Skip to main content
Top
Published in: Current Nutrition Reports 2/2020

01-06-2020 | Nicotinic Acid | Nutrition and Aging (Y Gu, Section Editor)

The Role of Nutrition in Individualized Alzheimer’s Risk Reduction

Authors: Yasmin Amini, Nabeel Saif, Christine Greer, Hollie Hristov, Richard Isaacson

Published in: Current Nutrition Reports | Issue 2/2020

Login to get access

Abstract

Purpose of Review

Decades of research suggests nutritional interventions can be an effective tool for reducing risk of Alzheimer’s disease (AD), especially as part of an individualized clinical management plan. This review aims to emphasize new findings examining how specific dietary changes may delay or possibly prevent AD onset, and highlight how interventions can be adopted in clinical practice based on emerging principles of precision medicine.

Recent Findings

Specific dietary patterns and varied nutrient combinations can have a protective effect on brain health, promote cognitive function, and mediate the comorbidity of chronic conditions associated with increased AD risk.

Summary

Individuals at risk for AD may see a greater impact of evidence-based dietary changes when initiated earlier in the AD spectrum. Depending on individual clinical profiles, incorporation of nutrition strategies is an essential component of an AD risk reduction plan in clinical practice.
Literature
1.
go back to reference Association As. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement. 2019;15(3):321–87.CrossRef Association As. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement. 2019;15(3):321–87.CrossRef
2.
go back to reference Brookmeyer R, Abdalla N, Kawas CH, Corrada MM. Forecasting the prevalence of preclinical and clinical Alzheimer’s disease in the United States. Alzheimers Dement. 2018;14(2):121–9.PubMedCrossRef Brookmeyer R, Abdalla N, Kawas CH, Corrada MM. Forecasting the prevalence of preclinical and clinical Alzheimer’s disease in the United States. Alzheimers Dement. 2018;14(2):121–9.PubMedCrossRef
3.
go back to reference Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673–734.PubMedCrossRef Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673–734.PubMedCrossRef
4.
go back to reference Schelke MW, Attia P, Palenchar DJ, Kaplan B, Mureb M, Ganzer CA, et al. Mechanisms of risk reduction in the clinical practice of Alzheimer’s disease prevention. Front Aging Neurosci. 2018;10:96.PubMedPubMedCentralCrossRef Schelke MW, Attia P, Palenchar DJ, Kaplan B, Mureb M, Ganzer CA, et al. Mechanisms of risk reduction in the clinical practice of Alzheimer’s disease prevention. Front Aging Neurosci. 2018;10:96.PubMedPubMedCentralCrossRef
5.
go back to reference Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94.PubMedCrossRef Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94.PubMedCrossRef
6.
go back to reference Brayne C, Miller B. Dementia and aging populations—a global priority for contextualized research and health policy. Public Library of Science; 2017. Brayne C, Miller B. Dementia and aging populations—a global priority for contextualized research and health policy. Public Library of Science; 2017.
7.
go back to reference Hodes JF, Oakley CI, O’Keefe JH, Lu P, Galvin JE, Saif N, et al. Alzheimer’s “Prevention” vs.“Risk Reduction”: transcending semantics for clinical practice. Front Neurol. 2018;9. Hodes JF, Oakley CI, O’Keefe JH, Lu P, Galvin JE, Saif N, et al. Alzheimer’s “Prevention” vs.“Risk Reduction”: transcending semantics for clinical practice. Front Neurol. 2018;9.
8.
