Skip to main content

Advertisement

Log in

Clarithromycin, Midazolam, and Digoxin: Application of PBPK Modeling to Gain New Insights into Drug–Drug Interactions and Co-medication Regimens

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Clarithromycin is a substrate and mechanism-based inhibitor of cytochrome P450 (CYP) 3A4 as well as a substrate and competitive inhibitor of P-glycoprotein (P-gp) and organic anion-transporting polypeptides (OATP) 1B1 and 1B3. Administered concomitantly, clarithromycin causes drug–drug interactions (DDI) with the victim drugs midazolam (CYP3A4 substrate) and digoxin (P-gp substrate). The objective of the presented study was to build a physiologically based pharmacokinetic (PBPK) DDI model for clarithromycin, midazolam, and digoxin and to exemplify dosing adjustments under clarithromycin co-treatment. The PBPK model development included an extensive literature search for representative PK studies and for compound characteristics of clarithromycin, midazolam, and digoxin. Published concentration-time profiles were used for model development (training dataset), and published and unpublished individual profiles were used for model evaluation (evaluation dataset). The developed single-compound PBPK models were linked for DDI predictions. The full clarithromycin DDI model successfully predicted the metabolic (midazolam) and transporter (digoxin) DDI, the acceptance criterion (0.5 ≤ AUCratio,predicted/AUCratio,observed ≤ 2) was met by all predictions. During co-treatment with 250 or 500 mg clarithromycin (bid), the midazolam and digoxin doses should be reduced by 74 to 88% and by 21 to 22%, respectively, to ensure constant midazolam and digoxin exposures (AUC). With these models, we provide highly mechanistic tools to help researchers understand and characterize the DDI potential of new molecular entities and inform the design of DDI studies with potential CYP3A4 and P-gp substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329:15–9. doi:10.1136/bmj.329.7456.15.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huang S-M, Lesko LJ. Drug-drug, drug-dietary supplement, and drug-citrus fruit and other food interactions: what have we learned? J Clin Pharmacol. 2004;44:559–69. doi:10.1177/0091270004265367.

    Article  CAS  PubMed  Google Scholar 

  3. EMA. Guideline on the investigation of drug interactions. 2012. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf. Accessed 28 Jan 2016.

  4. FDA. Guidance for industry. Drug interaction studies study design, data analysis, implications for dosing, and labeling recommendations. 2012. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf. Accessed 28 Jan 2016.

  5. Lin JH. CYP induction-mediated drug interactions: in vitro assessment and clinical implications. Pharm Res. 2006;23:1089–116. doi:10.1007/s11095-006-0277-7.

    Article  CAS  PubMed  Google Scholar 

  6. Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005;352:2211–21. doi:10.1056/NEJMra032424.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao P, Ragueneau-Majlessi I, Zhang L, et al. Quantitative evaluation of pharmacokinetic inhibition of CYP3A substrates by ketoconazole: a simulation study. J Clin Pharmacol. 2009;49:351–9. doi:10.1177/0091270008331196.

    Article  CAS  PubMed  Google Scholar 

  8. FDA. FDA advises against using oral ketoconazole in drug interaction studies due to serious potential side effects. 2013. http://www.fda.gov/Drugs/DrugSafety/ucm371017.htm. Accessed 28 Jan 2016.

  9. Ke AB, Zamek-Gliszczynski MJ, Higgins JW, Hall SD. Itraconazole and clarithromycin as ketoconazole alternatives for clinical CYP3A inhibition studies. Clin Pharmacol Ther. 2014;95:473–6. doi:10.1038/clpt.2014.41.

    Article  CAS  PubMed  Google Scholar 

  10. Goossens H, Ferech M, Coenen S, Stephens P. Comparison of outpatient systemic antibacterial use in 2004 in the United States and 27 European countries. Clin Infect Dis. 2007;44:1091–5. doi:10.1086/512810.

    Article  CAS  PubMed  Google Scholar 

  11. Rodrigues AD, Roberts EM, Mulford DJ, Yao Y, Ouellet D. Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily. Drug Metab Dispos. 1997;25:623–30.

    CAS  PubMed  Google Scholar 

  12. Mayhew BS, Jones DR, Hall SD. An in vitro model for predicting in vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex formation. Drug Metab Dispos. 2000;28:1031–7.

