Skip to main content
Top
Published in: Infection 5/2019

01-10-2019 | Tuberculosis | Review

Metformin in tuberculosis: beyond control of hyperglycemia

Authors: William Oglesby, Ali M. Kara, Hector Granados, Jorge L. Cervantes

Published in: Infection | Issue 5/2019

Login to get access

Abstract

Two global epidemics, diabetes mellitus (DM) and tuberculosis (TB), have converged making their control even more challenging. We herein have reviewed metformin’s (MTF) effect on patients with active and latent TB, as well as discussed its newly discovered biological mechanisms in mycobacteria. Mounting evidence suggests that MTF provides better outcomes in TB patients, especially those with DM. The mechanisms by which MTF produces its benefits are multiple. Though metformin’s potential has been proven in patients with DM, larger and more thorough clinical trials, in DM and non-DM-TB patients, need to be conducted. MTF could be added to the arsenal of anti-TB drugs, aiding in the goal of TB eradication worldwide.
Literature
1.
go back to reference Houben RM, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13:e1002152.CrossRef Houben RM, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13:e1002152.CrossRef
2.
go back to reference World Health Organization W. Global tuberculosis report. 2018. ISBN 978-92-4-156564-6 World Health Organization W. Global tuberculosis report. 2018. ISBN 978-92-4-156564-6
3.
go back to reference Ruslami R, Aarnoutse RE, Alisjahbana B, van der Ven AJ, van Crevel R. Implications of the global increase of diabetes for tuberculosis control and patient care. Trop Med Int Health TM & IH. 2010;15:1289–99.CrossRef Ruslami R, Aarnoutse RE, Alisjahbana B, van der Ven AJ, van Crevel R. Implications of the global increase of diabetes for tuberculosis control and patient care. Trop Med Int Health TM & IH. 2010;15:1289–99.CrossRef
4.
go back to reference Jeon CY, Harries AD, Baker MA, Hart JE, Kapur A, Lonnroth K, et al. Bi-directional screening for tuberculosis and diabetes: a systematic review. Trop Med Int Health TM & IH. 2010;15:1300–14.CrossRef Jeon CY, Harries AD, Baker MA, Hart JE, Kapur A, Lonnroth K, et al. Bi-directional screening for tuberculosis and diabetes: a systematic review. Trop Med Int Health TM & IH. 2010;15:1300–14.CrossRef
5.
go back to reference Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lonnroth K, et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med. 2011;9:81.CrossRef Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lonnroth K, et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med. 2011;9:81.CrossRef
6.
go back to reference Jeon CY, Murray M. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 2008;5(7):e152.CrossRef Jeon CY, Murray M. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 2008;5(7):e152.CrossRef
7.
go back to reference Chiang CY, Lee JJ, Chien ST, Enarson DA, Chang YC, Chen YT, et al. Glycemic control and radiographic manifestations of tuberculosis in diabetic patients. PLoS One. 2014;9:e93397.CrossRef Chiang CY, Lee JJ, Chien ST, Enarson DA, Chang YC, Chen YT, et al. Glycemic control and radiographic manifestations of tuberculosis in diabetic patients. PLoS One. 2014;9:e93397.CrossRef
8.
go back to reference Skowronski M, Zozulinska-Ziolkiewicz D, Barinow-Wojewodzki A. Tuberculosis and diabetes mellitus—an underappreciated association. Arch Med Sci AMS. 2014;10:1019–27.CrossRef Skowronski M, Zozulinska-Ziolkiewicz D, Barinow-Wojewodzki A. Tuberculosis and diabetes mellitus—an underappreciated association. Arch Med Sci AMS. 2014;10:1019–27.CrossRef
9.
go back to reference Kang YA. Tuberculosis treatment in patients with comorbidities. Tuberc Respir Dis. 2014;76:257–60.CrossRef Kang YA. Tuberculosis treatment in patients with comorbidities. Tuberc Respir Dis. 2014;76:257–60.CrossRef
10.
go back to reference Leow MK, Dalan R, Chee CB, Earnest A, Chew DE, Tan AW, et al. Latent tuberculosis in patients with diabetes mellitus: prevalence, progression and public health implications. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Germ Diabetes Assoc. 2014;122(9):528–32. Leow MK, Dalan R, Chee CB, Earnest A, Chew DE, Tan AW, et al. Latent tuberculosis in patients with diabetes mellitus: prevalence, progression and public health implications. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Germ Diabetes Assoc. 2014;122(9):528–32.
11.