go back to reference •• Isaacson RS, Ganzer CA, Hristov H, Hackett K, Caesar E, Cohen R, et al. The clinical practice of risk reduction for Alzheimer’s disease: a precision medicine approach. Alzheimers Dement. 2018;14(12):1663–73. Importance: This study describes a novel clinical methodology used to assess risk and inform therapeutic interventions for individual patients seeking treatment for AD prevention. Preliminary results provided in the paper suggest risk reduction is possible, with measurable improvements of cognition and biomarkers of AD risk. The discussion also evaluates the effectiveness of personalized clinical management plans and feasibility of future research in the field of individualized AD prevention.PubMedPubMedCentralCrossRef •• Isaacson RS, Ganzer CA, Hristov H, Hackett K, Caesar E, Cohen R, et al. The clinical practice of risk reduction for Alzheimer’s disease: a precision medicine approach. Alzheimers Dement. 2018;14(12):1663–73. Importance: This study describes a novel clinical methodology used to assess risk and inform therapeutic interventions for individual patients seeking treatment for AD prevention. Preliminary results provided in the paper suggest risk reduction is possible, with measurable improvements of cognition and biomarkers of AD risk. The discussion also evaluates the effectiveness of personalized clinical management plans and feasibility of future research in the field of individualized AD prevention.PubMedPubMedCentralCrossRef
9.
go back to reference • Schelke MW, Hackett K, Chen JL, Shih C, Shum J, Montgomery ME, et al. Nutritional interventions for Alzheimer’s prevention: a clinical precision medicine approach. Ann N Y Acad Sci. 2016;1367(1):50. Importance: This analysis of existing nutritional modalities provides background that can inform preventive AD dietary interventions. It also reports preliminary results from the first US Alzheimer’s Prevention Clinic, highlighting the unmet need for individualized precision medicine in clinical AD care.PubMedPubMedCentralCrossRef • Schelke MW, Hackett K, Chen JL, Shih C, Shum J, Montgomery ME, et al. Nutritional interventions for Alzheimer’s prevention: a clinical precision medicine approach. Ann N Y Acad Sci. 2016;1367(1):50. Importance: This analysis of existing nutritional modalities provides background that can inform preventive AD dietary interventions. It also reports preliminary results from the first US Alzheimer’s Prevention Clinic, highlighting the unmet need for individualized precision medicine in clinical AD care.PubMedPubMedCentralCrossRef
10.
go back to reference Pistollato F, Iglesias RC, Ruiz R, Aparicio S, Crespo J, Lopez LD, et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: a focus on human studies. Pharmacol Res. 2018;131:32–43.PubMedCrossRef Pistollato F, Iglesias RC, Ruiz R, Aparicio S, Crespo J, Lopez LD, et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: a focus on human studies. Pharmacol Res. 2018;131:32–43.PubMedCrossRef
11.
go back to reference Shah R. The role of nutrition and diet in Alzheimer disease: a systematic review. J Am Med Dir Assoc. 2013;14(6):398–402.PubMedCrossRef Shah R. The role of nutrition and diet in Alzheimer disease: a systematic review. J Am Med Dir Assoc. 2013;14(6):398–402.PubMedCrossRef
12.
go back to reference Bloom GS, Lazo JS, Norambuena A. Reduced brain insulin signaling: a seminal process in Alzheimer’s disease pathogenesis. Neuropharmacology. 2018;136:192–5.PubMedCrossRef Bloom GS, Lazo JS, Norambuena A. Reduced brain insulin signaling: a seminal process in Alzheimer’s disease pathogenesis. Neuropharmacology. 2018;136:192–5.PubMedCrossRef
14.
go back to reference Seifan A, Isaacson R. The Alzheimer’s prevention clinic at Weill Cornell Medical College/New York-Presbyterian Hospital: risk stratification and personalized early intervention. J Prev Alzheimers Dis. 2015;2(4):254–66.PubMedPubMedCentral Seifan A, Isaacson R. The Alzheimer’s prevention clinic at Weill Cornell Medical College/New York-Presbyterian Hospital: risk stratification and personalized early intervention. J Prev Alzheimers Dis. 2015;2(4):254–66.PubMedPubMedCentral
15.