    CAS  PubMed  Google Scholar 

  13. Chu SY, Sennello LT, Bunnell ST, Varga LL, Wilson DS, Sonders RC. Pharmacokinetics of clarithromycin, a new macrolide, after single ascending oral doses. Antimicrob Agents Chemother. 1992;36:2447–53. doi:10.1128/AAC.36.11.2447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saito H, Fukasawa Y, Otsubo Y, Yamada K, Sezaki H, Yamashita S. Carrier-mediated transport of macrolide antimicrobial agents across Caco-2 cell monolayers. Pharm Res. 2000;17:761–5. doi:10.1023/A:1007550820196.

    Article  CAS  PubMed  Google Scholar 

  15. Eberl S, Renner B, Neubert A, et al. Role of p-glycoprotein inhibition for drug interactions: evidence from in vitro and pharmacoepidemiological studies. Clin Pharmacokinet. 2007;46:1039–49. doi:10.2165/00003088-200746120-00004.

    Article  CAS  PubMed  Google Scholar 

  16. Yabe Y, Galetin A, Houston JB. Kinetic characterization of rat hepatic uptake of 16 actively transported drugs. Drug Metab Dispos. 2011;39:1808–14. doi:10.1124/dmd.111.040477.

    Article  CAS  PubMed  Google Scholar 

  17. Garver E, Hugger ED, Shearn SP, et al. Involvement of intestinal uptake transporters in the absorption of azithromycin and clarithromycin in the rat. Drug Metab Dispos. 2008;36:2492–8. doi:10.1124/dmd.108.022285.

    Article  CAS  PubMed  Google Scholar 

  18. Seithel A, Eberl S, Singer K, et al. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab Dispos. 2007;35:779–86. doi:10.1124/dmd.106.014407.

    Article  CAS  PubMed  Google Scholar 

  19. Patki KC, Von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos. 2003;31:938–44. doi:10.1124/dmd.31.7.938.

    Article  CAS  PubMed  Google Scholar 

  20. Koup JR, Greenblatt DJ, Jusko WJ, Smith TW, Koch-Weser J. Pharmacokinetics of digoxin in normal subjects after intravenous bolus and infusion doses. J Pharmacokinet Biopharm. 1975;3:181–92. doi:10.1007/BF00162306.

    Article  CAS  PubMed  Google Scholar 

  21. Ito S, Woodland C, Harper PA, Koren G. P-glycoprotein-mediated renal tubular secretion of digoxin: the toxicological significance of the urine-blood barrier model. Life Sci. 1993;53:PL25–31. doi:10.1016/0024-3205(93)90667-R.

    CAS  PubMed  Google Scholar 

  22. Dostanic-Larson I. Physiological role of the 1- and 2-isoforms of the Na+-K+-ATPase and biological significance of their cardiac glycoside binding site. AJP Regul Integr Comp Physiol. 2005;290:R524–8. doi:10.1152/ajpregu.00838.2005.

  23. Lappin G, Shishikura Y, Jochemsen R, et al. Comparative pharmacokinetics between a microdose and therapeutic dose for clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen), and phenobarbital in human volunteers. Eur J Pharm Sci. 2011;43:141–50. doi:10.1016/j.ejps.2011.04.009.

    Article  CAS  PubMed  Google Scholar 

  24. Chu SY, Deaton R, Cavanaugh J. Absolute bioavailability of clarithromycin after oral administration in humans. Antimicrob Agents Chemother. 1992;36:1147–50. doi:10.1128/AAC.36.5.1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chu S, Wilson DS, Deaton RL, Mackenthun AV, Eason CN, Cavanaugh JH. Single- and multiple-dose pharmacokinetics of clarithromycin, a new macrolide antimicrobial. J Clin Pharmacol. 1993;33:719–26. doi:10.1002/j.1552-4604.1993.tb05613.x.

    Article  CAS  PubMed  Google Scholar 

  26. Rengelshausen J, Göggelmann C, Burhenne J, et al. Contribution of increased oral bioavailability and reduced nonglomerular renal clearance of digoxin to the digoxin-clarithromycin interaction. Br J Clin Pharmacol. 2003;56:32–8. doi:10.1046/j.1365-2125.2003.01824.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kees F, Wellenhofer M, Grobecker H. Serum and cellular pharmacokinetics of clarithromycin 500 mg q.d. and 250 mg b.i.d. in volunteers. Infection. 1995;23:168–72. doi:10.1007/BF01793859.

