Skip to main content
Log in

Postprandial Changes in Solubilizing Capacity of Human Intestinal Fluids for BCS Class II Drugs

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To explore the effect of the nutritional state on the solubilizing properties of human intestinal fluids (HIF) on a time-after-food administration basis.

Methods

HIF were collected in fractions of 30 min from five volunteers in the fasted, fed and fat-enriched fed state. In vitro solubility of five BCS class II drugs (danazol, diazepam, nifedipine, ketoconazole, indomethacin) was assessed in the intestinal fractions and simulated intestinal fluids.

Results

Solubilities in intestinal fractions were characterized by high time- and subject-dependent variability. For the non-ionized drugs, solubility in early intestinal fractions was higher in both fed states compared to the fasted state, and in the fat-enriched fed state compared to the fed state. Solubility in simulated intestinal fluids did not sufficiently predict the solubilizing capacity of the early postprandial phase. Solubility in HIF was shown to be determined by a complex interplay of various intraluminal parameters. For the ionized drugs, pH played a significant role for indomethacin (R 2 = 0.86); for the partly ionized ketoconazole other intraluminal parameters were also important.

Conclusions

Solubilizing capacity of HIF in the fed state is strongly time-dependent. Intraluminal dissolution may, therefore, vary with drug arrival time in the small intestine and constitute a source of variability in intestinal drug absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BCS:

Biopharmaceutics Classification System

FaSSIF:

fasted state simulated intestinal fluid

FeSSIF:

fed state simulated intestinal fluid

FeSSIF v2:

fed state simulated intestinal fluid version 2

HIF:

human intestinal fluids

MLR:

multiple linear regression

References

  1. V. H. Sunesen, R. Vedelsdal, H. G. Kristensen, L. Christrup, and A. Müllertz. Effect of liquid volume and food intake on the absolute bioavailability of danazol, a poorly soluble drug. Eur J Pharm Sci. 24:297–303 (2005). doi:10.1016/j.ejps.2004.11.005.

    Article  PubMed  CAS  Google Scholar 

  2. C. J. H. Porter, N. L. Trevaskis, and W. N. Charman. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 6:231–248 (2007). doi:10.1038/nrd2197.

    Article  PubMed  CAS  Google Scholar 

  3. J. Brouwers, J. Tack, and P. Augustijns. Parallel monitoring of plasma and intraluminal drug concentrations in man after oral administration of fosamprenavir in the fasted and fed state. Pharm Res. 24:1862–1869 (2007). doi:10.1007/s11095-007-9307-3.

    Article  PubMed  CAS  Google Scholar 

  4. J. Brouwers, J. Tack, F. Lammert, and P. Augustijns. Intraluminal drug and formulation behavior and integration in in vitro permeability estimation: a case study with amprenavir. J Pharm Sci. 95:372–383 (2006). doi:10.1002/jps.20553.

    Article  PubMed  CAS  Google Scholar 

  5. J. Brouwers, F. Ingels, J. Tack, and P. Augustijns. Determination of intraluminal theophylline concentrations after oral intake of an immediate- and a slow-release dosage form. J Pharm Pharmacol. 57:987–996 (2005). doi:10.1211/0022357056631.

    Article  PubMed  CAS  Google Scholar 

  6. E. Galia, E. Nicolaides, D. Hörter, R. Löbenberg, C. Reppas, and J. B. Dressman. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res. 15:698–705 (1998). doi:10.1023/A:1011910801212.

    Article  PubMed  CAS  Google Scholar 

  7. L. Kalantzi, E. Persson, B. Polentarutti, B. Abrahamsson, K. Goumas, J. B. Dressman, and C. Reppas. Canine intestinal contents vs. simulated media for the assessment of solubility of two weak bases in the human small intestinal contents. Pharm Res. 23:1373–1381 (2006). doi:10.1007/s11095-006-0207-8.

    Article  PubMed  CAS  Google Scholar 

  8. E. M. Persson, A. Gustafsson, A. S. Carlsson, R. G. Nilsson, L. Knutson, P. Forsell, G. Hanisch, H. Lennernäs, and B. Abrahamsson. The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharm Res. 22:2141–2151 (2005). doi:10.1007/s11095-005-8192-x.

    Article  PubMed  CAS  Google Scholar 

  9. E. Jantratid, N. Janssen, C. Reppas, and J. B. Dressman. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 25:1663–1676 (2008). doi:10.1007/s11095-008-9569-4.

    Article  PubMed  CAS  Google Scholar 

  10. L. Kalantzi, K. Goumas, V. Kalioras, B. Abrahamsson, J. B. Dressman, and C. Reppas. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 23:165–176 (2006). doi:10.1007/s11095-005-8476-1.

    Article  PubMed  CAS  Google Scholar 

  11. S. Clarysse, J. Tack, F. Lammert, G. Duchateau, C. Reppas, and P. Augustijns. Postprandial evolution in composition and characteristics of human duodenal fluids in different nutritional states. J Pharm Sci. 98:1177–1192 (2008).

