Skip to main content
Top
Published in: Clinical Pharmacokinetics 6/2018

01-06-2018 | Original Research Article

A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways

Authors: André Dallmann, Ibrahim Ince, Katrin Coboeken, Thomas Eissing, Georg Hempel

Published in: Clinical Pharmacokinetics | Issue 6/2018

Login to get access

Abstract

Background

Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes.

Methods

Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature.

Results

The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration–time curve was within a 1.25-fold error range.

Conclusion

The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this special population.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dawes M, Chowienczyk PJ. Pharmacokinetics in pregnancy. Best Pract Res Clin Obstet Gynaecol. 2001;15(6):819–26.PubMedCrossRef Dawes M, Chowienczyk PJ. Pharmacokinetics in pregnancy. Best Pract Res Clin Obstet Gynaecol. 2001;15(6):819–26.PubMedCrossRef
2.
go back to reference Anderson GD. Pregnancy-induced changes in pharmacokinetics. Clin Pharmacokinet. 2005;44(10):989–1008.PubMedCrossRef Anderson GD. Pregnancy-induced changes in pharmacokinetics. Clin Pharmacokinet. 2005;44(10):989–1008.PubMedCrossRef
3.
go back to reference Isoherranen N, Thummel KE. Drug metabolism and transport during pregnancy: how does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab Dispos. 2013;41(2):256–62.PubMedPubMedCentralCrossRef Isoherranen N, Thummel KE. Drug metabolism and transport during pregnancy: how does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab Dispos. 2013;41(2):256–62.PubMedPubMedCentralCrossRef
4.
go back to reference Hebert MF. Impact of pregnancy on maternal pharmacokinetics of medications. In: Mattison DR, editor. Clinical pharmacology during pregnancy. 1st ed. New York: Academic Press/Elsevier; 2013. p. 17–39.CrossRef Hebert MF. Impact of pregnancy on maternal pharmacokinetics of medications. In: Mattison DR, editor. Clinical pharmacology during pregnancy. 1st ed. New York: Academic Press/Elsevier; 2013. p. 17–39.CrossRef
6.
go back to reference Tasnif Y, Morado J, Hebert MF. Pregnancy-related pharmacokinetic changes. Clin Pharmacol Ther. 2016;100(1):53–62.PubMedCrossRef Tasnif Y, Morado J, Hebert MF. Pregnancy-related pharmacokinetic changes. Clin Pharmacol Ther. 2016;100(1):53–62.PubMedCrossRef
7.
go back to reference O’Hare M, Leahey W, Murnaghan G, McDevitt D. Pharmacokinetics of sotalol during pregnancy. Eur J Clin Pharmacol. 1983;24(4):521–4.PubMedCrossRef O’Hare M, Leahey W, Murnaghan G, McDevitt D. Pharmacokinetics of sotalol during pregnancy. Eur J Clin Pharmacol. 1983;24(4):521–4.PubMedCrossRef
8.
go back to reference O’Hare M, Kinney C, Murnaghan G, McDevitt D. Pharmacokinetics of propranolol during pregnancy. Eur J Clin Pharmacol. 1984;27(5):583–7.PubMedCrossRef O’Hare M, Kinney C, Murnaghan G, McDevitt D. Pharmacokinetics of propranolol during pregnancy. Eur J Clin Pharmacol. 1984;27(5):583–7.PubMedCrossRef
9.
go back to reference Philipson A, Stiernstedt G, Ehrnebo M. Comparison of the pharmacokinetics of cephradine and cefazolin in pregnant and non-pregnant women. Clin Pharmacokinet. 1987;12(2):136–44.PubMedCrossRef Philipson A, Stiernstedt G, Ehrnebo M. Comparison of the pharmacokinetics of cephradine and cefazolin in pregnant and non-pregnant women. Clin Pharmacokinet. 1987;12(2):136–44.PubMedCrossRef
10.
go back to reference Heikkilä A, Erkkola R. Pharmacokinetics of piperacillin during pregnancy. J Antimicrob Chemother. 1991;28(3):419–23.PubMedCrossRef Heikkilä A, Erkkola R. Pharmacokinetics of piperacillin during pregnancy. J Antimicrob Chemother. 1991;28(3):419–23.PubMedCrossRef
11.
go back to reference Eyal S, Easterling TR, Carr D, Umans JG, Miodovnik M, Hankins GD, et al. Pharmacokinetics of metformin during pregnancy. Drug Metab Dispos. 2010;38(5):833–40.PubMedPubMedCentralCrossRef Eyal S, Easterling TR, Carr D, Umans JG, Miodovnik M, Hankins GD, et al. Pharmacokinetics of metformin during pregnancy. Drug Metab Dispos. 2010;38(5):833–40.PubMedPubMedCentralCrossRef
12.
go back to reference Frederiksen MC, Ruo TI, Chow MJ, Atkinson AJ. Theophylline pharmacokinetics in pregnancy. Clin Pharmacol Ther. 1986;40(3):321–8.PubMedCrossRef Frederiksen MC, Ruo TI, Chow MJ, Atkinson AJ. Theophylline pharmacokinetics in pregnancy. Clin Pharmacol Ther. 1986;40(3):321–8.PubMedCrossRef
13.
go back to reference Brazier J, Ritter J, Berland M, Khenfer D, Faucon G. Pharmacokinetics of caffeine during and after pregnancy. Dev Pharmacol Ther. 1983;6(5):315–22.PubMedCrossRef Brazier J, Ritter J, Berland M, Khenfer D, Faucon G. Pharmacokinetics of caffeine during and after pregnancy. Dev Pharmacol Ther. 1983;6(5):315–22.PubMedCrossRef
14.
go back to reference Högstedt S, Lindberg B, Peng DR, Regårdh CG, Rane A. Pregnancy-induced increase in metoprolol metabolism. Clin Pharmacol Ther. 1985;37(6):688–92.PubMedCrossRef Högstedt S, Lindberg B, Peng DR, Regårdh CG, Rane A. Pregnancy-induced increase in metoprolol metabolism. Clin Pharmacol Ther. 1985;37(6):688–92.PubMedCrossRef
15.
go back to reference Rey E, d’Athis P, Giraux P, De Lauture D, Turquais J, Chavinie J, et al. Pharmacokinetics of clorazepate in pregnant and non-pregnant women. Eur J Clin Pharmacol. 1979;15(3):175–80.PubMedCrossRef Rey E, d’Athis P, Giraux P, De Lauture D, Turquais J, Chavinie J, et al. Pharmacokinetics of clorazepate in pregnant and non-pregnant women. Eur J Clin Pharmacol. 1979;15(3):175–80.PubMedCrossRef
16.
go back to reference Hebert M, Easterling T, Kirby B, Carr D, Buchanan M, Rutherford T, et al. Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: a University of Washington Specialized Center of Research study. Clin Pharmacol Ther. 2008;84(2):248–53.PubMedCrossRef Hebert M, Easterling T, Kirby B, Carr D, Buchanan M, Rutherford T, et al. Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: a University of Washington Specialized Center of Research study. Clin Pharmacol Ther. 2008;84(2):248–53.PubMedCrossRef