    Article  CAS  PubMed  Google Scholar 

  28. Abduljalil K, Kinzig M, Bulitta J, et al. Modeling the autoinhibition of clarithromycin metabolism during repeated oral administration. Antimicrob Agents Chemother. 2009;53:2892–901. doi:10.1128/AAC.01193-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gorski JC, Jones DR, Haehner-Daniels BD, Hamman MA, O’Mara EM, Hall SD. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther. 1998;64:133–43. doi:10.1016/S0009-9236(98)90146-1.

    Article  CAS  PubMed  Google Scholar 

  30. Brown CR, Sarnquist FH, Canup CA, Pedley TA. Clinical, electroencephalographic, and pharmacokinetic studies of a water-soluble benzodiazepine, midazolam maleate. Anesthesiology. 1979;50:467–70.

    Article  CAS  PubMed  Google Scholar 

  31. van Rongen A, Kervezee L, Brill M, et al. Population pharmacokinetic model characterizing 24-hour variation in the pharmacokinetics of oral and intravenous midazolam in healthy volunteers. CPT pharmacometrics. Syst Pharmacol. 2015;4:454–64. doi:10.1002/psp4.12007.

    Google Scholar 

  32. Yu K. Effect of the CYP3A5 genotype on the pharmacokinetics of intravenous midazolam during inhibited and induced metabolic states. Clin Pharmacol Ther. 2004;76:104–12. doi:10.1016/j.clpt.2004.03.009.

    Article  CAS  PubMed  Google Scholar 

  33. Smith MT, Eadie MJ, Brophy TO. The pharmacokinetics of midazolam in man. Eur J Clin Pharmacol. 1981;19:271–8. doi:10.1007/BF00562804.

    Article  PubMed  Google Scholar 

  34. Hardmeier M, Zimmermann R, Rüegg S, et al. Intranasal midazolam: pharmacokinetics and pharmacodynamics assessed by quantitative EEG in healthy volunteers. Clin Pharmacol Ther. 2012;91:856–62. doi:10.1038/clpt.2011.316.

    Article  CAS  PubMed  Google Scholar 

  35. Heizmann P, Eckert M, Ziegler WH. Pharmacokinetics and bioavailability of midazolam in man. Br J Clin Pharmacol. 1983;16 Suppl 1:43S–9. doi:10.1111/j.1365-2125.1983.tb02270.x.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Markert C, Hellwig R, Burhenne J, et al. Interaction of ambrisentan with clarithromycin and its modulation by polymorphic SLCO1B1. Eur J Clin Pharmacol. 2013;69:1785–93. doi:10.1007/s00228-013-1529-1.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou D, Lu Z, Sunzel M, Xu H, Al-Huniti N. Population pharmacokinetic modelling to assess clinical drug-drug interaction between AZD7325 and midazolam. J Clin Pharm Ther. 2014;39:404–10. doi:10.1111/jcpt.12152.

    Article  CAS  PubMed  Google Scholar 

  38. Bornemann LD, Min BH, Crews T, et al. Dose dependent pharmacokinetics of midazolam. Eur J Clin Pharmacol. 1985;29:91–5. doi:10.1007/BF00547375.

    Article  CAS  PubMed  Google Scholar 

  39. Yeates RA, Laufen H, Zimmermann T. Interaction between midazolam and clarithromycin: comparison with azithromycin. Int J Clin Pharmacol Ther. 1996;34:400–5.

    CAS  PubMed  Google Scholar 

  40. Kramer WG, Kolibash AJ, Lewis RP, Bathala MS, Visconti J, Reaming RH. Pharmacokinetics of digoxin: relationship between response intensity and predicted compartmental drug levels in man. J Pharmacokinet Biopharm. 1979;7:47–61. doi:10.1007/BF01059440.

    Article  CAS  PubMed  Google Scholar 

  41. Wagner JG, Popat KD, Das SK, Sakmar E, Movahhed H. Evidence of nonlinearity in digoxin pharmacokinetics. J Pharmacokinet Biopharm. 1981;9:147–66. doi:10.1007/BF01068079.