go back to reference Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci. 2012;122:253–70.CrossRef Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci. 2012;122:253–70.CrossRef
12.
go back to reference El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275:223–8.CrossRef El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275:223–8.CrossRef
13.
go back to reference Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348:607–14.CrossRef Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348:607–14.CrossRef
14.
go back to reference Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Investig. 2001;108:1167–74.CrossRef Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Investig. 2001;108:1167–74.CrossRef
15.
go back to reference van Crevel R, Koesoemadinata R, Hill PC, Harries AD. Clinical management of combined tuberculosis and diabetes. Int J Tuberc Lung Dis Off J Int Union Against Tuberc Lung Dis. 2018;22:1404–10.CrossRef van Crevel R, Koesoemadinata R, Hill PC, Harries AD. Clinical management of combined tuberculosis and diabetes. Int J Tuberc Lung Dis Off J Int Union Against Tuberc Lung Dis. 2018;22:1404–10.CrossRef
16.
go back to reference Lee MC, Chiang CY, Lee CH, Ho CM, Chang CH, Wang JY, et al. Metformin use is associated with a low risk of tuberculosis among newly diagnosed diabetes mellitus patients with normal renal function: a nationwide cohort study with validated diagnostic criteria. PLoS One. 2018;13:e0205807.CrossRef Lee MC, Chiang CY, Lee CH, Ho CM, Chang CH, Wang JY, et al. Metformin use is associated with a low risk of tuberculosis among newly diagnosed diabetes mellitus patients with normal renal function: a nationwide cohort study with validated diagnostic criteria. PLoS One. 2018;13:e0205807.CrossRef
17.
go back to reference Tseng CH. Metformin decreases risk of tuberculosis infection in type 2 diabetes patients. J Clin Med. 2018;7(9):264.CrossRef Tseng CH. Metformin decreases risk of tuberculosis infection in type 2 diabetes patients. J Clin Med. 2018;7(9):264.CrossRef
18.
go back to reference Lin SY, Tu HP, Lu PL, Chen TC, Wang WH, Chong IW, et al. Metformin is associated with a lower risk of active tuberculosis in patients with type 2 diabetes. Respirology. 2018;23:1063–73.CrossRef Lin SY, Tu HP, Lu PL, Chen TC, Wang WH, Chong IW, et al. Metformin is associated with a lower risk of active tuberculosis in patients with type 2 diabetes. Respirology. 2018;23:1063–73.CrossRef
19.
go back to reference Marupuru S, Senapati P, Pathadka S, Miraj SS, Unnikrishnan MK, Manu MK. Protective effect of metformin against tuberculosis infections in diabetic patients: an observational study of south Indian tertiary healthcare facility. Braz J Infect Dis Off Publ Braz Soc Infect Dis. 2017;21:312–6. Marupuru S, Senapati P, Pathadka S, Miraj SS, Unnikrishnan MK, Manu MK. Protective effect of metformin against tuberculosis infections in diabetic patients: an observational study of south Indian tertiary healthcare facility. Braz J Infect Dis Off Publ Braz Soc Infect Dis. 2017;21:312–6.
20.
go back to reference Ma Y, Pang Y, Shu W, Liu YH, Ge QP, Du J, et al. Metformin reduces the relapse rate of tuberculosis patients with diabetes mellitus: experiences from 3-year follow-up. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2018;37:1259–63.CrossRef Ma Y, Pang Y, Shu W, Liu YH, Ge QP, Du J, et al. Metformin reduces the relapse rate of tuberculosis patients with diabetes mellitus: experiences from 3-year follow-up. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2018;37:1259–63.CrossRef
21.
go back to reference Novita BD, Soediono EI, Nugraha J. Metformin associated inflammation levels regulation in type 2 diabetes mellitus-tuberculosis coinfection patients—a case report. Indian J Tuberc. 2018;65:345–9.CrossRef Novita BD, Soediono EI, Nugraha J. Metformin associated inflammation levels regulation in type 2 diabetes mellitus-tuberculosis coinfection patients—a case report. Indian J Tuberc. 2018;65:345–9.CrossRef
22.
go back to reference Novita BD, Ali M, Pranoto A, Soediono EI, Mertaniasih NM. Metformin induced autophagy in diabetes mellitus–tuberculosis co-infection patients: a case study. Indian J Tuberc. 2019;66:64–9.CrossRef Novita BD, Ali M, Pranoto A, Soediono EI, Mertaniasih NM. Metformin induced autophagy in diabetes mellitus–tuberculosis co-infection patients: a case study. Indian J Tuberc. 2019;66:64–9.CrossRef
23.