go back to reference Frith E, Shivappa N, Mann JR, Hébert JR, Wirth MD, Loprinzi PD. Dietary inflammatory index and memory function: population-based national sample of elderly Americans. Br J Nutr. 2018;119(5):552–8.PubMedPubMedCentralCrossRef Frith E, Shivappa N, Mann JR, Hébert JR, Wirth MD, Loprinzi PD. Dietary inflammatory index and memory function: population-based national sample of elderly Americans. Br J Nutr. 2018;119(5):552–8.PubMedPubMedCentralCrossRef
16.
go back to reference Anastasiou CA, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou GM, Sakka P, et al. Mediterranean diet and cognitive health: initial results from the Hellenic Longitudinal Investigation of Ageing and Diet. PLoS One. 2017;12(8):e0182048.PubMedPubMedCentralCrossRef Anastasiou CA, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou GM, Sakka P, et al. Mediterranean diet and cognitive health: initial results from the Hellenic Longitudinal Investigation of Ageing and Diet. PLoS One. 2017;12(8):e0182048.PubMedPubMedCentralCrossRef
17.
go back to reference • McGrattan AM, McGuinness B, McKinley MC, Kee F, Passmore P, Woodside JV, et al. Diet and inflammation in cognitive ageing and Alzheimer’s disease. Curr Nutr Rep. 2019;8(2):53–65. This review provides evidence on the impact of healthy dietary patterns on cognitive functioning. The authors specifically highlight findings surrounding anti-inflammatory diets (such as MIND and DASH) and the mechanisms by which they mitigate neuro-inflammation via indirect integumentary and circulatory pathways.PubMedPubMedCentralCrossRef • McGrattan AM, McGuinness B, McKinley MC, Kee F, Passmore P, Woodside JV, et al. Diet and inflammation in cognitive ageing and Alzheimer’s disease. Curr Nutr Rep. 2019;8(2):53–65. This review provides evidence on the impact of healthy dietary patterns on cognitive functioning. The authors specifically highlight findings surrounding anti-inflammatory diets (such as MIND and DASH) and the mechanisms by which they mitigate neuro-inflammation via indirect integumentary and circulatory pathways.PubMedPubMedCentralCrossRef
18.
go back to reference Lau FC, Shukitt-Hale B, Joseph JA. Nutritional intervention in brain aging. Inflammation in the pathogenesis of chronic diseases: Springer; 2007. p. 299–318. Lau FC, Shukitt-Hale B, Joseph JA. Nutritional intervention in brain aging. Inflammation in the pathogenesis of chronic diseases: Springer; 2007. p. 299–318.
20.
go back to reference Agosti P, Custodero C, Schilardi A, Valiani V, D’Introno A, Lozupone M, et al. Nutritional interventions in patients with Alzheimer’s disease and other late-life cognitive disorders. J Gerontol Geriatr. 2018;66(2):101–18. Agosti P, Custodero C, Schilardi A, Valiani V, D’Introno A, Lozupone M, et al. Nutritional interventions in patients with Alzheimer’s disease and other late-life cognitive disorders. J Gerontol Geriatr. 2018;66(2):101–18.
21.
go back to reference Holland TM, Agarwal P, Wang Y, Leurgans SE, Bennett DA, Booth SL, et al. Dietary flavonols and risk of Alzheimer dementia. Neurology. 2020. Holland TM, Agarwal P, Wang Y, Leurgans SE, Bennett DA, Booth SL, et al. Dietary flavonols and risk of Alzheimer dementia. Neurology. 2020.
23.
go back to reference Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules. 2020;10(1):59.CrossRef Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules. 2020;10(1):59.CrossRef
24.
go back to reference Mastroiacovo D, Kwik-Uribe C, Grassi D, Necozione S, Raffaele A, Pistacchio L, et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) study—a randomized controlled trial. Am J Clin Nutr. 2015;101(3):538–48.PubMedCrossRef Mastroiacovo D, Kwik-Uribe C, Grassi D, Necozione S, Raffaele A, Pistacchio L, et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) study—a randomized controlled trial. Am J Clin Nutr. 2015;101(3):538–48.PubMedCrossRef
25.