17.
go back to reference Hebert MF, Carr DB, Anderson GD, Blough D, Green GE, Brateng DA, et al. Pharmacokinetics and pharmacodynamics of atenolol during pregnancy and postpartum. J Clin Pharmacol. 2005;45(1):25–33.PubMedCrossRef Hebert MF, Carr DB, Anderson GD, Blough D, Green GE, Brateng DA, et al. Pharmacokinetics and pharmacodynamics of atenolol during pregnancy and postpartum. J Clin Pharmacol. 2005;45(1):25–33.PubMedCrossRef
18.
go back to reference Philipson A, Stiernstedt G. Pharmacokinetics of cefuroxime in pregnancy. Am J Obstet Gynecol. 1982;142(7):823–8.PubMedCrossRef Philipson A, Stiernstedt G. Pharmacokinetics of cefuroxime in pregnancy. Am J Obstet Gynecol. 1982;142(7):823–8.PubMedCrossRef
19.
go back to reference Theil F-P, Guentert TW, Haddad S, Poulin P. Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol Lett. 2003;138(1):29–49.PubMedCrossRef Theil F-P, Guentert TW, Haddad S, Poulin P. Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol Lett. 2003;138(1):29–49.PubMedCrossRef
20.
go back to reference Lüpfert C, Reichel A. Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery. Chem Biodivers. 2005;2(11):1462–86.PubMedCrossRef Lüpfert C, Reichel A. Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery. Chem Biodivers. 2005;2(11):1462–86.PubMedCrossRef
22.
go back to reference Dallmann A, Ince I, Solodenko J, Meyer M, Willmann S, Eissing T, et al. Physiologically based pharmacokinetic modeling of renally cleared drugs in pregnant women. Clin Pharmacokinet. 2017. doi:10.1007/s40262-017-0538-0 (epub ahead of print). Dallmann A, Ince I, Solodenko J, Meyer M, Willmann S, Eissing T, et al. Physiologically based pharmacokinetic modeling of renally cleared drugs in pregnant women. Clin Pharmacokinet. 2017. doi:10.​1007/​s40262-017-0538-0 (epub ahead of print).
23.
go back to reference Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, et al. A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front Physiol. 2011;2(4):1–10. Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, et al. A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front Physiol. 2011;2(4):1–10.
24.
go back to reference Willmann S, Lippert J, Sevestre M, Solodenko J, Fois F, Schmitt W. PK-Sim®: a physiologically based pharmacokinetic ‘whole-body’ model. Biosilico. 2003;1(4):121–4.CrossRef Willmann S, Lippert J, Sevestre M, Solodenko J, Fois F, Schmitt W. PK-Sim®: a physiologically based pharmacokinetic ‘whole-body’ model. Biosilico. 2003;1(4):121–4.CrossRef
25.
go back to reference Willmann S, Höhn K, Edginton A, Sevestre M, Solodenko J, Weiss W, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34(3):401–31.PubMedCrossRef Willmann S, Höhn K, Edginton A, Sevestre M, Solodenko J, Weiss W, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34(3):401–31.PubMedCrossRef
26.
go back to reference Dallmann A, Ince I, Meyer M, Willmann S, Eissing T, Hempel G. Gestation-specific changes in the anatomy and physiology of healthy pregnant women: an extended repository of model parameters for physiologically based pharmacokinetic modeling in pregnancy. Clin Pharmacokinet. 2017. doi:10.1007/s40262-017-0539-z (epub ahead of print). Dallmann A, Ince I, Meyer M, Willmann S, Eissing T, Hempel G. Gestation-specific changes in the anatomy and physiology of healthy pregnant women: an extended repository of model parameters for physiologically based pharmacokinetic modeling in pregnancy. Clin Pharmacokinet. 2017. doi:10.​1007/​s40262-017-0539-z (epub ahead of print).
27.
go back to reference Meyer M, Schneckener S, Ludewig B, Kuepfer L, Lippert J. Using expression data for quantification of active processes in physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2012;40(5):892–901.PubMedCrossRef Meyer M, Schneckener S, Ludewig B, Kuepfer L, Lippert J. Using expression data for quantification of active processes in physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2012;40(5):892–901.PubMedCrossRef
28.
go back to reference Bologa M, Tang B, Klein J, Tesoro A, Koren G. Pregnancy-induced changes in drug metabolism in epileptic women. J Pharmacol Exp Ther. 1991;257(2):735–40.PubMed Bologa M, Tang B, Klein J, Tesoro A, Koren G. Pregnancy-induced changes in drug metabolism in epileptic women. J Pharmacol Exp Ther. 1991;257(2):735–40.PubMed
29.
go back to reference Tracy TS, Venkataramanan R, Glover DD, Caritis SN. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am J Obstet Gynecol. 2005;192(2):633–9.PubMedCrossRef Tracy TS, Venkataramanan R, Glover DD, Caritis SN. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am J Obstet Gynecol. 2005;192(2):633–9.PubMedCrossRef
30.
go back to reference Tsutsumi K, Kotegawa T, Matsuki S, Tanaka Y, Ishii Y, Kodama Y, et al. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clin Pharmacol Ther. 2001;70(2):121–5.PubMedCrossRef Tsutsumi K, Kotegawa T, Matsuki S, Tanaka Y, Ishii Y, Kodama Y, et al. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clin Pharmacol Ther. 2001;70(2):121–5.PubMedCrossRef
31.
go back to reference Messina E, Tyndale R, Sellers E. A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther. 1997;282(3):1608–14.PubMed Messina E, Tyndale R, Sellers E. A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther. 1997;282(3):1608–14.PubMed
32.
go back to reference Kimura M, Yamazaki H, Fujieda M, Kiyotani K, Honda G, Saruwatari J, et al. CYP2A6 is a principal enzyme involved in hydroxylation of 1, 7-dimethylxanthine, a main caffeine metabolite, in humans. Drug Metab Dispos. 2005;33(9):1361–6.PubMedCrossRef Kimura M, Yamazaki H, Fujieda M, Kiyotani K, Honda G, Saruwatari J, et al. CYP2A6 is a principal enzyme involved in hydroxylation of 1, 7-dimethylxanthine, a main caffeine metabolite, in humans. Drug Metab Dispos. 2005;33(9):1361–6.PubMedCrossRef