    Article  CAS  PubMed  Google Scholar 

  42. Steiness E, Waldorff S, Hansen PB. Renal digoxin clearance: dependence on plasma digoxin and diuresis. Eur J Clin Pharmacol. 1982;23:151–4. doi:10.1007/BF00545970.

    Article  CAS  PubMed  Google Scholar 

  43. Ding R, Tayrouz Y, Riedel K, et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther. 2004;76:73–84. doi:10.1016/j.clpt.2004.02.008.

    Article  CAS  PubMed  Google Scholar 

  44. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest. 1999;104:147–53. doi:10.1172/JCI6663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsutsumi K, Kotegawa T, Kuranari M, et al. The effect of erythromycin and clarithromycin on the pharmacokinetics of intravenous digoxin in healthy volunteers. J Clin Pharmacol. 2002;42:1159–64. doi:10.1177/009127002237992.

    Article  CAS  PubMed  Google Scholar 

  46. Ochs HR, Greenblatt DJ, Bodem G, Harmatz JS. Dose-independent pharmacokinetics of digoxin in humans. Am Heart J. 1978;96:507–11. doi:10.1016/0002-8703(78)90162-X.

    Article  CAS  PubMed  Google Scholar 

  47. Becquemont L, Verstuyft C, Kerb R, et al. Effect of grapefruit juice on digoxin pharmacokinetics in humans. Clin Pharmacol Ther. 2001;70:311–6. doi:10.1067/mcp.2001.118867.

    CAS  PubMed  Google Scholar 

  48. Gurley BJ, Swain A, Williams DK, Barone G, Battu SK. Gauging the clinical significance of P-glycoprotein-mediated herb-drug interactions: comparative effects of St. John’s wort, Echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics. Mol Nutr Food Res. 2008;52:772–9. doi:10.1002/mnfr.200700081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eckermann G, Lahu G, Nassr N, Bethke TD. Absence of pharmacokinetic interaction between roflumilast and digoxin in healthy adults. J Clin Pharmacol. 2012;52:251–7. doi:10.1177/0091270010389467.

    Article  CAS  PubMed  Google Scholar 

  50. Oosterhuis B, Jonkman JH, Andersson T, Zuiderwijk PB, Jedema JN. Minor effect of multiple dose omeprazole on the pharmacokinetics of digoxin after a single oral dose. Br J Clin Pharmacol. 1991;32:569–72. doi:10.1111/j.1365-2125.1991.tb03953.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kirch W, Logemann C, Heidemann H, Santos SR, Ohnhaus EE. Effect of two different doses of nitrendipine on steady-state plasma digoxin level and systolic time intervals. Eur J Clin Pharmacol. 1986;31:391–5. doi:10.1007/BF00613512.

    Article  CAS  PubMed  Google Scholar 

  52. Qiu R, Plowchalk DR, Byon W, Terra SG, Corrigan B, Mordenti J, et al. Lack of a pharmacokinetic interaction between dimebon (latrepirdine) and digoxin in healthy subjects. ASCPT 2010 Annual Meeting, Atlanta, Georgia, USA, 17th-20th March. Clin Pharmacol Ther. 2010;87(S1):S91:PIII–72. doi:10.1038/clpt.2009.277.

  53. Friedrich C, Ring A, Brand T, Sennewald R, Graefe-Mody EU, Woerle HJ. Evaluation of the pharmacokinetic interaction after multiple oral doses of linagliptin and digoxin in healthy volunteers. Eur J Drug Metab Pharmacokinet. 2011;36:17–24. doi:10.1007/s13318-011-0028-y.

    Article  CAS  PubMed  Google Scholar 

  54. Vaidyanathan S, Camenisch G, Schuetz H, et al. Pharmacokinetics of the oral direct renin inhibitor aliskiren in combination with digoxin, atorvastatin, and ketoconazole in healthy subjects: the role of P-glycoprotein in the disposition of aliskiren. J Clin Pharmacol. 2008;48:1323–38. doi:10.1177/0091270008323258.

    Article  CAS  PubMed  Google Scholar 

  55. Nožinić D, Milić A, Mikac L, Ralić J. Assessment of macrolide transport using PAMPA, Caco-2 and MDCKII-hMDR1 assays. Croat Chem Acta. 2010;83:323–31.