    Article  Google Scholar 

  12. M. Vertzoni, N. Fotaki, E. Kostewicz, E. Stippler, C. Leuner, E. Nicolaides, J. Dressman, and C. Reppas. Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. J Pharm Pharmacol. 56:453–462 (2004). doi:10.1211/0022357022935.

    Article  PubMed  CAS  Google Scholar 

  13. B. L. Pedersen, A. Müllertz, H. Brøndsted, and H. G. Kristensen. A comparison of the solubility of danazol in human and simulated gastrointestinal fluids. Pharm Res. 17:891–894 (2000). doi:10.1023/A:1007576713216.

    Article  PubMed  CAS  Google Scholar 

  14. S. D. Mithani, V. Bakatselou, C. N. TenHoor, and J. B. Dressman. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res. 13:163–167 (1996). doi:10.1023/A:1016062224568.

    Article  PubMed  CAS  Google Scholar 

  15. H. Mizuuchi, V. Jaitely, S. Murdan, and A. T. Florence. Room temperature ionic liquids and their mixtures: potential pharmaceutical solvents. Eur J Pharm Sci. 33:326–331 (2008). doi:10.1016/j.ejps.2008.01.002.

    Article  PubMed  CAS  Google Scholar 

  16. V. Bakatselou, R. C. Oppenheim, and J. B. Dressman. Solubilization and wetting effects of bile salts on the dissolution of steroids. Pharm Res. 8:1461–1469 (1991). doi:10.1023/A:1015877929381.

    Article  PubMed  CAS  Google Scholar 

  17. D. Ilardia-Arana, H. G. Kristensen, and A. Müllertz. Biorelevant dissolution media: aggregation of amphiphiles and solubility of estradiol. J Pharm Sci. 95:248–255 (2006). doi:10.1002/jps.20494.

    Article  PubMed  CAS  Google Scholar 

  18. N. H. Zangenberg, A. Müllertz, H. G. Kristensen, and L. Hovgaard. A dynamic in vitro lipolysis model. II: evaluation of the model. Eur J Pharm Sci. 14:237–244 (2001). doi:10.1016/S0928-0987(01)00182-8.

    Article  PubMed  CAS  Google Scholar 

  19. M. Grove, G. P. Pedersen, J. L. Nielsen, and A. Müllertz. Bioavailability of seocalcitol I: relating solubility in biorelevant media with oral bioavailability in rats—effect of medium and long chain triglycerides. J Pharm Sci. 94:1830–1838 (2005). doi:10.1002/jps.20403.

    Article  PubMed  CAS  Google Scholar 

  20. A. M. Kaukonen, B. J. Boyd, C. J. H. Porter, and W. N. Charman. Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations. Pharm Res. 21:245–253 (2004). doi:10.1023/B:PHAM.0000016282.77887.1f.

    Article  PubMed  CAS  Google Scholar 

  21. J. Ø. Christensen, K. Schultz, B. Mollgaard, H. G. Kristensen, and A. Müllertz. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. Eur J Pharm Sci. 23:287–296 (2004). doi:10.1016/j.ejps.2004.08.003.

    Article  PubMed  CAS  Google Scholar 

  22. P. B. Nielsen, A. Müllertz, T. Norling, and H. G. Kristensen. The effect of alpha-tocopherol on the in vitro solubilisation of lipophilic drugs. Int J Pharm. 222:217–224 (2001). doi:10.1016/S0378-5173(01)00701-3.

    Article  PubMed  CAS  Google Scholar 

  23. G. A. Kossena, B. J. Boyd, C. J. H. Porter, and W. N. Charman. Separation and characterization of the colloidal phases produced on digestion of common formulation lipids and assessment of their impact on the apparent solubility of selected poorly water-soluble drugs. J Pharm Sci. 92:634–648 (2003). doi:10.1002/jps.10329.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a Ph.D. grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen), as well as from grants from the ‘Fonds voor Wetenschappelijk Onderzoek’ (FWO), Flanders and from the ‘Onderzoeksfonds’ of the K.U.Leuven, Belgium. We also wish to thank Rita Vos and Toon De Greef (Gastroenterology, University Hospitals Leuven, Belgium) for their assistance during the in vivo studies. Dr. Eric Deconinck is acknowledged for his expertise and assistance in performing the statistical analyses. D. Psachoulias was partly supported by the European Commission Program Socrates, Erasmus—Action 2.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Augustijns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarysse, S., Psachoulias, D., Brouwers, J. et al. Postprandial Changes in Solubilizing Capacity of Human Intestinal Fluids for BCS Class II Drugs. Pharm Res 26, 1456–1466 (2009). https://doi.org/10.1007/s11095-009-9857-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9857-7

Key words

Navigation