33.
go back to reference Dempsey D, Jacob P, Benowitz NL. Accelerated metabolism of nicotine and cotinine in pregnant smokers. J Pharmacol Exp Ther. 2002;301(2):594–8.PubMedCrossRef Dempsey D, Jacob P, Benowitz NL. Accelerated metabolism of nicotine and cotinine in pregnant smokers. J Pharmacol Exp Ther. 2002;301(2):594–8.PubMedCrossRef
34.
go back to reference Kulo A, Peeters MY, Allegaert K, Smits A, Hoon J, Verbesselt R, et al. Pharmacokinetics of paracetamol and its metabolites in women at delivery and post-partum. Br J Clin Pharmacol. 2013;75(3):850–60.PubMedPubMedCentralCrossRef Kulo A, Peeters MY, Allegaert K, Smits A, Hoon J, Verbesselt R, et al. Pharmacokinetics of paracetamol and its metabolites in women at delivery and post-partum. Br J Clin Pharmacol. 2013;75(3):850–60.PubMedPubMedCentralCrossRef
35.
go back to reference Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67(3):275–82.PubMedCrossRef Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67(3):275–82.PubMedCrossRef
36.
go back to reference Nylén H, Sergel S, Forsberg L, Lindemalm S, Bertilsson L, Wide K, et al. Cytochrome P450 3A activity in mothers and their neonates as determined by plasma 4β-hydroxycholesterol. Eur J Clin Pharmacol. 2011;67(7):715–22.PubMedCrossRef Nylén H, Sergel S, Forsberg L, Lindemalm S, Bertilsson L, Wide K, et al. Cytochrome P450 3A activity in mothers and their neonates as determined by plasma 4β-hydroxycholesterol. Eur J Clin Pharmacol. 2011;67(7):715–22.PubMedCrossRef
37.
go back to reference Ke A, Nallani S, Zhao P, Rostami-Hodjegan A, Unadkat JD. A PBPK model to predict disposition of CYP3A-metabolized drugs in pregnant women: verification and discerning the site of CYP3A induction. CPT Pharmacometrics Syst Pharmacol. 2012;1(9):1–10.CrossRef Ke A, Nallani S, Zhao P, Rostami-Hodjegan A, Unadkat JD. A PBPK model to predict disposition of CYP3A-metabolized drugs in pregnant women: verification and discerning the site of CYP3A induction. CPT Pharmacometrics Syst Pharmacol. 2012;1(9):1–10.CrossRef
38.
go back to reference De Sousa Mendes M, Lui G, Zheng Y, Pressiat C, Hirt D, Valade E, et al. A physiologically-based pharmacokinetic model to predict human fetal exposure for a drug metabolized by several CYP450 pathways. Clin Pharmacokinet. 2017;56(5):537–50.CrossRef De Sousa Mendes M, Lui G, Zheng Y, Pressiat C, Hirt D, Valade E, et al. A physiologically-based pharmacokinetic model to predict human fetal exposure for a drug metabolized by several CYP450 pathways. Clin Pharmacokinet. 2017;56(5):537–50.CrossRef
39.
go back to reference Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Unadkat JD. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19. Br J Clin Pharmacol. 2014;77(3):554–70.PubMedPubMedCentralCrossRef Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Unadkat JD. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19. Br J Clin Pharmacol. 2014;77(3):554–70.PubMedPubMedCentralCrossRef
40.
go back to reference Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Isoherranen N, Unadkat JD. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women. Drug Metab Dispos. 2013;41(4):801–13.PubMedPubMedCentralCrossRef Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Isoherranen N, Unadkat JD. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women. Drug Metab Dispos. 2013;41(4):801–13.PubMedPubMedCentralCrossRef
42.
go back to reference Fuhr U, Rost KL, Engelhardt R, Sachs M, Liermann D, Belloc C, et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenet Genom. 1996;6(2):159–76.CrossRef Fuhr U, Rost KL, Engelhardt R, Sachs M, Liermann D, Belloc C, et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenet Genom. 1996;6(2):159–76.CrossRef
43.
go back to reference Blanchard J, Sawers SJ. Comparative pharmacokinetics of caffeine in young and elderly men. J Pharmacokinet Biopharm. 1983;11(2):109–26.PubMedCrossRef Blanchard J, Sawers SJ. Comparative pharmacokinetics of caffeine in young and elderly men. J Pharmacokinet Biopharm. 1983;11(2):109–26.PubMedCrossRef
44.
go back to reference Kaplan GB, Greenblatt DJ, Ehrenberg BL, Goddard JE, Cotreau MM, Harmatz JS, et al. Dose-dependent pharmacokinetics and psychomotor effects of caffeine in humans. J Clin Pharmacol. 1997;37(8):693–703.PubMedCrossRef Kaplan GB, Greenblatt DJ, Ehrenberg BL, Goddard JE, Cotreau MM, Harmatz JS, et al. Dose-dependent pharmacokinetics and psychomotor effects of caffeine in humans. J Clin Pharmacol. 1997;37(8):693–703.PubMedCrossRef
45.
go back to reference Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci. 2011;100(12):5324–45.PubMedCrossRef Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci. 2011;100(12):5324–45.PubMedCrossRef
46.
go back to reference Heizmann P, Ziegler W. Excretion and metabolism of 14C-midazolam in humans following oral dosing. Arzneimittelforschung. 1980;31(12a):2220–3. Heizmann P, Ziegler W. Excretion and metabolism of 14C-midazolam in humans following oral dosing. Arzneimittelforschung. 1980;31(12a):2220–3.
47.
go back to reference Patki KC, von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos. 2003;31(7):938–44.PubMedCrossRef Patki KC, von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos. 2003;31(7):938–44.PubMedCrossRef
48.
go back to reference Moj D, Hanke N, Britz H, Frechen S, Kanacher T, Wendl T, et al. Clarithromycin, midazolam, and digoxin: application of PBPK modeling to gain new insights into drug–drug interactions and co-medication regimens. AAPS J. 2017;19(1):298–312.PubMedCrossRef Moj D, Hanke N, Britz H, Frechen S, Kanacher T, Wendl T, et al. Clarithromycin, midazolam, and digoxin: application of PBPK modeling to gain new insights into drug–drug interactions and co-medication regimens. AAPS J. 2017;19(1):298–312.PubMedCrossRef
49.