    Google Scholar 

  56. Wheeler DL, Church DM, Federhen S, et al. Database resources of the national center for biotechnology. Nucleic Acids Res. 2003;31:28–33. doi:10.1093/nar/gks1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meyer M, Schneckener S, Ludewig B, Kuepfer L, Lippert J. Using expression data for quantification of active processes in physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2012;40:892–901. doi:10.1124/dmd.111.043174.

    Article  CAS  PubMed  Google Scholar 

  58. Ge X, Yamamoto S, Tsutsumi S, et al. Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Genomics. 2005;86:127–41. doi:10.1016/j.ygeno.2005.04.008.

    Article  CAS  PubMed  Google Scholar 

  59. Rodrigues AD. Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem Pharmacol. 1999;57:465–80. doi:10.1016/S0006-2952(98)00268-8.

    Article  CAS  PubMed  Google Scholar 

  60. Badée J, Achour B, Rostami-Hodjegan A, Galetin A. Meta-analysis of expression of hepatic organic anion-transporting polypeptide (OATP) transporters in cellular systems relative to human liver tissue. Drug Metab Dispos. 2015;43:424–32. doi:10.1124/dmd.114.062034.

    Article  PubMed  Google Scholar 

  61. Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet. 2005;20:452–77. doi:10.2133/dmpk.20.452.

    Article  CAS  PubMed  Google Scholar 

  62. Tucker TGHA, Milne AM, Fournel-Gigleux S, Fenner KS, Coughtrie MWH. Absolute immunoquantification of the expression of ABC transporters P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein 2 in human liver and duodenum. Biochem Pharmacol. 2012;83:279–85. doi:10.1016/j.bcp.2011.10.017.

    Article  CAS  PubMed  Google Scholar 

  63. Rodvold KA. Clinical pharmacokinetics of clarithromycin. Clin Pharmacokinet. 1999;37:385–98. doi:10.2165/00003088-199937050-00003.

    Article  CAS  PubMed  Google Scholar 

  64. Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic. Pharmacology. 2008;36:1385–405. doi:10.1124/dmd.108.020479.

    CAS  Google Scholar 

  65. Quinney SK, Haehner BD, Rhoades MB, Lin Z, Gorski JC, Hall SD. Interaction between midazolam and clarithromycin in the elderly. Br J Clin Pharmacol. 2008;65:98–109. doi:10.1111/j.1365-2125.2007.02970.x.

    Article  CAS  PubMed  Google Scholar 

  66. Allonen H, Ziegler G, Klotz U. Midazolam kinetics. Clin Pharmacol Ther. 1981;30:653–61. doi:10.1038/clpt.1981.217.

    Article  CAS  PubMed  Google Scholar 

  67. Doucet-Populaire F, Capobianco JO, Zakula D, Jarlier V, Goldman RC. Molecular basis of clarithromycin activity against Mycobacterium avium and Mycobacterium smegmatis. J Antimicrob Chemother. 1998;41:179–87. doi:10.1093/jac/41.2.179.

    Article  CAS  PubMed  Google Scholar 

  68. Atkinson HC, Begg EJ. Relationship between human milk lipid-ultrafiltrate and octanol-water partition coefficients. J Pharm Sci. 1988;77:796–8. doi:10.1002/jps.2600770916.

    Article  CAS  PubMed  Google Scholar 

  69. Mulla H, McCormack P, Lawson G, Firmin RK, Upton DR. Pharmacokinetics of midazolam in neonates undergoing extracorporeal membrane oxygenation. Anesthesiology. 2003;99(2):275–82.

  70. Arellano C, Philibert C, Vachoux C, Woodley J, Houin G. The metabolism of midazolam and comparison with other CYP enzyme substrates during intestinal absorption: in vitro studies with rat everted gut sacs. J Pharm Pharm Sci Publ Can Soc Pharm Sci Soc Can Sci Pharm. 2007;10:26–36.

    CAS  Google Scholar 

  71. Yamano K, Yamamoto K, Katashima M, et al. Prediction of midazolam-CYP3A inhibitors interaction in the human liver from in vivo/in vitro absorption, distribution, and metabolism data. Drug Metab Dispos. 2001;29:443–52.

    CAS  PubMed  Google Scholar 

  72. Zhang X-R, Chen X-Y, Hu L-D, Tang X, Li S-M, Zhong D-F. Evaluation of in-vitro dissolution and in-vivo absorption for two different film-coated pellets of clarithromycin. Arch Pharm Res. 2005;28:977–82. doi:10.1007/BF02973886.

