Skip to main content
Top
Published in: Translational Stroke Research 3/2020

Open Access 01-06-2020 | Cerebral Small Vessel Disease | Original Article

Progression and Classification of Granular Osmiophilic Material (GOM) Deposits in Functionally Characterized Human NOTCH3 Transgenic Mice

Authors: Gido Gravesteijn, Leon P. Munting, Maurice Overzier, Aat A. Mulder, Ingrid Hegeman, Marc Derieppe, Abraham J. Koster, Sjoerd G. van Duinen, Onno C. Meijer, Annemieke Aartsma-Rus, Louise van der Weerd, Carolina R. Jost, Arn M. J. M. van den Maagdenberg, Julie W. Rutten, Saskia A. J. Lesnik Oberstein

Published in: Translational Stroke Research | Issue 3/2020

Login to get access

Abstract

CADASIL is a NOTCH3-associated cerebral small vessel disease. A pathological ultrastructural disease hallmark is the presence of NOTCH3-protein containing deposits called granular osmiophilic material (GOM), in small arteries. How these GOM deposits develop over time and what their role is in disease progression is largely unknown. Here, we studied the progression of GOM deposits in humanized transgenic NOTCH3Arg182Cys mice, compared them to GOM deposits in patient material, and determined whether GOM deposits in mice are associated with a functional CADASIL phenotype. We found that GOM deposits are not static, but rather progress in ageing mice, both in terms of size and aspect. We devised a GOM classification system, reflecting size, morphology and electron density. Six-month-old mice showed mostly early stage GOM, whereas older mice and patient vessels showed predominantly advanced stage GOM, but also early stage GOM. Mutant mice did not develop the most severe GOM stage seen in patient material. This absence of end-stage GOM in mice was associated with an overall lack of histological vascular pathology, which may explain why the mice did not reveal functional deficits in cerebral blood flow, cognition and motor function. Taken together, our data indicate that GOM progress over time, and that new GOM deposits are continuously being formed. The GOM staging system we introduce here allows for uniform GOM deposit classification in future mouse and human studies, which may lead to more insight into a potential association between GOM stage and CADASIL disease severity, and the role of GOM in disease progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser M-G. Cadasil. Lancet Neurol. 2009;8:643–53.CrossRef Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser M-G. Cadasil. Lancet Neurol. 2009;8:643–53.CrossRef
2.
go back to reference Joutel A, Vahedi K, Corpechot C, Troesch A, Chabriat H, Vayssière C, et al. Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet. 1997;350:1511–5.CrossRef Joutel A, Vahedi K, Corpechot C, Troesch A, Chabriat H, Vayssière C, et al. Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet. 1997;350:1511–5.CrossRef
3.
go back to reference Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996;383:707–10.CrossRef Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996;383:707–10.CrossRef
4.
go back to reference Ishiko A, Shimizu A, Nagata E, Takahashi K, Tabira T, Suzuki N. Notch3 ectodomain is a major component of granular osmiophilic material (GOM) in CADASIL. Acta Neuropathol. 2006;112:333–9.CrossRef Ishiko A, Shimizu A, Nagata E, Takahashi K, Tabira T, Suzuki N. Notch3 ectodomain is a major component of granular osmiophilic material (GOM) in CADASIL. Acta Neuropathol. 2006;112:333–9.CrossRef
5.
go back to reference Monet-Leprêtre M, Haddad I, Baron-Menguy C, Fouillot-Panchal M, Riani M, Domenga-Denier V, et al. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain. 2013;136:1830–45.CrossRef Monet-Leprêtre M, Haddad I, Baron-Menguy C, Fouillot-Panchal M, Riani M, Domenga-Denier V, et al. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain. 2013;136:1830–45.CrossRef