go back to reference Bode H, Brendel E, Ahr G, Fuhr U, Harder S, Staib A. Investigation of nifedipine absorption in different regions of the human gastrointestinal (GI) tract after simultaneous administration of 13C-and 12C-nifedipine. Eur J Clin Pharmacol. 1996;50(3):195–201.PubMedCrossRef Bode H, Brendel E, Ahr G, Fuhr U, Harder S, Staib A. Investigation of nifedipine absorption in different regions of the human gastrointestinal (GI) tract after simultaneous administration of 13C-and 12C-nifedipine. Eur J Clin Pharmacol. 1996;50(3):195–201.PubMedCrossRef
50.
go back to reference Rashid T, Martin U, Clarke H, Waller D, Renwick A, George C. Factors affecting the absolute bioavailability of nifedipine. Br J Clin Pharmacol. 1995;40(1):51–8.PubMedPubMedCentralCrossRef Rashid T, Martin U, Clarke H, Waller D, Renwick A, George C. Factors affecting the absolute bioavailability of nifedipine. Br J Clin Pharmacol. 1995;40(1):51–8.PubMedPubMedCentralCrossRef
51.
go back to reference Soons P, Schoemaker H, Cohen A, Breimer D. Intraindividual variability in nifedipine pharmacokinetics and effects in healthy subjects. J Clin Pharmacol. 1992;32(4):324–31.PubMedCrossRef Soons P, Schoemaker H, Cohen A, Breimer D. Intraindividual variability in nifedipine pharmacokinetics and effects in healthy subjects. J Clin Pharmacol. 1992;32(4):324–31.PubMedCrossRef
52.
go back to reference Reitberg DP, Love SJ, Quercia GT, Zinny MA. Effect of food on nifedipine pharmacokinetics. Clin Pharmacol Ther. 1987;42(1):72–5.PubMedCrossRef Reitberg DP, Love SJ, Quercia GT, Zinny MA. Effect of food on nifedipine pharmacokinetics. Clin Pharmacol Ther. 1987;42(1):72–5.PubMedCrossRef
53.
go back to reference Renwick A, Vie J, Challenor V, Waller D, Gruchy B, George C. Factors affecting the pharmacokinetics of nifedipine. Eur J Clin Pharmacol. 1987;32(4):351–5.PubMedCrossRef Renwick A, Vie J, Challenor V, Waller D, Gruchy B, George C. Factors affecting the pharmacokinetics of nifedipine. Eur J Clin Pharmacol. 1987;32(4):351–5.PubMedCrossRef
54.
go back to reference Ahsan C, Renwick A, Macklin B, Challenor V, Waller D, George C. Ethnic differences in the pharmacokinetics of oral nifedipine. Br J Clin Pharmacol. 1991;31(4):399–403.PubMedPubMedCentralCrossRef Ahsan C, Renwick A, Macklin B, Challenor V, Waller D, George C. Ethnic differences in the pharmacokinetics of oral nifedipine. Br J Clin Pharmacol. 1991;31(4):399–403.PubMedPubMedCentralCrossRef
55.
go back to reference Harris RZ, Inglis AML, Miller AK, Thompson KA, Finnerty D, Patterson S, et al. Rosiglitazone has no clinically significant effect on nifedipine pharmacokinetics. J Clin Pharmacol. 1999;39(11):1189–94.PubMed Harris RZ, Inglis AML, Miller AK, Thompson KA, Finnerty D, Patterson S, et al. Rosiglitazone has no clinically significant effect on nifedipine pharmacokinetics. J Clin Pharmacol. 1999;39(11):1189–94.PubMed
56.
go back to reference Smith S, Kendall M, Lobo J, Beerahee A, Jack D, Wilkins M. Ranitidine and cimetidine; drug interactions with single dose and steady-state nifedipine administration. Br J Clin Pharmacol. 1987;23(3):311–5.PubMedPubMedCentralCrossRef Smith S, Kendall M, Lobo J, Beerahee A, Jack D, Wilkins M. Ranitidine and cimetidine; drug interactions with single dose and steady-state nifedipine administration. Br J Clin Pharmacol. 1987;23(3):311–5.PubMedPubMedCentralCrossRef
57.
go back to reference Quinney S, Mohamed A, Hebert MF, Haas D, Clark S, Umans J, et al. A semi-mechanistic metabolism model of CYP3A substrates in pregnancy: predicting changes in midazolam and nifedipine pharmacokinetics. CPT Pharmacomet Syst Pharmacol. 2012;1(9):1–9.CrossRef Quinney S, Mohamed A, Hebert MF, Haas D, Clark S, Umans J, et al. A semi-mechanistic metabolism model of CYP3A substrates in pregnancy: predicting changes in midazolam and nifedipine pharmacokinetics. CPT Pharmacomet Syst Pharmacol. 2012;1(9):1–9.CrossRef
58.
go back to reference Regårdh CG, Borg KO, Johansson R, Johnsson G, Palmer L. Pharmacokinetic studies on the selective β1-receptor antagonist metoprolol in man. J Pharmacokinet Biopharm. 1974;2(4):347–64.PubMedCrossRef Regårdh CG, Borg KO, Johansson R, Johnsson G, Palmer L. Pharmacokinetic studies on the selective β1-receptor antagonist metoprolol in man. J Pharmacokinet Biopharm. 1974;2(4):347–64.PubMedCrossRef
59.
go back to reference Otton S, Crewe H, Lennard M, Tucker G, Woods H. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. J Pharmacol Exp Ther. 1988;247(1):242–7.PubMed Otton S, Crewe H, Lennard M, Tucker G, Woods H. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. J Pharmacol Exp Ther. 1988;247(1):242–7.PubMed
60.
go back to reference Simpson KH, Hicks FM. Clinical pharmacokinetics of ondansetron: a review. J Pharm Pharmacol. 1996;48(8):774–81.PubMedCrossRef Simpson KH, Hicks FM. Clinical pharmacokinetics of ondansetron: a review. J Pharm Pharmacol. 1996;48(8):774–81.PubMedCrossRef
61.
go back to reference Elkomy MH, Sultan P, Carvalho B, Peltz G, Wu M, Clavijo C, et al. Ondansetron pharmacokinetics in pregnant women and neonates: towards a new treatment for neonatal abstinence syndrome. Clin Pharmacol Ther. 2015;97(2):167–76.PubMedCrossRef Elkomy MH, Sultan P, Carvalho B, Peltz G, Wu M, Clavijo C, et al. Ondansetron pharmacokinetics in pregnant women and neonates: towards a new treatment for neonatal abstinence syndrome. Clin Pharmacol Ther. 2015;97(2):167–76.PubMedCrossRef
62.
go back to reference Dixon C, Colthup P, Serabjit-Singh C, Kerr B, Boehlert C, Park G, et al. Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans. Drug Metab Dispos. 1995;23(11):1225–30.PubMed Dixon C, Colthup P, Serabjit-Singh C, Kerr B, Boehlert C, Park G, et al. Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans. Drug Metab Dispos. 1995;23(11):1225–30.PubMed
63.