    Article  CAS  PubMed  Google Scholar 

  73. McFarland JW, Berger CM, Froshauer S, et al. Quantitative structure-activity relationships among macrolide antibacterial agents: in vitro and in vivo potency against Pasteurella multocida. J Med Chem. 1997;40:1340–6. doi:10.1021/jm960436i.

    Article  CAS  PubMed  Google Scholar 

  74. Liu Y, Hunt CA. Studies of intestinal drug transport using an in silico epithelio-mimetic device. BioSystems. 2005;82:154–67. doi:10.1016/j.biosystems.2005.06.008.

    Article  CAS  PubMed  Google Scholar 

  75. Walser A, Benjamin LE, Flynn T, Mason C, Schwartz R, Fryer RI. Quinazolines and 1,4-benzodiazepines. 84. Synthesis and reactions of imidazo[1,5-a][1,4]benzodiazepines. J Org Chem. 1978;43:936–44. doi:10.1021/jo00399a029.

    Article  CAS  Google Scholar 

  76. Salem II, Düzgünes N. Efficacies of cyclodextrin-complexed and liposome-encapsulated clarithromycin against Mycobacterium avium complex infection in human macrophages. Int J Pharm. 2003;250:403–14. doi:10.1016/S0378-5173(02)00552-5.

    Article  CAS  PubMed  Google Scholar 

  77. Alsenz J, Meister E, Haenel E. Development of a partially automated solubility screening (PASS) assay for early drug development. J Pharm Sci. 2007;96:1748–62. doi:10.1002/jps.20814.

    Article  CAS  PubMed  Google Scholar 

  78. Loftsson T, Hreinsdóttir D. Determination of aqueous solubility by heating and equilibration: a technical note. AAPS PharmSciTech. 2006;7, E4. doi:10.1208/pt070104.

    Article  PubMed  Google Scholar 

  79. Rautio J, Humphreys JE, Webster LO, et al. In vitro P-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab Dispos. 2006;34:786–92. doi:10.1124/dmd.105.008615.paper.

    Article  CAS  PubMed  Google Scholar 

  80. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38:1147–58. doi:10.1124/dmd.110.032649.

    Article  CAS  PubMed  Google Scholar 

  81. Galetin A, Brown C, Hallifax D, Ito K, Houston JB. Utility of recombinant enzyme kinetics in prediction of human clearance: impact of variability, CYP3A5, and CYP2C19 on CYP3A4 probe substrates. Drug Metab Dispos. 2004;32:1411–20. doi:10.1124/dmd.104.000844.

    Article  CAS  PubMed  Google Scholar 

  82. Stephens RH, O’Neill CA, Warhurst A, Carlson GL, Rowland M, Warhurst G. Kinetic profiling of P-glycoprotein-mediated drug efflux in rat and human intestinal epithelia. J Pharmacol Exp Ther. 2001;296:584–91.

    CAS  PubMed  Google Scholar 

  83. Katz A, Lifshitz Y, Bab-Dinitz E, et al. Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J Biol Chem. 2010;285:19582–92. doi:10.1074/jbc.M110.119248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Polasek TM, Miners JO. Quantitative prediction of macrolide drug-drug interaction potential from in vitro studies using testosterone as the human cytochrome P4503A substrate. Eur J Clin Pharmacol. 2006;62:203–8. doi:10.1007/s00228-005-0091-x.

    Article  CAS  PubMed  Google Scholar 

  85. Ito K, Ogihara K, Kanamitsu S, Itoh T. Prediction of the in vivo interaction between midazolam and macrolides based on in vitro studies using human liver microsomes. Drug Metab Dispos. 2003;31:945–54. doi:10.1124/dmd.31.7.945.

    Article  CAS  PubMed  Google Scholar 

  86. Jones DR, Ekins S, Li L, Hall SD. Computational approaches that predict metabolic intermediate complex formation with CYP3A4 (+b5). Drug Metab Dispos. 2007;35(9):1466–75.

  87. Sohlenius-Sternbeck A-K. Determination of the hepatocellularity number for human, dog, rabbit, rat and mouse livers from protein concentration measurements. Toxicol Vit. 2006;20:1582–6. doi:10.1016/j.tiv.2006.06.003.