6.
go back to reference Arboleda-Velasquez JF, Manent J, Lee JH, Tikka S, Ospina C, Vanderburg CR, et al. Hypomorphic notch 3 alleles link notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci. 2011;108:E128–35.CrossRef Arboleda-Velasquez JF, Manent J, Lee JH, Tikka S, Ospina C, Vanderburg CR, et al. Hypomorphic notch 3 alleles link notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci. 2011;108:E128–35.CrossRef
7.
go back to reference Yamamoto Y, Craggs LJL, Watanabe A, Booth T, Attems J, Low RWC, et al. Brain microvascular accumulation and distribution of the NOTCH3 ectodomain and granular osmiophilic material in CADASIL. J Neuropathol Exp Neurol. 2013;72:416–31.CrossRef Yamamoto Y, Craggs LJL, Watanabe A, Booth T, Attems J, Low RWC, et al. Brain microvascular accumulation and distribution of the NOTCH3 ectodomain and granular osmiophilic material in CADASIL. J Neuropathol Exp Neurol. 2013;72:416–31.CrossRef
8.
go back to reference Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol. 2015;78:887–900.CrossRef Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol. 2015;78:887–900.CrossRef
9.
go back to reference Gu X, Liu X-Y, Fagan A, Gonzalez-Toledo ME, Zhao L-R. Ultrastructural changes in cerebral capillary pericytes in aged Notch3 mutant transgenic mice. Ultrastruct Pathol. 2012;36:48–55.CrossRef Gu X, Liu X-Y, Fagan A, Gonzalez-Toledo ME, Zhao L-R. Ultrastructural changes in cerebral capillary pericytes in aged Notch3 mutant transgenic mice. Ultrastruct Pathol. 2012;36:48–55.CrossRef
10.
go back to reference Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest. 2000;105:597–605.CrossRef Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest. 2000;105:597–605.CrossRef
11.
go back to reference Brulin P, Godfraind C, Leteurtre E, Ruchoux M-M. Morphometric analysis of ultrastructural vascular changes in CADASIL: analysis of 50 skin biopsy specimens and pathogenic implications. Acta Neuropathol. 2002;104:241–8.CrossRef Brulin P, Godfraind C, Leteurtre E, Ruchoux M-M. Morphometric analysis of ultrastructural vascular changes in CADASIL: analysis of 50 skin biopsy specimens and pathogenic implications. Acta Neuropathol. 2002;104:241–8.CrossRef
12.
go back to reference Tikka S, Mykknen K, Ruchoux MM, Bergholm R, Junna M, Pyhnen M, et al. Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain. 2009;132:933–9.CrossRef Tikka S, Mykknen K, Ruchoux MM, Bergholm R, Junna M, Pyhnen M, et al. Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain. 2009;132:933–9.CrossRef
13.
go back to reference Morroni M, Marzioni D, Ragno M, Di Bella P, Cartechini E, Pianese L, et al. Role of Electron microscopy in the diagnosis of Cadasil syndrome: a study of 32 patients. PLoS One. 2013;8:6–11.CrossRef Morroni M, Marzioni D, Ragno M, Di Bella P, Cartechini E, Pianese L, et al. Role of Electron microscopy in the diagnosis of Cadasil syndrome: a study of 32 patients. PLoS One. 2013;8:6–11.CrossRef
14.
go back to reference Ruchoux MM, Guerouaou D, Vandenhaute B, Pruvo J-PP, Vermersch P, Leys D. Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neuropathol. 1995;89:500–12.CrossRef Ruchoux MM, Guerouaou D, Vandenhaute B, Pruvo J-PP, Vermersch P, Leys D. Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neuropathol. 1995;89:500–12.CrossRef
15.
go back to reference Kalimo H, Viitanen M, Amberla K, Juvonen V, Marttila R, Pöyhönen M, et al. CADASIL: hereditary disease of arteries causing brain infarcts and dementia. Neuropathol Appl Neurobiol. 1999;25:257–65.CrossRef Kalimo H, Viitanen M, Amberla K, Juvonen V, Marttila R, Pöyhönen M, et al. CADASIL: hereditary disease of arteries causing brain infarcts and dementia. Neuropathol Appl Neurobiol. 1999;25:257–65.CrossRef