go back to reference Clarke S, Austin N, Bloomer J, Haddock R, Higham F, Hollis F, et al. Metabolism and disposition of 14C-granisetron in rat, dog and man after intravenous and oral dosing. Xenobiotica. 1994;24(11):1119–31.PubMedCrossRef Clarke S, Austin N, Bloomer J, Haddock R, Higham F, Hollis F, et al. Metabolism and disposition of 14C-granisetron in rat, dog and man after intravenous and oral dosing. Xenobiotica. 1994;24(11):1119–31.PubMedCrossRef
64.
go back to reference Nakamura H, Ariyoshi N, Okada K, Nakasa H, Nakazawa K, Kitada M. CYP1A1 is a major enzyme responsible for the metabolism of granisetron in human liver microsomes. Curr Drug Metab. 2005;6(5):469–80.PubMedCrossRef Nakamura H, Ariyoshi N, Okada K, Nakasa H, Nakazawa K, Kitada M. CYP1A1 is a major enzyme responsible for the metabolism of granisetron in human liver microsomes. Curr Drug Metab. 2005;6(5):469–80.PubMedCrossRef
65.
go back to reference Carmichael J, Cantwell B, Edwards C, Zussman B, Thompson S, Rapeport W, et al. A pharmacokinetic study of granisetron (BRL 43694A), a selective 5-HT3 receptor antagonist: correlation with anti-emetic response. Cancer Chemother Pharmacol. 1989;24(1):45–9.PubMedCrossRef Carmichael J, Cantwell B, Edwards C, Zussman B, Thompson S, Rapeport W, et al. A pharmacokinetic study of granisetron (BRL 43694A), a selective 5-HT3 receptor antagonist: correlation with anti-emetic response. Cancer Chemother Pharmacol. 1989;24(1):45–9.PubMedCrossRef
66.
go back to reference Bustos ML, Zhao Y, Chen H, Caritis SN, Venkataramanan R. Polymorphisms in CYP1A1 and CYP3A5 genes contribute to the variability in granisetron clearance and exposure in pregnant women with nausea and vomiting. Pharmacotherapy. 2016;36(12):1238–44.PubMedCrossRef Bustos ML, Zhao Y, Chen H, Caritis SN, Venkataramanan R. Polymorphisms in CYP1A1 and CYP3A5 genes contribute to the variability in granisetron clearance and exposure in pregnant women with nausea and vomiting. Pharmacotherapy. 2016;36(12):1238–44.PubMedCrossRef
67.
go back to reference Klotz U, Avant G, Hoyumpa A, Schenker S, Wilkinson G. The effects of age and liver disease on the disposition and elimination of diazepam in adult man. J Clin Invest. 1975;55(2):347–59.PubMedPubMedCentralCrossRef Klotz U, Avant G, Hoyumpa A, Schenker S, Wilkinson G. The effects of age and liver disease on the disposition and elimination of diazepam in adult man. J Clin Invest. 1975;55(2):347–59.PubMedPubMedCentralCrossRef
68.
go back to reference Klotz U, Antonin K, Bieck P. Comparison of the pharmacokinetics of diazepam after single and subchronic doses. Eur J Clin Pharmacol. 1976;10(2):121–6.PubMedCrossRef Klotz U, Antonin K, Bieck P. Comparison of the pharmacokinetics of diazepam after single and subchronic doses. Eur J Clin Pharmacol. 1976;10(2):121–6.PubMedCrossRef
69.
go back to reference Jack M, Colburn W. Pharmacokinetic model for diazepam and its major metabolite desmethyldiazepam following diazepam administration. J Pharm Sci. 1983;72(11):1318–23.PubMedCrossRef Jack M, Colburn W. Pharmacokinetic model for diazepam and its major metabolite desmethyldiazepam following diazepam administration. J Pharm Sci. 1983;72(11):1318–23.PubMedCrossRef
70.
go back to reference Greenblatt DJ, Divoll MK, Soong MH, Boxenbaum HG, Harmatz JS, Shader RI. Desmethyldiazepam pharmacokinetics: studies following intravenous and oral desmethyldiazepam, oral clorazepate, and intravenous diazepam. J Clin Pharmacol. 1988;28(9):853–9.PubMedCrossRef Greenblatt DJ, Divoll MK, Soong MH, Boxenbaum HG, Harmatz JS, Shader RI. Desmethyldiazepam pharmacokinetics: studies following intravenous and oral desmethyldiazepam, oral clorazepate, and intravenous diazepam. J Clin Pharmacol. 1988;28(9):853–9.PubMedCrossRef
71.
go back to reference Bertilsson L, Henthorn TK, Sanz E, Tybring G, Säwe J, Villén T. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther. 1989;45(4):348–55.PubMedCrossRef Bertilsson L, Henthorn TK, Sanz E, Tybring G, Säwe J, Villén T. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther. 1989;45(4):348–55.PubMedCrossRef
72.
go back to reference Andersson T, Miners J, Veronese M, Birkett D. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol. 1994;38(2):131–7.PubMedPubMedCentralCrossRef Andersson T, Miners J, Veronese M, Birkett D. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol. 1994;38(2):131–7.PubMedPubMedCentralCrossRef
73.
go back to reference Ono S, Hatanaka T, Miyazawa S, Tsutsui M, Aoyama T, Gonzalez F, et al. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica. 1996;26(11):1155–66.PubMedCrossRef Ono S, Hatanaka T, Miyazawa S, Tsutsui M, Aoyama T, Gonzalez F, et al. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica. 1996;26(11):1155–66.PubMedCrossRef
74.
go back to reference Magnussen I, Oxlund H, Alsbirk K, Arnold E. Absorption of diazepam in man following rectal and parenteral administration. Acta Pharmacol Toxicol. 1979;45(2):87–90.CrossRef Magnussen I, Oxlund H, Alsbirk K, Arnold E. Absorption of diazepam in man following rectal and parenteral administration. Acta Pharmacol Toxicol. 1979;45(2):87–90.CrossRef
75.
go back to reference Greenblatt DJ, Ehrenberg BL, Gunderman J, Locniskar A, Scavone JM, Harmatz JS, et al. Pharmacokinetic and electroencephalographic study of intravenous diazepam, midazolam, and placebo. Clin Pharmacol Ther. 1989;45(4):356–65.PubMedCrossRef Greenblatt DJ, Ehrenberg BL, Gunderman J, Locniskar A, Scavone JM, Harmatz JS, et al. Pharmacokinetic and electroencephalographic study of intravenous diazepam, midazolam, and placebo. Clin Pharmacol Ther. 1989;45(4):356–65.PubMedCrossRef
76.
go back to reference Ridd MJ, Brown KF, Nation RL, Collier CB. The disposition and placental transfer of diazepam in cesarean section. Clin Pharmacol Ther. 1989;45(5):506–12.PubMedCrossRef Ridd MJ, Brown KF, Nation RL, Collier CB. The disposition and placental transfer of diazepam in cesarean section. Clin Pharmacol Ther. 1989;45(5):506–12.PubMedCrossRef
77.