go back to reference Lee YJ, Han SK, Park JH, Lee JK, Kim DK, Chung HS, et al. The effect of metformin on culture conversion in tuberculosis patients with diabetes mellitus. Korean J Intern Med. 2018;33:933–40.CrossRef Lee YJ, Han SK, Park JH, Lee JK, Kim DK, Chung HS, et al. The effect of metformin on culture conversion in tuberculosis patients with diabetes mellitus. Korean J Intern Med. 2018;33:933–40.CrossRef
24.
go back to reference Degner NR, Wang JY, Golub JE, Karakousis PC. Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment. Clin Infect Dis Off Publ Infect Dis Soc Am. 2018;66:198–205.CrossRef Degner NR, Wang JY, Golub JE, Karakousis PC. Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment. Clin Infect Dis Off Publ Infect Dis Soc Am. 2018;66:198–205.CrossRef
25.
go back to reference Cho SK, Yoon JS, Lee MG, Lee DH, Lim LA, Park K, et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther. 2011;89:416–21.CrossRef Cho SK, Yoon JS, Lee MG, Lee DH, Lim LA, Park K, et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther. 2011;89:416–21.CrossRef
26.
go back to reference Te Brake LHM, Yunivita V, Livia R, Soetedjo N, van Ewijk-Beneken Kolmer E, Koenderink JB, et al. Rifampicin alters metformin plasma exposure but not blood glucose levels in diabetic tuberculosis patients. Clin Pharmacol Ther. 2018;105(3):730–7.CrossRef Te Brake LHM, Yunivita V, Livia R, Soetedjo N, van Ewijk-Beneken Kolmer E, Koenderink JB, et al. Rifampicin alters metformin plasma exposure but not blood glucose levels in diabetic tuberculosis patients. Clin Pharmacol Ther. 2018;105(3):730–7.CrossRef
28.
go back to reference Singhal A, Jie L, Kumar P, Hong GS, Leow MK, Paleja B, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med. 2014;6(263):263ra159.CrossRef Singhal A, Jie L, Kumar P, Hong GS, Leow MK, Paleja B, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med. 2014;6(263):263ra159.CrossRef
29.
go back to reference Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife. 2014;3:e02242.CrossRef Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife. 2014;3:e02242.CrossRef
30.
go back to reference Vashisht R, Brahmachari SK. Metformin as a potential combination therapy with existing front-line antibiotics for tuberculosis. J Transl Med. 2015;13:83.CrossRef Vashisht R, Brahmachari SK. Metformin as a potential combination therapy with existing front-line antibiotics for tuberculosis. J Transl Med. 2015;13:83.CrossRef
31.
go back to reference Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004;305:1622–5.CrossRef Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004;305:1622–5.CrossRef
32.
go back to reference Leung CC. Repurposing metformin to prevent and treat tuberculosis. Respirology. 2018;23:974–5.CrossRef Leung CC. Repurposing metformin to prevent and treat tuberculosis. Respirology. 2018;23:974–5.CrossRef
33.
go back to reference Restrepo BI. Metformin: candidate host-directed therapy for tuberculosis in diabetes and non-diabetes patients. Tuberculosis. 2016;101S:S69–72.CrossRef Restrepo BI. Metformin: candidate host-directed therapy for tuberculosis in diabetes and non-diabetes patients. Tuberculosis. 2016;101S:S69–72.CrossRef
34.
go back to reference Rayasam GV, Balganesh TS. Exploring the potential of adjunct therapy in tuberculosis. Trends Pharmacol Sci. 2015;36:506–13.CrossRef Rayasam GV, Balganesh TS. Exploring the potential of adjunct therapy in tuberculosis. Trends Pharmacol Sci. 2015;36:506–13.CrossRef
35.
go back to reference Carranza C, Chavez-Galan L. Several routes to the same destination: inhibition of phagosome-lysosome fusion by Mycobacterium tuberculosis. Am J Med Sci. 2019;357:184–94.CrossRef Carranza C, Chavez-Galan L. Several routes to the same destination: inhibition of phagosome-lysosome fusion by Mycobacterium tuberculosis. Am J Med Sci. 2019;357:184–94.CrossRef
36.
go back to reference Koziel H, Koziel MJ. Pulmonary complications of diabetes mellitus. Pneumonia. Infect Dis Clin N Am. 1995;9:65–96. Koziel H, Koziel MJ. Pulmonary complications of diabetes mellitus. Pneumonia. Infect Dis Clin N Am. 1995;9:65–96.
37.
go back to reference Guirado E, Schlesinger LS, Kaplan G. Macrophages in tuberculosis: friend or foe. Semin Immunopathol. 2013;35:563–83.CrossRef Guirado E, Schlesinger LS, Kaplan G. Macrophages in tuberculosis: friend or foe. Semin Immunopathol. 2013;35:563–83.CrossRef
38.
