.CrossRefPubMedPubMedCentral
32.
go back to reference Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, et al. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J. 2014;8(8):1659–72.CrossRefPubMedPubMedCentral Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, et al. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J. 2014;8(8):1659–72.CrossRefPubMedPubMedCentral
33.
go back to reference Belstrom D, et al. Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls. PeerJ. 2016;4:e2433.CrossRefPubMedPubMedCentral Belstrom D, et al. Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls. PeerJ. 2016;4:e2433.CrossRefPubMedPubMedCentral
34.
go back to reference Belda-Ferre P, Williamson J, Simón-Soro Á, Artacho A, Jensen ON, Mira A. The human oral metaproteome reveals potential biomarkers for caries disease. Proteomics. 2015;15(20):3497–507.CrossRefPubMed Belda-Ferre P, Williamson J, Simón-Soro Á, Artacho A, Jensen ON, Mira A. The human oral metaproteome reveals potential biomarkers for caries disease. Proteomics. 2015;15(20):3497–507.CrossRefPubMed
35.
go back to reference Grassl N, Kulak NA, Pichler G, Geyer PE, Jung J, Schubert S, et al. Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome. Genome Med. 2016;8(1):44.CrossRefPubMedPubMedCentral Grassl N, Kulak NA, Pichler G, Geyer PE, Jung J, Schubert S, et al. Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome. Genome Med. 2016;8(1):44.CrossRefPubMedPubMedCentral
36.
go back to reference Kuboniwa M, Hendrickson EL, Xia Q, Wang T, Xie H, Hackett M, et al. Proteomics of Porphyromonas gingivalis within a model oral microbial community. BMC Microbiol. 2009;9:98.CrossRefPubMedPubMedCentral Kuboniwa M, Hendrickson EL, Xia Q, Wang T, Xie H, Hackett M, et al. Proteomics of Porphyromonas gingivalis within a model oral microbial community. BMC Microbiol. 2009;9:98.CrossRefPubMedPubMedCentral
37.
go back to reference •• SCoelho ED, et al. Computational prediction of the human-microbial oral interactome. BMC Syst Biol. 2014;8:24 This paper used proteomics to predict interactions between the human host and the microbiome. CrossRef •• SCoelho ED, et al. Computational prediction of the human-microbial oral interactome. BMC Syst Biol. 2014;8:24 This paper used proteomics to predict interactions between the human host and the microbiome. CrossRef
38.
39.
go back to reference Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6(1):e1000713.CrossRefPubMedPubMedCentral Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6(1):e1000713.CrossRefPubMedPubMedCentral
40.
go back to reference Dupuy AK, David MS, Li L, Heider TN, Peterson JD, Montano EA, et al. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One. 2014;9(3):e90899.CrossRefPubMedPubMedCentral Dupuy AK, David MS, Li L, Heider TN, Peterson JD, Montano EA, et al. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One. 2014;9(3):e90899.CrossRefPubMedPubMedCentral
41.
go back to reference • Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, et al. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog. 2014;10(3):e1003996 This paper describes the role of fungi in the oral microbiome and its relationship to oral health. CrossRefPubMedPubMedCentral • Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, et al. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog. 2014;10(3):e1003996 This paper describes the role of fungi in the oral microbiome and its relationship to oral health. CrossRefPubMedPubMedCentral
42.
go back to reference Shiba T, Watanabe T, Kachi H, Koyanagi T, Maruyama N, Murase K, et al. Distinct interacting core taxa in co-occurrence networks enable discrimination of polymicrobial oral diseases with similar symptoms. Sci Rep. 2016;6:30997.CrossRefPubMedPubMedCentral Shiba T, Watanabe T, Kachi H, Koyanagi T, Maruyama N, Murase K, et al. Distinct interacting core taxa in co-occurrence networks enable discrimination of polymicrobial oral diseases with similar symptoms. Sci Rep. 2016;6:30997.CrossRefPubMedPubMedCentral
43.
44.
go back to reference Wang J, Gao Y, Zhao F. Phage-bacteria interaction network in human oral microbiome. Environ Microbiol. 2016;18(7):2143–58.CrossRefPubMed Wang J, Gao Y, Zhao F. Phage-bacteria interaction network in human oral microbiome. Environ Microbiol. 2016;18(7):2143–58.CrossRefPubMed
45.
go back to reference McClure RS, Overall CC, Hill EA, Song HS, Charania M, Bernstein HC, et al. Species-specific transcriptomic network inference of interspecies interactions. ISME J. 2018;12(8):2011–23.CrossRefPubMedPubMedCentral McClure RS, Overall CC, Hill EA, Song HS, Charania M, Bernstein HC, et al. Species-specific transcriptomic network inference of interspecies interactions. ISME J. 2018;12(8):2011–23.CrossRefPubMedPubMedCentral
46.
go back to reference • Musungu BM, et al. A network approach of gene co-expression in the Zea mays/Aspergillus flavus Pathosystem to map host/pathogen interaction pathways. Front Genet. 2016;7:206 This paper was one of the first to infer a multi-species network focused on host-pathogen interactions. CrossRefPubMedPubMedCentral • Musungu BM, et al. A network approach of gene co-expression in the Zea mays/Aspergillus flavus Pathosystem to map host/pathogen interaction pathways. Front Genet. 2016;7:206 This paper was one of the first to infer a multi-species network focused on host-pathogen interactions. CrossRefPubMedPubMedCentral
47.
go back to reference Tierney L, et al. An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front Microbiol. 2012;3:85.CrossRefPubMedPubMedCentral Tierney L, et al. An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front Microbiol. 2012;3:85.CrossRefPubMedPubMedCentral
48.
go back to reference Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 2007;5(1):e8.CrossRefPubMedPubMedCentral Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 2007;5(1):e8.CrossRefPubMedPubMedCentral
49.
go back to reference Meyer PE, Lafitte F, Bontempi G. minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics. 2008;9:461.CrossRefPubMedPubMedCentral Meyer PE, Lafitte F, Bontempi G. minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics. 2008;9:461.CrossRefPubMedPubMedCentral
50.
go back to reference Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5(9):e12776.CrossRefPubMedPubMedCentral Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5(9):e12776.CrossRefPubMedPubMedCentral
51.
Metadata
Title
Computational Analysis of Interactions of the Oral Microbiota
Author
Ryan S. McClure
Publication date
01-06-2019
Publisher
Springer International Publishing
Keyword
Oral Microbiota
Published in
Current Oral Health Reports / Issue 2/2019
Electronic ISSN: 2196-3002
DOI
https://doi.org/10.1007/s40496-019-0214-6

Other articles of this Issue 2/2019

Current Oral Health Reports 2/2019 Go to the issue

Oral Disease and Nutrition (F Nishimura, Section Editor)

Nutrition as Adjunct Therapy in Periodontal Disease Management

Oral Disease and Nutrition (F Nishimura, Section Editor)

Tooth Loss and Alzheimer’s Disease