go back to reference Dolan C, Glynn R, Griffin S, Conroy C, Loftus C, Wiehe P, et al. Brain complications of diabetes mellitus: a cross-sectional study of awareness among individuals with diabetes and the general population in Ireland. Diabet Med. 2018;35(7):871–9.PubMedCrossRef Dolan C, Glynn R, Griffin S, Conroy C, Loftus C, Wiehe P, et al. Brain complications of diabetes mellitus: a cross-sectional study of awareness among individuals with diabetes and the general population in Ireland. Diabet Med. 2018;35(7):871–9.PubMedCrossRef
26.
go back to reference Lee HJ, Seo HI, Cha HY, Yang YJ, Kwon SH, Yang SJ. Diabetes and Alzheimer’s disease: mechanisms and nutritional aspects. Clin Nutr Res. 2018;7(4):229–40.PubMedPubMedCentralCrossRef Lee HJ, Seo HI, Cha HY, Yang YJ, Kwon SH, Yang SJ. Diabetes and Alzheimer’s disease: mechanisms and nutritional aspects. Clin Nutr Res. 2018;7(4):229–40.PubMedPubMedCentralCrossRef
28.
go back to reference Bosco D, Fava A, Plastino M, Montalcini T, Pujia A. Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J Cell Mol Med. 2011;15(9):1807–21.PubMedPubMedCentralCrossRef Bosco D, Fava A, Plastino M, Montalcini T, Pujia A. Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J Cell Mol Med. 2011;15(9):1807–21.PubMedPubMedCentralCrossRef
29.
go back to reference Ashfaq M, Talreja N, Chuahan D, Srituravanich W. Carbon nanostructure-based materials: a novel tool for detection of Alzheimer’s disease. Biological, Diagnostic and Therapeutic Advances in Alzheimer’s Disease: Springer; 2019. p. 71–89. Ashfaq M, Talreja N, Chuahan D, Srituravanich W. Carbon nanostructure-based materials: a novel tool for detection of Alzheimer’s disease. Biological, Diagnostic and Therapeutic Advances in Alzheimer’s Disease: Springer; 2019. p. 71–89.
30.
go back to reference Taylor MK, Sullivan DK, Swerdlow RH, Vidoni ED, Morris JK, Mahnken JD, et al. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr. 2017;106(6):1463–70.PubMedPubMedCentralCrossRef Taylor MK, Sullivan DK, Swerdlow RH, Vidoni ED, Morris JK, Mahnken JD, et al. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr. 2017;106(6):1463–70.PubMedPubMedCentralCrossRef
31.
go back to reference Johnson ML, Distelmaier K, Lanza IR, Irving BA, Robinson MM, Konopka AR, et al. Mechanism by which caloric restriction improves insulin sensitivity in sedentary obese adults. Diabetes. 2016;65(1):74–84.PubMed Johnson ML, Distelmaier K, Lanza IR, Irving BA, Robinson MM, Konopka AR, et al. Mechanism by which caloric restriction improves insulin sensitivity in sedentary obese adults. Diabetes. 2016;65(1):74–84.PubMed
32.
go back to reference Aksungar FB, Sarikaya M, Coskun A, Serteser M, Unsal I. Comparison of intermittent fasting versus caloric restriction in obese subjects: a two year follow-up. J Nutr Health Aging. 2017;21(6):681–5.PubMedCrossRef Aksungar FB, Sarikaya M, Coskun A, Serteser M, Unsal I. Comparison of intermittent fasting versus caloric restriction in obese subjects: a two year follow-up. J Nutr Health Aging. 2017;21(6):681–5.PubMedCrossRef
33.
go back to reference Corley B, Carroll R, Hall R, Weatherall M, Parry-Strong A, Krebs J. Intermittent fasting in type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabet Med. 2018;35(5):588–94.PubMedCrossRef Corley B, Carroll R, Hall R, Weatherall M, Parry-Strong A, Krebs J. Intermittent fasting in type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabet Med. 2018;35(5):588–94.PubMedCrossRef
35.
go back to reference Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, et al. Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: a pilot clinical trial. J Alzheimers Dis. 2017;57(4):1325–34.PubMedPubMedCentralCrossRef Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, et al. Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: a pilot clinical trial. J Alzheimers Dis. 2017;57(4):1325–34.PubMedPubMedCentralCrossRef
36.