go back to reference Mandelli M, Morselli P, Nordio S, Pardi G, Principi N, Sereni F, et al. Placental transfer of diazepam and its disposition in the newborn. Clin Pharmacol Ther. 1975;17(5):564–72.PubMedCrossRef Mandelli M, Morselli P, Nordio S, Pardi G, Principi N, Sereni F, et al. Placental transfer of diazepam and its disposition in the newborn. Clin Pharmacol Ther. 1975;17(5):564–72.PubMedCrossRef
78.
go back to reference Moore R, McBride W. The disposition kinetics of diazepam in pregnant women at parturition. Eur J Clin Pharmacol. 1978;13(4):275–84.PubMedCrossRef Moore R, McBride W. The disposition kinetics of diazepam in pregnant women at parturition. Eur J Clin Pharmacol. 1978;13(4):275–84.PubMedCrossRef
79.
go back to reference Loft S. Metronidazole and antipyrine as probes for the study of foreign compound metabolism. Pharmacol Toxicol. 1990;66(s6):1–31.PubMedCrossRef Loft S. Metronidazole and antipyrine as probes for the study of foreign compound metabolism. Pharmacol Toxicol. 1990;66(s6):1–31.PubMedCrossRef
80.
go back to reference Houghton G, Thorne P, Smith J, Templeton R, Collier J. Comparison of the pharmacokinetics of metronidazole in healthy female volunteers following either a single oral or intravenous dose. Br J Clin Pharmacol. 1979;8(4):337–41.PubMedPubMedCentralCrossRef Houghton G, Thorne P, Smith J, Templeton R, Collier J. Comparison of the pharmacokinetics of metronidazole in healthy female volunteers following either a single oral or intravenous dose. Br J Clin Pharmacol. 1979;8(4):337–41.PubMedPubMedCentralCrossRef
81.
go back to reference Pearce RE, Cohen-Wolkowiez M, Sampson MR, Kearns GL. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab Dispos. 2013;41(9):1686–94.PubMedPubMedCentralCrossRef Pearce RE, Cohen-Wolkowiez M, Sampson MR, Kearns GL. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab Dispos. 2013;41(9):1686–94.PubMedPubMedCentralCrossRef
82.
go back to reference Visser A, Hundt H. The pharmacokinetics of a single intravenous dose of metronidazole in pregnant patients. J Antimicrob Chemother. 1984;13(3):279–83.PubMedCrossRef Visser A, Hundt H. The pharmacokinetics of a single intravenous dose of metronidazole in pregnant patients. J Antimicrob Chemother. 1984;13(3):279–83.PubMedCrossRef
83.
go back to reference Quattrochi L, Vu T, Tukey R. The human CYP1A2 gene and induction by 3-methylcholanthrene: a region of DNA that supports AH-receptor binding and promoter-specific induction. J Biol Chem. 1994;269(9):6949–54.PubMed Quattrochi L, Vu T, Tukey R. The human CYP1A2 gene and induction by 3-methylcholanthrene: a region of DNA that supports AH-receptor binding and promoter-specific induction. J Biol Chem. 1994;269(9):6949–54.PubMed
84.
go back to reference Daujat M, Charrasse S, Fabre I, Lesca P, Jounaidi Y, Larroque C, et al. Induction of CYP1A1 gene by benzimidazole derivatives during Caco-2 cell differentiation. FEBS J. 1996;237(3):642–52. Daujat M, Charrasse S, Fabre I, Lesca P, Jounaidi Y, Larroque C, et al. Induction of CYP1A1 gene by benzimidazole derivatives during Caco-2 cell differentiation. FEBS J. 1996;237(3):642–52.
85.
go back to reference Ricci MS, Toscano DG, Mattingly CJ, Toscano WA. Estrogen receptor reduces CYP1A1 induction in cultured human endometrial cells. J Biol Chem. 1999;274(6):3430–8.PubMedCrossRef Ricci MS, Toscano DG, Mattingly CJ, Toscano WA. Estrogen receptor reduces CYP1A1 induction in cultured human endometrial cells. J Biol Chem. 1999;274(6):3430–8.PubMedCrossRef
86.
go back to reference Lai K, Wong M, Wong CK. Modulation of Ahr-mediated CYP1A1 mRNA and EROD activities by 17β-estradiol and dexamethasone in TCDD-induced H411E cells. Toxicol Sci. 2004;78(1):41–9.PubMedCrossRef Lai K, Wong M, Wong CK. Modulation of Ahr-mediated CYP1A1 mRNA and EROD activities by 17β-estradiol and dexamethasone in TCDD-induced H411E cells. Toxicol Sci. 2004;78(1):41–9.PubMedCrossRef
87.
go back to reference Williams JM, Gandhi KK, Benowitz NL. Carbamazepine but not valproate induces CYP2A6 activity in smokers with mental illness. Cancer Epidemiol Biomark Prev. 2010;19(10):2582–9.CrossRef Williams JM, Gandhi KK, Benowitz NL. Carbamazepine but not valproate induces CYP2A6 activity in smokers with mental illness. Cancer Epidemiol Biomark Prev. 2010;19(10):2582–9.CrossRef
88.
go back to reference Al Koudsi N, Hoffmann EB, Assadzadeh A, Tyndale RF. Hepatic CYP2A6 levels and nicotine metabolism: impact of genetic, physiological, environmental, and epigenetic factors. Eur J Clin Pharmacol. 2010;66(3):239–51.PubMedCrossRef Al Koudsi N, Hoffmann EB, Assadzadeh A, Tyndale RF. Hepatic CYP2A6 levels and nicotine metabolism: impact of genetic, physiological, environmental, and epigenetic factors. Eur J Clin Pharmacol. 2010;66(3):239–51.PubMedCrossRef
89.
go back to reference Poland RE, Pechnick RN, Cloak CC, Wan Y-JY, Nuccio I, Lin K-M. Effect of cigarette smoking on coumarin metabolism in humans. Nicotine Tob Res. 2000;2(4):351–4.PubMedCrossRef Poland RE, Pechnick RN, Cloak CC, Wan Y-JY, Nuccio I, Lin K-M. Effect of cigarette smoking on coumarin metabolism in humans. Nicotine Tob Res. 2000;2(4):351–4.PubMedCrossRef
90.
go back to reference Iscan M, Rostami H, Güray T, Pelkonen O, Rautio A. Interindividual variability of coumarin 7-hydroxylation in a Turkish population. Eur J Clin Pharmacol. 1994;47(4):315–8.PubMedCrossRef Iscan M, Rostami H, Güray T, Pelkonen O, Rautio A. Interindividual variability of coumarin 7-hydroxylation in a Turkish population. Eur J Clin Pharmacol. 1994;47(4):315–8.PubMedCrossRef
91.
92.
go back to reference Robson S, Dunlop W, Boys R, Hunter S. Cardiac output during labour. Br Med J (Clin Res Ed). 1987;295(6607):1169–72.CrossRef Robson S, Dunlop W, Boys R, Hunter S. Cardiac output during labour. Br Med J (Clin Res Ed). 1987;295(6607):1169–72.CrossRef
93.