16.
go back to reference Miao Q, Paloneva T, Tuisku S, Roine S, Poyhonen M, Viitanen M, et al. Arterioles of the lenticular nucleus in CADASIL. Stroke. 2006;37:2242–7.CrossRef Miao Q, Paloneva T, Tuisku S, Roine S, Poyhonen M, Viitanen M, et al. Arterioles of the lenticular nucleus in CADASIL. Stroke. 2006;37:2242–7.CrossRef
17.
go back to reference Gatti JR, Zhang X, Korcari E, Lee SJ, Greenstone N, Dean JG, et al. Redistribution of mature smooth muscle markers in brain arteries in cerebral autosomal dominant arteriopathy with subcortical infarcts and Leukoencephalopathy. Transl Stroke Res. 2019;10:160–9.CrossRef Gatti JR, Zhang X, Korcari E, Lee SJ, Greenstone N, Dean JG, et al. Redistribution of mature smooth muscle markers in brain arteries in cerebral autosomal dominant arteriopathy with subcortical infarcts and Leukoencephalopathy. Transl Stroke Res. 2019;10:160–9.CrossRef
18.
go back to reference Yamamoto Y, Ihara M, Tham C, Low RWC, Slade JY, Moss T, et al. Neuropathological correlates of temporal pole white matter hyperintensities in CADASIL. Stroke. 2009;40:2004–11.CrossRef Yamamoto Y, Ihara M, Tham C, Low RWC, Slade JY, Moss T, et al. Neuropathological correlates of temporal pole white matter hyperintensities in CADASIL. Stroke. 2009;40:2004–11.CrossRef
19.
go back to reference Dong H, Ding H, Young K, Blaivas M, Christensen PJ, Wang MM. Advanced intimal hyperplasia without luminal narrowing of leptomeningeal arteries in CADASIL. Stroke. 2013;44:1456–8.CrossRef Dong H, Ding H, Young K, Blaivas M, Christensen PJ, Wang MM. Advanced intimal hyperplasia without luminal narrowing of leptomeningeal arteries in CADASIL. Stroke. 2013;44:1456–8.CrossRef
20.
go back to reference Pfefferkorn T, von Stuckrad-Barre S, Herzog J, Gasser T, Hamann GF, Dichgans M, et al. Reduced cerebrovascular CO(2) reactivity in CADASIL: a transcranial Doppler sonography study. Stroke. 2001;32:17–21.CrossRef Pfefferkorn T, von Stuckrad-Barre S, Herzog J, Gasser T, Hamann GF, Dichgans M, et al. Reduced cerebrovascular CO(2) reactivity in CADASIL: a transcranial Doppler sonography study. Stroke. 2001;32:17–21.CrossRef
21.
go back to reference Chabriat H, Pappata S, Ostergaard L, Clark CA, Pachot-Clouard M, Vahedi K, et al. Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking. Stroke. 2000;31:1904–12.CrossRef Chabriat H, Pappata S, Ostergaard L, Clark CA, Pachot-Clouard M, Vahedi K, et al. Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking. Stroke. 2000;31:1904–12.CrossRef
22.
go back to reference Rutten JW, Klever RR, Hegeman IM, Poole DS, Dauwerse HG, LAM B, et al. The NOTCH3 score: a pre-clinical CADASIL biomarker in a novel human genomic NOTCH3 transgenic mouse model with early progressive vascular NOTCH3 accumulation. Acta Neuropathol Commun. 2015;3:89.CrossRef Rutten JW, Klever RR, Hegeman IM, Poole DS, Dauwerse HG, LAM B, et al. The NOTCH3 score: a pre-clinical CADASIL biomarker in a novel human genomic NOTCH3 transgenic mouse model with early progressive vascular NOTCH3 accumulation. Acta Neuropathol Commun. 2015;3:89.CrossRef
23.
go back to reference Faas FGA, Cristina Avramut M, van den Berg BM, Mieke Mommaas A, Koster AJ, Ravelli RBG. Virtual nanoscopy: generation of ultra-large high resolution electron microscopy maps. J Cell Biol. 2012;198:457–69.CrossRef Faas FGA, Cristina Avramut M, van den Berg BM, Mieke Mommaas A, Koster AJ, Ravelli RBG. Virtual nanoscopy: generation of ultra-large high resolution electron microscopy maps. J Cell Biol. 2012;198:457–69.CrossRef
24.
25.
