Skip to main content
Top
Published in: Current Nutrition Reports 2/2020

01-06-2020 | Insulins | Maternal and Childhood Nutrition (AC Wood, Section Editor)

Metabolites Linking the Gut Microbiome with Risk for Type 2 Diabetes

Authors: Tiantian Zhu, Mark O. Goodarzi

Published in: Current Nutrition Reports | Issue 2/2020

Login to get access

Abstract

Purpose of Review

An increasing body of evidence suggests that the gut microbiome influences the pathogenesis of insulin resistance and type 2 diabetes (T2D). In this review, we will discuss the latest findings regarding the mechanisms linking the gut microbiome and microbial metabolites with T2D and therapeutic approaches based on the gut microbiota for the prevention and treatment of T2D.

Recent Findings

Alterations in the gut microbial composition are associated with the risk of T2D. The gut microbiota can metabolize dietary- and host-derived factors to produce numerous microbial metabolites, which are involved in metabolic processes modulating nutrition and energy harvest, gut barrier function, systemic inflammation, and glucose metabolism.

Summary

Microbial metabolites are important mediators of microbial-host crosstalk impacting host glucose metabolism. Furthermore, microbiome-based interventions may have beneficial effects on glycemic control. Future research is required to develop personalized T2D therapy based on microbial composition and/or metabolites.
Literature
1.
go back to reference Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020. Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020.
21.
go back to reference •• Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81. https://doi.org/10.1038/nature18646This study found that human insulin resistance was associated with increased serum BCAA levels, with the association mainly driven byPrevotella copriandBacteroides vulgatus.Their experiment in mice suggested that microbial interventions may have the potential to improve insulin resistance and thus reduce the risk of T2D and cardiovascular disease.CrossRefPubMed •• Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81. https://​doi.​org/​10.​1038/​nature18646This study found that human insulin resistance was associated with increased serum BCAA levels, with the association mainly driven byPrevotella copriandBacteroides vulgatus.Their experiment in mice suggested that microbial interventions may have the potential to improve insulin resistance and thus reduce the risk of T2D and cardiovascular disease.CrossRefPubMed
22.
go back to reference de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velasquez-Mejia EP, Carmona JA, Abad JM, et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54–62. https://doi.org/10.2337/dc16-1324.CrossRefPubMed de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velasquez-Mejia EP, Carmona JA, Abad JM, et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54–62. https://​doi.​org/​10.​2337/​dc16-1324.CrossRefPubMed
26.
go back to reference • Allin KH, Tremaroli V, Caesar R, Jensen BAH, Damgaard MTF, Bahl MI, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018;61(4):810–20. https://doi.org/10.1007/s00125-018-4550-1This study found altered gut microbial composition in individuals with prediabetes with a decreased abundance ofClostridiumandA.muciniphila. However, the prediabetic phenotype was not reproduced in mice that underwent human fecal microbiota transplantation. CrossRefPubMedPubMedCentral • Allin KH, Tremaroli V, Caesar R, Jensen BAH, Damgaard MTF, Bahl MI, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018;61(4):810–20. https://​doi.​org/​10.​1007/​s00125-018-4550-1This study found altered gut microbial composition in individuals with prediabetes with a decreased abundance ofClostridiumandA.muciniphila. However, the prediabetic phenotype was not reproduced in mice that underwent human fecal microbiota transplantation. CrossRefPubMedPubMedCentral
27.
go back to reference Salamon D, Sroka-Oleksiak A, Kapusta P, Szopa M, Mrozinska S, Ludwig-Slomczynska AH, et al. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on nextgeneration sequencing of the 16S rRNA gene fragment. Pol Arch Intern Med. 2018;128(6):336–43. https://doi.org/10.20452/pamw.4246.CrossRefPubMed Salamon D, Sroka-Oleksiak A, Kapusta P, Szopa M, Mrozinska S, Ludwig-Slomczynska AH, et al. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on nextgeneration sequencing of the 16S rRNA gene fragment. Pol Arch Intern Med. 2018;128(6):336–43. https://​doi.​org/​10.​20452/​pamw.​4246.CrossRefPubMed