go back to reference Chapman CD, Schiöth HB, Grillo CA, Benedict C. Intranasal insulin in Alzheimer’s disease: food for thought. Neuropharmacology. 2018;136:196–201.PubMedCrossRef Chapman CD, Schiöth HB, Grillo CA, Benedict C. Intranasal insulin in Alzheimer’s disease: food for thought. Neuropharmacology. 2018;136:196–201.PubMedCrossRef
37.
go back to reference Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, et al. Alzheimer’s disease and metabolic syndrome: a link from oxidative stress and inflammation to neurodegeneration. Synapse. 2017;71(10):e21990.PubMedCrossRef Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, et al. Alzheimer’s disease and metabolic syndrome: a link from oxidative stress and inflammation to neurodegeneration. Synapse. 2017;71(10):e21990.PubMedCrossRef
38.
go back to reference de Lima Oliveira BC, Bellozi PMQ, Reis HJ, de Oliveira ACP. Inflammation as a possible link between dyslipidemia and Alzheimer’s disease. Neuroscience. 2018;376:127–41.CrossRef de Lima Oliveira BC, Bellozi PMQ, Reis HJ, de Oliveira ACP. Inflammation as a possible link between dyslipidemia and Alzheimer’s disease. Neuroscience. 2018;376:127–41.CrossRef
39.
go back to reference Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013;368(2):107–16.PubMedCrossRef Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013;368(2):107–16.PubMedCrossRef
40.
go back to reference Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S. Alterations in cholesterol metabolism as a risk factor for developing Alzheimer´ s disease: potential novel targets for treatment. J Steroid Biochem Mol Biol. 2019. Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S. Alterations in cholesterol metabolism as a risk factor for developing Alzheimer´ s disease: potential novel targets for treatment. J Steroid Biochem Mol Biol. 2019.
41.
go back to reference Celik E, Sanlier N. Effects of nutrient and bioactive food components on Alzheimer’s disease and epigenetic. Crit Rev Food Sci Nutr. 2019;59(1):102–13.PubMedCrossRef Celik E, Sanlier N. Effects of nutrient and bioactive food components on Alzheimer’s disease and epigenetic. Crit Rev Food Sci Nutr. 2019;59(1):102–13.PubMedCrossRef
42.
go back to reference Qin B, Xun P, Jacobs DR Jr, Zhu N, Daviglus ML, Reis JP, et al. Intake of niacin, folate, vitamin B-6, and vitamin B-12 through young adulthood and cognitive function in midlife: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Am J Clin Nutr. 2017;106(4):1032–40.PubMedPubMedCentralCrossRef Qin B, Xun P, Jacobs DR Jr, Zhu N, Daviglus ML, Reis JP, et al. Intake of niacin, folate, vitamin B-6, and vitamin B-12 through young adulthood and cognitive function in midlife: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Am J Clin Nutr. 2017;106(4):1032–40.PubMedPubMedCentralCrossRef
43.
go back to reference Morris MC, Evans DA, Bienias JL, Scherr PA, Tangney CC, Hebert LE, et al. Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J Neurol Neurosurg Psychiatry. 2004;75(8):1093–9.PubMedPubMedCentralCrossRef Morris MC, Evans DA, Bienias JL, Scherr PA, Tangney CC, Hebert LE, et al. Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J Neurol Neurosurg Psychiatry. 2004;75(8):1093–9.PubMedPubMedCentralCrossRef
44.
go back to reference Mielgo-Ayuso J, Aparicio-Ugarriza R, Olza J, Aranceta-Bartrina J, Gil Á, Ortega RM, et al. Dietary intake and food sources of niacin, riboflavin, thiamin and vitamin B6 in a representative sample of the Spanish population. The ANIBES Study. Nutrients. 2018;10(7):846.PubMedCentralCrossRef Mielgo-Ayuso J, Aparicio-Ugarriza R, Olza J, Aranceta-Bartrina J, Gil Á, Ortega RM, et al. Dietary intake and food sources of niacin, riboflavin, thiamin and vitamin B6 in a representative sample of the Spanish population. The ANIBES Study. Nutrients. 2018;10(7):846.PubMedCentralCrossRef
45.
go back to reference Moloney M. The role of omega-3 fatty acids in the prevention of Alzheimer’s disease in the early stages of disease presentation. J Aust Tradit Med Soc. 2019;25(2):90. Moloney M. The role of omega-3 fatty acids in the prevention of Alzheimer’s disease in the early stages of disease presentation. J Aust Tradit Med Soc. 2019;25(2):90.