go back to reference Lewandowska E, Dziewulska D, Parys M, Pasennik E. Ultrastructure of granular osmiophilic material deposits (GOM) in arterioles of CADASIL patients. Folia Neuropathol. 2011;49:174–80.PubMed Lewandowska E, Dziewulska D, Parys M, Pasennik E. Ultrastructure of granular osmiophilic material deposits (GOM) in arterioles of CADASIL patients. Folia Neuropathol. 2011;49:174–80.PubMed
26.
go back to reference Lewandowska E, Felczak P, Buczek J, Gramza K, Rafałowska J. Blood vessel ultrastructural picture in a CADASIL patient diagnosed at an advanced age. Folia Neuropathol. 2014;4:443–51.CrossRef Lewandowska E, Felczak P, Buczek J, Gramza K, Rafałowska J. Blood vessel ultrastructural picture in a CADASIL patient diagnosed at an advanced age. Folia Neuropathol. 2014;4:443–51.CrossRef
27.
go back to reference Ruchoux MM, Domenga V, Brulin P, Maciazek J, Limol S, Tournier-Lasserve E, et al. Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am J Pathol. 2003;162:329–42.CrossRef Ruchoux MM, Domenga V, Brulin P, Maciazek J, Limol S, Tournier-Lasserve E, et al. Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am J Pathol. 2003;162:329–42.CrossRef
28.
go back to reference Monet M, Domenga V, Lemaire B, Souilhol C, Langa F, Babinet C, et al. The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo. Hum Mol Genet. 2007;16:982–92.CrossRef Monet M, Domenga V, Lemaire B, Souilhol C, Langa F, Babinet C, et al. The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo. Hum Mol Genet. 2007;16:982–92.CrossRef
29.
go back to reference Monet-Lepretre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M, et al. Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain. 2009;132:1601–12.CrossRef Monet-Lepretre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M, et al. Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain. 2009;132:1601–12.CrossRef
30.
go back to reference Joutel A, Monet-Leprêtre M, Gosele C, Baron-menguy C, Hammes A, Schmidt S, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest. 2010;120:433–45.CrossRef Joutel A, Monet-Leprêtre M, Gosele C, Baron-menguy C, Hammes A, Schmidt S, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest. 2010;120:433–45.CrossRef
31.
go back to reference Miao Q, Paloneva T, Tuominen S, Pöyhönen M, Tuisku S, Viitanen M, et al. Fibrosis and stenosis of the long penetrating cerebral arteries: the cause of the white matter pathology in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Brain Pathol. 2006;14:358–64.CrossRef Miao Q, Paloneva T, Tuominen S, Pöyhönen M, Tuisku S, Viitanen M, et al. Fibrosis and stenosis of the long penetrating cerebral arteries: the cause of the white matter pathology in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Brain Pathol. 2006;14:358–64.CrossRef
32.
go back to reference Lacombe P, Oligo C, Domenga V, Tournier-Lasserve E, Joutel A. Impaired cerebral vasoreactivity in a transgenic mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy arteriopathy. Stroke. 2005;36:1053–8.CrossRef Lacombe P, Oligo C, Domenga V, Tournier-Lasserve E, Joutel A. Impaired cerebral vasoreactivity in a transgenic mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy arteriopathy. Stroke. 2005;36:1053–8.CrossRef
Metadata
Title
Progression and Classification of Granular Osmiophilic Material (GOM) Deposits in Functionally Characterized Human NOTCH3 Transgenic Mice
Authors
Gido Gravesteijn
Leon P. Munting
Maurice Overzier
Aat A. Mulder
Ingrid Hegeman
Marc Derieppe
Abraham J. Koster
Sjoerd G. van Duinen
Onno C. Meijer
Annemieke Aartsma-Rus
Louise van der Weerd
Carolina R. Jost
Arn M. J. M. van den Maagdenberg
Julie W. Rutten
Saskia A. J. Lesnik Oberstein
Publication date
01-06-2020
Publisher
Springer US
Published in
Translational Stroke Research / Issue 3/2020
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-019-00742-7

Other articles of this Issue 3/2020

Translational Stroke Research 3/2020 Go to the issue