42.
go back to reference Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A. 2004;101(4):1045–50.CrossRefPubMedPubMedCentral Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A. 2004;101(4):1045–50.CrossRefPubMedPubMedCentral
54.
go back to reference •• Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600–5. https://doi.org/10.1038/s41588-019-0350-xThis bidirectional MR study supports a causal effect of the gut microbiome on metabolic traits. They found that host-genetics predicted increase in gut production of butyrate was associated with improved insulin sensitivity, whereas increased propionate levels were causally related to an increased risk of T2D. CrossRefPubMedPubMedCentral •• Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600–5. https://​doi.​org/​10.​1038/​s41588-019-0350-xThis bidirectional MR study supports a causal effect of the gut microbiome on metabolic traits. They found that host-genetics predicted increase in gut production of butyrate was associated with improved insulin sensitivity, whereas increased propionate levels were causally related to an increased risk of T2D. CrossRefPubMedPubMedCentral
60.
go back to reference Giesbertz P, Daniel H. Branched-chain amino acids as biomarkers in diabetes. Curr Opin Clin Nutr Metab Care. 2016;19(1):48–54.CrossRefPubMed Giesbertz P, Daniel H. Branched-chain amino acids as biomarkers in diabetes. Curr Opin Clin Nutr Metab Care. 2016;19(1):48–54.CrossRefPubMed
83.
go back to reference Kootte RS, Levin E, Salojarvi J, Smits LP, Hartstra AV, Udayappan SD, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26(4):611–9.CrossRefPubMed Kootte RS, Levin E, Salojarvi J, Smits LP, Hartstra AV, Udayappan SD, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26(4):611–9.CrossRefPubMed
86.
go back to reference •• Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–6. https://doi.org/10.1126/science.aao5774This study identified a group of acetate- and butyrate-producing bacteria selectively promoted by dietary fibers. Promotion of this group of SCFA producers not only had a beneficial effect on glucose homeostasis but also kept detrimental bacteria at bay. This study presents a potential novel approach for managing T2D by targeted restoration of specific SCFA producers with dietary fibers. CrossRefPubMed •• Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–6. https://​doi.​org/​10.​1126/​science.​aao5774This study identified a group of acetate- and butyrate-producing bacteria selectively promoted by dietary fibers. Promotion of this group of SCFA producers not only had a beneficial effect on glucose homeostasis but also kept detrimental bacteria at bay. This study presents a potential novel approach for managing T2D by targeted restoration of specific SCFA producers with dietary fibers. CrossRefPubMed
88.
go back to reference Roshanravan N, Mahdavi R, Alizadeh E, Jafarabadi MA, Hedayati M, Ghavami A, et al. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: a randomized double-blind, placebo-controlled trial. Horm Metab Res. 2017;49(11):886–91. https://doi.org/10.1055/s-0043-119089.CrossRefPubMed Roshanravan N, Mahdavi R, Alizadeh E, Jafarabadi MA, Hedayati M, Ghavami A, et al. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: a randomized double-blind, placebo-controlled trial. Horm Metab Res. 2017;49(11):886–91. https://​doi.​org/​10.​1055/​s-0043-119089.CrossRefPubMed
95.
go back to reference Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.CrossRefPubMedPubMedCentral Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.CrossRefPubMedPubMedCentral
Metadata
Title
Metabolites Linking the Gut Microbiome with Risk for Type 2 Diabetes
Authors
Tiantian Zhu
Mark O. Goodarzi
Publication date
01-06-2020
Publisher
Springer US
Published in
Current Nutrition Reports / Issue 2/2020
Electronic ISSN: 2161-3311
DOI
https://doi.org/10.1007/s13668-020-00307-3

Other articles of this Issue 2/2020

Current Nutrition Reports 2/2020 Go to the issue

Maternal and Childhood Nutrition (AC Wood, Section Editor)

Food Insecurity and Psychological Distress: a Review of the Recent Literature

Maternal and Childhood Nutrition (AC Wood, Section Editor)

The Pediatric Obesity Encounter: Literature and Resources to Help with 4 Common Issues

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.