go back to reference Klotz U, Antonin K, Bieck P. Pharmacokinetics and plasma binding of diazepam in man, dog, rabbit, guinea pig and rat. J Pharmacol Exp Ther. 1976;199(1):67–73.PubMed Klotz U, Antonin K, Bieck P. Pharmacokinetics and plasma binding of diazepam in man, dog, rabbit, guinea pig and rat. J Pharmacol Exp Ther. 1976;199(1):67–73.PubMed
94.
go back to reference Xia B, Heimbach T, Gollen R, Nanavati C, He H. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS J. 2013;15(4):1012–24.PubMedPubMedCentralCrossRef Xia B, Heimbach T, Gollen R, Nanavati C, He H. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS J. 2013;15(4):1012–24.PubMedPubMedCentralCrossRef
95.
96.
go back to reference Sandhar B, Elliott R, Windram I, Rowbotham D. Peripartum changes in gastric emptying. Anaesthesia. 1992;47(3):196–8.PubMedCrossRef Sandhar B, Elliott R, Windram I, Rowbotham D. Peripartum changes in gastric emptying. Anaesthesia. 1992;47(3):196–8.PubMedCrossRef
97.
go back to reference Chiloiro M, Darconza G, Piccioli E, De Carne M, Clemente C, Riezzo G. Gastric emptying and orocecal transit time in pregnancy. J Gastroenterol. 2001;36(8):538–43.PubMedCrossRef Chiloiro M, Darconza G, Piccioli E, De Carne M, Clemente C, Riezzo G. Gastric emptying and orocecal transit time in pregnancy. J Gastroenterol. 2001;36(8):538–43.PubMedCrossRef
98.
go back to reference Wong CA, Loffredi M, Ganchiff JN, Zhao J, Wang Z, Avram MJ. Gastric emptying of water in term pregnancy. J Am Soc Anesthesiol. 2002;96(6):1395–400.CrossRef Wong CA, Loffredi M, Ganchiff JN, Zhao J, Wang Z, Avram MJ. Gastric emptying of water in term pregnancy. J Am Soc Anesthesiol. 2002;96(6):1395–400.CrossRef
99.
go back to reference Wald A, Van Thiel DH, Hoechstetter L, Gavaler JS, Egler KM, Verm R, et al. Effect of pregnancy on gastrointestinal transit. Digest Dis Sci. 1982;27(11):1015–8.PubMedCrossRef Wald A, Van Thiel DH, Hoechstetter L, Gavaler JS, Egler KM, Verm R, et al. Effect of pregnancy on gastrointestinal transit. Digest Dis Sci. 1982;27(11):1015–8.PubMedCrossRef
100.
go back to reference Cripps A, Williams V. The effect of pregnancy and lactation on food intake, gastrointestinal anatomy and the absorptive capacity of the small intestine in the albino rat. Br J Nutr. 1975;33(01):17–32.PubMedCrossRef Cripps A, Williams V. The effect of pregnancy and lactation on food intake, gastrointestinal anatomy and the absorptive capacity of the small intestine in the albino rat. Br J Nutr. 1975;33(01):17–32.PubMedCrossRef
101.
go back to reference Sarvestani FS, Rahmanifar F, Tamadon A. Histomorphometric changes of small intestine in pregnant rat. Vet Res Forum. 2015;6(1):69–73. Sarvestani FS, Rahmanifar F, Tamadon A. Histomorphometric changes of small intestine in pregnant rat. Vet Res Forum. 2015;6(1):69–73.
102.
go back to reference Villikka K, Kivistö KT, Neuvonen PJ. The effect of rifampin on the pharmacokinetics of oral and intravenous ondansetron. Clin Pharmacol Ther. 1999;65(4):377–81.PubMedCrossRef Villikka K, Kivistö KT, Neuvonen PJ. The effect of rifampin on the pharmacokinetics of oral and intravenous ondansetron. Clin Pharmacol Ther. 1999;65(4):377–81.PubMedCrossRef
103.
go back to reference Ashforth E, Palmer J, Bye A, Bedding A. The pharmacokinetics of ondansetron after intravenous injection in healthy volunteers phenotyped as poor or extensive metabolisers of debrisoquine. Br J Clin Pharmacol. 1994;37(4):389–91.PubMedPubMedCentralCrossRef Ashforth E, Palmer J, Bye A, Bedding A. The pharmacokinetics of ondansetron after intravenous injection in healthy volunteers phenotyped as poor or extensive metabolisers of debrisoquine. Br J Clin Pharmacol. 1994;37(4):389–91.PubMedPubMedCentralCrossRef
105.
go back to reference Newton DW, Kluza RB. pKa values of medicinal compounds in pharmacy practice. Ann Pharmacother. 1978;12(9):546–54. Newton DW, Kluza RB. pKa values of medicinal compounds in pharmacy practice. Ann Pharmacother. 1978;12(9):546–54.
106.
107.
go back to reference Yamazaki K, Kanaoka M. Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J Pharm Sci. 2004;93(6):1480–94.PubMedCrossRef Yamazaki K, Kanaoka M. Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J Pharm Sci. 2004;93(6):1480–94.PubMedCrossRef
108.
go back to reference Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos. 2008;36(7):1385–405.PubMedCrossRef Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos. 2008;36(7):1385–405.PubMedCrossRef
109.
go back to reference Belpaire F, Bogaert M, Rosseneu M. Binding of β-adrenoceptor blocking drugs to human serum albumin, to α1-acid glycoprotein and to human serum. Eur J Clin Pharmacol. 1982;22(3):253–6.PubMedCrossRef Belpaire F, Bogaert M, Rosseneu M. Binding of β-adrenoceptor blocking drugs to human serum albumin, to α1-acid glycoprotein and to human serum. Eur J Clin Pharmacol. 1982;22(3):253–6.PubMedCrossRef
110.
go back to reference Clarysse S, Psachoulias D, Brouwers J, Tack J, Annaert P, Duchateau G, et al. Postprandial changes in solubilizing capacity of human intestinal fluids for BCS class II drugs. Pharm Res. 2009;26(6):1456–66.PubMedCrossRef Clarysse S, Psachoulias D, Brouwers J, Tack J, Annaert P, Duchateau G, et al. Postprandial changes in solubilizing capacity of human intestinal fluids for BCS class II drugs. Pharm Res. 2009;26(6):1456–66.PubMedCrossRef
111.
go back to reference PK-Sim user manual and software, 6.3. Leverkusen, Germany: Bayer Technology Services GmbH. 2016. PK-Sim user manual and software, 6.3. Leverkusen, Germany: Bayer Technology Services GmbH. 2016.
112.
go back to reference Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.PubMedCrossRef Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.PubMedCrossRef
113.
go back to reference Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.PubMedCrossRef Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.PubMedCrossRef
114.
go back to reference Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharm Exp Ther. 2006;318(3):1220–9.CrossRef Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharm Exp Ther. 2006;318(3):1220–9.CrossRef