46.
go back to reference Nolan JM, Mulcahy R, Power R, Moran R, Howard AN. Nutritional intervention to prevent Alzheimer’s disease: potential benefits of xanthophyll carotenoids and omega-3 fatty acids combined. J Alzheimers Dis. 2018;64(2):367–78.PubMedCrossRef Nolan JM, Mulcahy R, Power R, Moran R, Howard AN. Nutritional intervention to prevent Alzheimer’s disease: potential benefits of xanthophyll carotenoids and omega-3 fatty acids combined. J Alzheimers Dis. 2018;64(2):367–78.PubMedCrossRef
47.
go back to reference Power MC, Rawlings A, Sharrett AR, Bandeen-Roche K, Coresh J, Ballantyne CM, et al. Association of midlife lipids with 20-year cognitive change: a cohort study. Alzheimers Dement. 2018;14(2):167–77.PubMedCrossRef Power MC, Rawlings A, Sharrett AR, Bandeen-Roche K, Coresh J, Ballantyne CM, et al. Association of midlife lipids with 20-year cognitive change: a cohort study. Alzheimers Dement. 2018;14(2):167–77.PubMedCrossRef
48.
go back to reference Mecocci P, Boccardi V, Cecchetti R, Bastiani P, Scamosci M, Ruggiero C, et al. A long journey into aging, brain aging, and Alzheimer’s disease following the oxidative stress tracks. J Alzheimers Dis. 2018;62(3):1319–35.PubMedPubMedCentralCrossRef Mecocci P, Boccardi V, Cecchetti R, Bastiani P, Scamosci M, Ruggiero C, et al. A long journey into aging, brain aging, and Alzheimer’s disease following the oxidative stress tracks. J Alzheimers Dis. 2018;62(3):1319–35.PubMedPubMedCentralCrossRef
49.
go back to reference Ballaz SJ, Rebec GV. Neurobiology of vitamin C: expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol Res 2019:104321. Ballaz SJ, Rebec GV. Neurobiology of vitamin C: expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol Res 2019:104321.
50.
go back to reference Yassine HN, Braskie MN, Mack WJ, Castor KJ, Fonteh AN, Schneider LS, et al. Association of docosahexaenoic acid supplementation with Alzheimer disease stage in apolipoprotein E ε4 carriers: a review. JAMA Neurol. 2017;74(3):339–47.PubMedPubMedCentralCrossRef Yassine HN, Braskie MN, Mack WJ, Castor KJ, Fonteh AN, Schneider LS, et al. Association of docosahexaenoic acid supplementation with Alzheimer disease stage in apolipoprotein E ε4 carriers: a review. JAMA Neurol. 2017;74(3):339–47.PubMedPubMedCentralCrossRef
51.
go back to reference Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK, et al. Association of antioxidant supplement use and dementia in the prevention of Alzheimer’s disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol. 2017;74(5):567–73.PubMedPubMedCentralCrossRef Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK, et al. Association of antioxidant supplement use and dementia in the prevention of Alzheimer’s disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol. 2017;74(5):567–73.PubMedPubMedCentralCrossRef
52.
go back to reference Yusufov M, Weyandt LL, Piryatinsky I. Alzheimer’s disease and diet: a systematic review. Int J Neurosci. 2017;127(2):161–75.PubMedCrossRef Yusufov M, Weyandt LL, Piryatinsky I. Alzheimer’s disease and diet: a systematic review. Int J Neurosci. 2017;127(2):161–75.PubMedCrossRef
53.
go back to reference Smith AD, Smith SM, De Jager CA, Whitbread P, Johnston C, Agacinski G, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9). Smith AD, Smith SM, De Jager CA, Whitbread P, Johnston C, Agacinski G, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9).
54.
go back to reference Velazquez R, Ferreira E, Winslow W, Dave N, Piras IS, Naymik M, et al. Maternal choline supplementation ameliorates Alzheimer’s disease pathology by reducing brain homocysteine levels across multiple generations. Mol Psychiatry 2019:1–10. Velazquez R, Ferreira E, Winslow W, Dave N, Piras IS, Naymik M, et al. Maternal choline supplementation ameliorates Alzheimer’s disease pathology by reducing brain homocysteine levels across multiple generations. Mol Psychiatry 2019:1–10.