    Article  CAS  Google Scholar 

  88. Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–108.

    Article  CAS  PubMed  Google Scholar 

  89. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270:414–23.

    CAS  PubMed  Google Scholar 

  90. Venkatakrishnan K, Obach RS, Rostami-Hodjegan A. Mechanism-based inactivation of human cytochrome P450 enzymes: strategies for diagnosis and drug–drug interaction risk assessment. Xenobiotica. 2007;37:1225–56. doi:10.1080/00498250701670945.

    Article  CAS  PubMed  Google Scholar 

  91. Yang J, Liao M, Shou M, et al. Cytochrome p450 turnover: regulation of synthesis and degradation, methods for determining rates, and implications for the prediction of drug interactions. Curr Drug Metab. 2008;9:384–94. doi:10.2174/138920008784746382.

    Article  CAS  PubMed  Google Scholar 

  92. Prasad B, Evers R, Gupta A, et al. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metab Dispos. 2013;42:78–88. doi:10.1124/dmd.113.053819.

    Article  PubMed  Google Scholar 

  93. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94:1259–76. doi:10.1002/jps.20322.

    Article  CAS  PubMed  Google Scholar 

  94. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95:1238–57. doi:10.1002/jps.20502.

    Article  CAS  PubMed  Google Scholar 

  95. Ishiguro M, Koga H, Kohno S, Hayashi T, Yamaguchi K, Hirota M. Penetration of macrolides into human polymorphonuclear leucocytes. J Antimicrob Chemother. 1989;24:719–29. doi:10.1093/jac/24.5.719.

    Article  CAS  PubMed  Google Scholar 

  96. Quinney SK, Malireddy SR, Vuppalanchi R, et al. Rate of onset of inhibition of gut-wall and hepatic CYP3A by clarithromycin. Eur J Clin Pharmacol. 2013;69:439–48. doi:10.1007/s00228-012-1339-x.

    Article  CAS  PubMed  Google Scholar 

  97. Quinney SK, Zhang X, Lucksiri A, Gorski JC, Li L, Hall SD. Physiologically based pharmacokinetic model of mechanism-based inhibition of CYP3A by clarithromycin. Drug Metab Dispos. 2010;38(2):241–8.

  98. Kharasch ED, Walker A, Isoherranen N, et al. Influence of CYP3A5 genotype on the pharmacokinetics and pharmacodynamics of the cytochrome P4503A probes alfentanil and midazolam. Clin Pharmacol Ther. 2007;82:410–26. doi:10.1038/sj.clpt.6100237.

    Article  CAS  PubMed  Google Scholar 

  99. Williams JA, Ring BJ, Cantrell VE, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30:883–91. doi:10.1124/dmd.30.8.883.

    Article  CAS  PubMed  Google Scholar 

  100. Hansen O, Clausen T. Quantitative determination of Na+-K+-ATPase and other sarcolemmal components in muscle cells. Am J Physiol. 1988;254:C1–7.

    CAS  PubMed  Google Scholar 

  101. Comets E, Verstuyft C, Lavielle M, Jaillon P, Becquemont L, Mentré F. Modelling the influence of MDR1 polymorphism on digoxin pharmacokinetic parameters. Eur J Clin Pharmacol. 2007;63:437–49. doi:10.1007/s00228-007-0269-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Niemeijer MN, van den Berg ME, Deckers JW, et al. ABCB1 gene variants, digoxin and risk of sudden cardiac death in a general population. Heart. 2015;101:1973–9. doi:10.1136/heartjnl-2014-307419.

    Article  CAS  PubMed  Google Scholar 

  103. Rowland Yeo K, Walsky RL, Jamei M, Rostami-Hodjegan A, Tucker GT. Prediction of time-dependent CYP3A4 drug–drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover. Eur J Pharm Sci. 2011;43:160–73. doi:10.1016/j.ejps.2011.04.008.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Lehr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Predicted concentration-time profiles of clarithromycin after intravenous application of clarithromycin (A,B: ref. (23), C,D: ref. (24)) in comparison with observed mean data. Solid line: predicted mean, dash-dotted line: predicted median, gray shaded area: predicted SD, dashed line: predicted minimum/maximum, gray circles: observed mean data. (GIF 98 kb)

High resolution images (TIF 784 kb)