go back to reference Kumari P, Meena LS. Factors affecting susceptibility to Mycobacterium tuberculosis: a close view of immunological defence mechanism. Appl Biochem Biotechnol. 2014;174:2663–73.CrossRef Kumari P, Meena LS. Factors affecting susceptibility to Mycobacterium tuberculosis: a close view of immunological defence mechanism. Appl Biochem Biotechnol. 2014;174:2663–73.CrossRef
40.
go back to reference Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 2010;466:973–7.CrossRef Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 2010;466:973–7.CrossRef
41.
go back to reference Lienard J, Movert E, Valfridsson C, Sturegard E, Carlsson F. ESX-1 exploits type I IFN-signalling to promote a regulatory macrophage phenotype refractory to IFNgamma-mediated autophagy and growth restriction of intracellular mycobacteria. Cell Microbiol. 2016;18:1471–85.CrossRef Lienard J, Movert E, Valfridsson C, Sturegard E, Carlsson F. ESX-1 exploits type I IFN-signalling to promote a regulatory macrophage phenotype refractory to IFNgamma-mediated autophagy and growth restriction of intracellular mycobacteria. Cell Microbiol. 2016;18:1471–85.CrossRef
42.
go back to reference Teles RM, Graeber TG, Krutzik SR, Montoya D, Schenk M, Lee DJ, et al. Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science. 2013;339:1448–53.CrossRef Teles RM, Graeber TG, Krutzik SR, Montoya D, Schenk M, Lee DJ, et al. Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science. 2013;339:1448–53.CrossRef
43.
go back to reference Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20:953–66.CrossRef Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20:953–66.CrossRef
44.
go back to reference Moller HJ, Aerts H, Gronbaek H, Peterslund NA, Hyltoft Petersen P, Hornung N, et al. Soluble CD163: a marker molecule for monocyte/macrophage activity in disease. Scand J Clin Lab Investig Suppl. 2002;237:29–33.CrossRef Moller HJ, Aerts H, Gronbaek H, Peterslund NA, Hyltoft Petersen P, Hornung N, et al. Soluble CD163: a marker molecule for monocyte/macrophage activity in disease. Scand J Clin Lab Investig Suppl. 2002;237:29–33.CrossRef
45.
go back to reference Su GL, Simmons RL, Wang SC. Lipopolysaccharide binding protein participation in cellular activation by LPS. Crit Rev Immunol. 1995;15:201–14.CrossRef Su GL, Simmons RL, Wang SC. Lipopolysaccharide binding protein participation in cellular activation by LPS. Crit Rev Immunol. 1995;15:201–14.CrossRef
46.
go back to reference Kumar NP, Moideen K, Bhootra Y, Nancy A, Viswanathan V, Shruthi BS, et al. Elevated circulating levels of monocyte activation markers among tuberculosis patients with diabetes co-morbidity. Immunology. 2018;156(3):249–58.PubMed Kumar NP, Moideen K, Bhootra Y, Nancy A, Viswanathan V, Shruthi BS, et al. Elevated circulating levels of monocyte activation markers among tuberculosis patients with diabetes co-morbidity. Immunology. 2018;156(3):249–58.PubMed
47.
go back to reference Xu Y, Wang L, Zimmerman MD, Chen KY, Huang L, Fu DJ, et al. Matrix metalloproteinase inhibitors enhance the efficacy of frontline drugs against Mycobacterium tuberculosis. PLoS Pathog. 2018;14:e1006974.CrossRef Xu Y, Wang L, Zimmerman MD, Chen KY, Huang L, Fu DJ, et al. Matrix metalloproteinase inhibitors enhance the efficacy of frontline drugs against Mycobacterium tuberculosis. PLoS Pathog. 2018;14:e1006974.CrossRef
48.
go back to reference Kumar NP, Moideen K, Viswanathan V, Shruthi BS, Sivakumar S, Menon PA, et al. Elevated levels of matrix metalloproteinases reflect severity and extent of disease in tuberculosis-diabetes co-morbidity and are predominantly reversed following standard anti-tuberculosis or metformin treatment. BMC Infect Dis. 2018;18:345.CrossRef Kumar NP, Moideen K, Viswanathan V, Shruthi BS, Sivakumar S, Menon PA, et al. Elevated levels of matrix metalloproteinases reflect severity and extent of disease in tuberculosis-diabetes co-morbidity and are predominantly reversed following standard anti-tuberculosis or metformin treatment. BMC Infect Dis. 2018;18:345.CrossRef
Metadata
Title
Metformin in tuberculosis: beyond control of hyperglycemia
Authors
William Oglesby
Ali M. Kara
Hector Granados
Jorge L. Cervantes
Publication date
01-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Infection / Issue 5/2019
Print ISSN: 0300-8126
Electronic ISSN: 1439-0973
DOI
https://doi.org/10.1007/s15010-019-01322-5

Other articles of this Issue 5/2019

Infection 5/2019 Go to the issue