55.
go back to reference Li JG, Chu J, Barrero C, Merali S, Praticò D. Homocysteine exacerbates β-amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles. Ann Neurol. 2014;75(6):851–63.PubMedPubMedCentralCrossRef Li JG, Chu J, Barrero C, Merali S, Praticò D. Homocysteine exacerbates β-amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles. Ann Neurol. 2014;75(6):851–63.PubMedPubMedCentralCrossRef
56.
go back to reference Maddock J, Cavadino A, Power C, Hyppönen E. 25-hydroxyvitamin D, APOE ɛ4 genotype and cognitive function: findings from the 1958 British birth cohort. Eur J Clin Nutr. 2015;69(4):505–8.PubMedCrossRef Maddock J, Cavadino A, Power C, Hyppönen E. 25-hydroxyvitamin D, APOE ɛ4 genotype and cognitive function: findings from the 1958 British birth cohort. Eur J Clin Nutr. 2015;69(4):505–8.PubMedCrossRef
58.
go back to reference Isaacson RS, Hristov H, Saif N, Hackett K, Hendrix S, Melendez J, et al. Individualized clinical management of patients at risk for Alzheimer’s dementia. Alzheimers Dement. 2019;15(12):1588–602.PubMedPubMedCentralCrossRef Isaacson RS, Hristov H, Saif N, Hackett K, Hendrix S, Melendez J, et al. Individualized clinical management of patients at risk for Alzheimer’s dementia. Alzheimers Dement. 2019;15(12):1588–602.PubMedPubMedCentralCrossRef
59.
go back to reference Frazier HN, Ghoweri AO, Anderson KL, Lin R-L, Porter NM, Thibault O. Broadening the definition of brain insulin resistance in aging and Alzheimer’s disease. Exp Neurol. 2019;313:79–87.PubMedCrossRef Frazier HN, Ghoweri AO, Anderson KL, Lin R-L, Porter NM, Thibault O. Broadening the definition of brain insulin resistance in aging and Alzheimer’s disease. Exp Neurol. 2019;313:79–87.PubMedCrossRef
60.
go back to reference Hill E, Goodwill AM, Gorelik A, Szoeke C. Diet and biomarkers of Alzheimer’s disease: a systematic review and meta-analysis. Neurobiol Aging. 2019;76:45–52.PubMedCrossRef Hill E, Goodwill AM, Gorelik A, Szoeke C. Diet and biomarkers of Alzheimer’s disease: a systematic review and meta-analysis. Neurobiol Aging. 2019;76:45–52.PubMedCrossRef
61.
go back to reference Walters M, Hackett K, Caesar E, Isaacson R, Mosconi L. Role of nutrition to promote healthy brain aging and reduce risk of Alzheimer’s disease. Curr Nutr Rep. 2017;6(2):63–71.CrossRef Walters M, Hackett K, Caesar E, Isaacson R, Mosconi L. Role of nutrition to promote healthy brain aging and reduce risk of Alzheimer’s disease. Curr Nutr Rep. 2017;6(2):63–71.CrossRef
62.
go back to reference Isaacson R, Haynes N, Seifan A, Larsen D, Christiansen S, Berger J, et al. Alzheimer’s prevention education: if we build it, will they come? www. AlzU. org. J Prev Alzheimers Dis. 2014;1(2):91.PubMedPubMedCentral Isaacson R, Haynes N, Seifan A, Larsen D, Christiansen S, Berger J, et al. Alzheimer’s prevention education: if we build it, will they come? www. AlzU. org. J Prev Alzheimers Dis. 2014;1(2):91.PubMedPubMedCentral
Metadata
Title
The Role of Nutrition in Individualized Alzheimer’s Risk Reduction
Authors
Yasmin Amini
Nabeel Saif
Christine Greer
Hollie Hristov
Richard Isaacson
Publication date
01-06-2020
Publisher
Springer US
Published in
Current Nutrition Reports / Issue 2/2020
Electronic ISSN: 2161-3311
DOI
https://doi.org/10.1007/s13668-020-00311-7

Other articles of this Issue 2/2020

Current Nutrition Reports 2/2020 Go to the issue

Maternal and Childhood Nutrition (AC Wood, Section Editor)

The Pediatric Obesity Encounter: Literature and Resources to Help with 4 Common Issues

Maternal and Childhood Nutrition (AC Wood, Section Editor)

Food Insecurity and Psychological Distress: a Review of the Recent Literature

Maternal and Childhood Nutrition (AC Wood, Section Editor)

Metabolites Linking the Gut Microbiome with Risk for Type 2 Diabetes