ESM 2

Predicted concentration-time profiles of clarithromycin after oral rising doses of clarithromycin (13) in comparison with observed mean data (± standard deviation (SD)). Solid line: predicted mean, dash-dotted line: predicted median, gray shaded area: predicted SD, dashed line: predicted minimum/maximum, gray circles: observed mean data (± SD). (GIF 205 kb)

High resolution images (TIF 1747 kb)

ESM 3

Predicted CYP3A4 activity after multiple doses of clarithromycin in comparison with observed data. Left: CYP3A4 activity in the liver, right: CYP3A4 activity in the duodenum. Solid line: predicted median, gray shaded area: predicted 5th–95th percentile, dashed line: predicted minimum/maximum, boxplots/point estimates: observed data (94). (GIF 136 kb)

High resolution images (TIF 852 kb)

ESM 4

Predicted concentration-time profiles of midazolam after single intravenous doses of midazolam in comparison with observed mean/individual data. Training dataset A,B: ref. (30,34) and evaluation dataset C–E: ref. (32,33,35). Solid line: predicted mean, dash-dotted line: predicted median, gray shaded area: predicted SD, dashed line: predicted minimum/maximum, gray circles: observed mean and individual data. (GIF 137 kb)

High resolution images (TIF 1478 kb)

ESM 5

Predicted concentration-time profiles of midazolam after single oral doses of midazolam in comparison with observed mean data. Training dataset A–C: ref. (35,38) and evaluation dataset D-F: ref. (33,38). Solid line: predicted mean, dash-dotted line: predicted median, gray shaded area: predicted SD, dashed line: predicted minimum/maximum, gray circles: observed mean data. (GIF 150 kb)

High resolution images (TIF 1525 kb)

ESM 6

Predicted concentration-time profiles of digoxin after single intravenous doses of digoxin in comparison with observed mean data. Training dataset A–F: ref. (41,46) and evaluation dataset G–J: ref. (20,4244). Solid line: predicted mean, dash-dotted line: predicted median, gray shaded area: predicted SD, dashed line: predicted minimum/maximum, gray circles: observed mean data (± SD). (GIF 154 kb)

High resolution images (TIF 1478 kb)

ESM 7

Predicted concentration-time profiles of digoxin after single oral doses of digoxin in comparison with observed mean data. Training dataset A–C: ref. (44,47,49) and evaluation dataset D,E: ref. (41,50). Solid line: predicted mean, dash-dotted line: predicted median, gray shaded area: predicted SD, dashed line: predicted minimum/maximum, gray circles: observed mean data (± SD). (GIF 144 kb)

High resolution images (TIF 1452 kb)

ESM 8

Predicted concentration-time profiles of digoxin after multiple oral doses of digoxin in comparison with observed mean data. Training dataset A,B: ref. (52,53) and evaluation dataset C: ref. (54). Solid line: predicted mean, dash-dotted line: predicted median, gray shaded area: predicted SD, dashed line: predicted minimum/maximum, gray circles: observed mean data (± SD). (GIF 120 kb)

High resolution images (TIF 1042 kb)

ESM 9

Predicted concentration-time profiles of digoxin after single intravenous doses of digoxin (A,B: (26), C,D: (45)) with and without prior clarithromycin regimens in comparison with observed mean data. Solid line: predicted digoxin mean without prior clarithromycin, dashed line: predicted digoxin mean with prior clarithromycin, gray circles: observed mean digoxin without prior clarithromycin, gray triangles: observed mean digoxin with prior clarithromycin. Clarithromycin was administered orally (bid) with 250 mg (A,B) and 200 mg (C,D). (GIF 75 kb)

High resolution images (TIF 915 kb)

ESM 10

Parameter sensitivity analysis. The x-axis represents the logarithm of the factor by which the parameters are multiplied in order to vary them over a range of 0.1 to 10-fold. (GIF 80 kb)

High resolution images (TIF 693 kb)

ESM 11

(DOCX 19.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moj, D., Hanke, N., Britz, H. et al. Clarithromycin, Midazolam, and Digoxin: Application of PBPK Modeling to Gain New Insights into Drug–Drug Interactions and Co-medication Regimens. AAPS J 19, 298–312 (2017). https://doi.org/10.1208/s12248-016-0009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-0009-9

KEY WORDS

Navigation