115.
go back to reference Madani S, Paine MF, Lewis L, Thummel KE, Shen DD. Comparison of CYP2D6 content and metoprolol oxidation between microsomes isolated from human livers and small intestines. Pharm Res. 1999;16(8):1199–205.PubMedCrossRef Madani S, Paine MF, Lewis L, Thummel KE, Shen DD. Comparison of CYP2D6 content and metoprolol oxidation between microsomes isolated from human livers and small intestines. Pharm Res. 1999;16(8):1199–205.PubMedCrossRef
116.
go back to reference Claassen K, Thelen K, Coboeken K, Gaub T, Lippert J, Allegaert K, et al. Development of a physiologically-based pharmacokinetic model for preterm neonates: evaluation with in vivo data. Curr Pharm Des. 2015;21(39):5688–98.PubMedCrossRef Claassen K, Thelen K, Coboeken K, Gaub T, Lippert J, Allegaert K, et al. Development of a physiologically-based pharmacokinetic model for preterm neonates: evaluation with in vivo data. Curr Pharm Des. 2015;21(39):5688–98.PubMedCrossRef
117.
go back to reference Caron G, Ermondi G, Damiano A, Novaroli L, Tsinman O, Ruell JA, et al. Ionization, lipophilicity, and molecular modeling to investigate permeability and other biological properties of amlodipine. Bioorg Med Chem. 2004;12(23):6107–18.PubMedCrossRef Caron G, Ermondi G, Damiano A, Novaroli L, Tsinman O, Ruell JA, et al. Ionization, lipophilicity, and molecular modeling to investigate permeability and other biological properties of amlodipine. Bioorg Med Chem. 2004;12(23):6107–18.PubMedCrossRef
118.
go back to reference Mannhold R, Rodenkirchen R, Bayer R, Haas W. The importance of drug ionization for the action of calcium-antagonists and related compounds. Arzneimittelforschung. 1983;34(4):407–9. Mannhold R, Rodenkirchen R, Bayer R, Haas W. The importance of drug ionization for the action of calcium-antagonists and related compounds. Arzneimittelforschung. 1983;34(4):407–9.
119.
go back to reference Somers G, Harris A, Bayliss M, Houston J. The metabolism of the 5HT3 antagonists ondansetron, alosetron and GR87442 I: a comparison of in vitro and in vivo metabolism and in vitro enzyme kinetics in rat, dog and human hepatocytes, microsomes and recombinant human enzymes. Xenobiotica. 2007;37(8):832–54.PubMedCrossRef Somers G, Harris A, Bayliss M, Houston J. The metabolism of the 5HT3 antagonists ondansetron, alosetron and GR87442 I: a comparison of in vitro and in vivo metabolism and in vitro enzyme kinetics in rat, dog and human hepatocytes, microsomes and recombinant human enzymes. Xenobiotica. 2007;37(8):832–54.PubMedCrossRef
120.
go back to reference Zhang F, Xue J, Shao J, Jia L. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov Today. 2012;17(9):475–85.PubMedCrossRef Zhang F, Xue J, Shao J, Jia L. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov Today. 2012;17(9):475–85.PubMedCrossRef
121.
122.
go back to reference Poulin P, Schoenlein K, Theil FP. Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J Pharm Sci. 2001;90(4):436–47.PubMedCrossRef Poulin P, Schoenlein K, Theil FP. Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J Pharm Sci. 2001;90(4):436–47.PubMedCrossRef
123.
go back to reference Poulin P, Theil FP. A priori prediction of tissue: plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci. 2000;89(1):16–35.PubMedCrossRef Poulin P, Theil FP. A priori prediction of tissue: plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci. 2000;89(1):16–35.PubMedCrossRef
124.
go back to reference Alelyunas YW, Empfield JR, McCarthy D, Spreen RC, Bui K, Pelosi-Kilby L, et al. Experimental solubility profiling of marketed CNS drugs, exploring solubility limit of CNS discovery candidate. Bioorg Med Chem Lett. 2010;20(24):7312–6.PubMedCrossRef Alelyunas YW, Empfield JR, McCarthy D, Spreen RC, Bui K, Pelosi-Kilby L, et al. Experimental solubility profiling of marketed CNS drugs, exploring solubility limit of CNS discovery candidate. Bioorg Med Chem Lett. 2010;20(24):7312–6.PubMedCrossRef
125.
go back to reference Crifasi JA, Bruder MF, Long CW, Janssen K. Performance evaluation of thermal desorption system (TDS) for detection of basic drugs in forensic samples by GC-MS. J Anal Toxicol. 2006;30(8):581–92.PubMedCrossRef Crifasi JA, Bruder MF, Long CW, Janssen K. Performance evaluation of thermal desorption system (TDS) for detection of basic drugs in forensic samples by GC-MS. J Anal Toxicol. 2006;30(8):581–92.PubMedCrossRef
126.
go back to reference Machatha SG, Yalkowsky SH. Comparison of the octanol/water partition coefficients calculated by ClogP®, ACDlogP and KowWin® to experimentally determined values. Int J Pharm. 2005;294(1–2):185–92.PubMedCrossRef Machatha SG, Yalkowsky SH. Comparison of the octanol/water partition coefficients calculated by ClogP®, ACDlogP and KowWin® to experimentally determined values. Int J Pharm. 2005;294(1–2):185–92.PubMedCrossRef
127.
go back to reference Shalaeva M, Kenseth J, Lombardo F, Bastin A. Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J Pharm Sci. 2008;97(7):2581–606.PubMedCrossRef Shalaeva M, Kenseth J, Lombardo F, Bastin A. Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J Pharm Sci. 2008;97(7):2581–606.PubMedCrossRef
128.
go back to reference Wiedersberg S, Guy RH. Transdermal drug delivery: 30+ years of war and still fighting! J Control Release. 2014;190:150–6.PubMedCrossRef Wiedersberg S, Guy RH. Transdermal drug delivery: 30+ years of war and still fighting! J Control Release. 2014;190:150–6.PubMedCrossRef
Metadata
Title
A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways
Authors
André Dallmann
Ibrahim Ince
Katrin Coboeken
Thomas Eissing
Georg Hempel
Publication date
01-06-2018
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 6/2018
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-017-0594-5

Other articles of this Issue 6/2018

Clinical Pharmacokinetics 6/2018 Go to the issue