Skip to main content
Top
Published in: Translational Stroke Research 2/2019

01-04-2019 | Original Article

Redistribution of Mature Smooth Muscle Markers in Brain Arteries in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy

Authors: John R. Gatti, Xiaojie Zhang, Ejona Korcari, Soo Jung Lee, Nya Greenstone, Jon G. Dean, Snehaa Maripudi, Michael M. Wang

Published in: Translational Stroke Research | Issue 2/2019

Login to get access

Abstract

Vascular smooth muscle cells (SMCs) undergo a series of dramatic changes in CADASIL, the most common inherited cause of vascular dementia and stroke. NOTCH3 protein accumulates and aggregates early in CADASIL, followed by loss of mature SMCs from the media of brain arteries and marked intimal proliferation. Similar intimal thickening is seen in peripheral arterial disease, which features pathological intimal cells including proliferative, dedifferentiated, smooth muscle-like cells deficient in SMC markers. Limited studies have been performed to investigate the differentiation state and location of SMCs in brain vascular disorders. Thus, we investigated the distribution of cells expressing SMC markers in a group of genetically characterized, North American CADASIL brains. We quantified brain RNA abundance of these markers in nine genetically verified cases of CADASIL and found that mRNA expression for several mature SMC markers was increased in CADASIL brain compared to age-matched control. Immunohistochemical studies and in situ hybridization localization of mRNA demonstrated loss of SMCs from the arterial media, and SMC marker-expressing cells were instead redistributed into the intima of diseased arteries and around balloon cells of the degenerating media. We conclude that, despite loss of medial smooth muscle cells in diseased arteries, smooth muscle markers are not lost from CADASIL brain, but rather, the localization of cells expressing mature SMC markers changes dramatically.
Literature
3.
go back to reference Baudrimont M, Dubas F, Joutel A, Tournier-Lasserve E, Bousser M-G. Case report autosomal dominant leukoencephalopathy and subcortical ischemic stroke. Stroke. 1993;24:122–6.CrossRef Baudrimont M, Dubas F, Joutel A, Tournier-Lasserve E, Bousser M-G. Case report autosomal dominant leukoencephalopathy and subcortical ischemic stroke. Stroke. 1993;24:122–6.CrossRef
7.
9.
go back to reference Varcoe RL, Mikhail M, Guiffre AK, Pennings G, Vicaretti M, Hawthorne WJ. The role of the fibrocyte in intimal hyperplasia. J Thromb Haemost. 2006;4:1125–33.CrossRefPubMed Varcoe RL, Mikhail M, Guiffre AK, Pennings G, Vicaretti M, Hawthorne WJ. The role of the fibrocyte in intimal hyperplasia. J Thromb Haemost. 2006;4:1125–33.CrossRefPubMed
10.
go back to reference Ruchoux M-M, Maurage C-A. CADASIL: cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Neuropathol Exp Neurol. 1997;56(9):947–64.CrossRefPubMed Ruchoux M-M, Maurage C-A. CADASIL: cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Neuropathol Exp Neurol. 1997;56(9):947–64.CrossRefPubMed
11.
go back to reference Gutierrez-Molina M, Caminero Rodriguez A, Martinez Garcia C, Arpa Gutierrez J, Morales Bastos C, Amer G. Small arterial granular degeneration in familial Binswanger’s syndrome. Acta Neuropathol. 1994;87:98–105.CrossRefPubMed Gutierrez-Molina M, Caminero Rodriguez A, Martinez Garcia C, Arpa Gutierrez J, Morales Bastos C, Amer G. Small arterial granular degeneration in familial Binswanger’s syndrome. Acta Neuropathol. 1994;87:98–105.CrossRefPubMed
12.
go back to reference Ruchoux M-M, Guerouaou D, Vandenhaute B, Pruvo J-P, Vermersch P, Leys D. Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neuropathol. 1995;89:500–12.CrossRefPubMed Ruchoux M-M, Guerouaou D, Vandenhaute B, Pruvo J-P, Vermersch P, Leys D. Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neuropathol. 1995;89:500–12.CrossRefPubMed
15.
go back to reference Szpak GM, Lewandowska E, Wierzba-Bobrowicz T, et al. Small cerebral vessel disease in familial amyloid and non-amyloid angiopathies: FAD-PS-1 (P117L) mutation and CADASIL. Immunohistochemical and ultrastructural studies. Folia Neuropathol. 2007;45(4):192–204.PubMed Szpak GM, Lewandowska E, Wierzba-Bobrowicz T, et al. Small cerebral vessel disease in familial amyloid and non-amyloid angiopathies: FAD-PS-1 (P117L) mutation and CADASIL. Immunohistochemical and ultrastructural studies. Folia Neuropathol. 2007;45(4):192–204.PubMed
17.
go back to reference Frid MG, Printesva OY, Chiavegato A, Faggin E, Scatena M, Koteliansky VE, et al. Myosin heavy-chain isoform composition and distribution in developing and adult human aortic smooth muscle. J Vasc Res. 1993;30:279–92.CrossRefPubMed Frid MG, Printesva OY, Chiavegato A, Faggin E, Scatena M, Koteliansky VE, et al. Myosin heavy-chain isoform composition and distribution in developing and adult human aortic smooth muscle. J Vasc Res. 1993;30:279–92.CrossRefPubMed
20.
go back to reference van der Loop FT, Schaart G, Timmer ED, Ramaekers FC, van Eys GJ. Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J Cell Biol. 1996;134(2):401–11.CrossRefPubMed van der Loop FT, Schaart G, Timmer ED, Ramaekers FC, van Eys GJ. Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J Cell Biol. 1996;134(2):401–11.CrossRefPubMed
23.
go back to reference Owens GK, Thompson MM. Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation. J Biol Chem. 1986;261(28):13373–80.PubMed Owens GK, Thompson MM. Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation. J Biol Chem. 1986;261(28):13373–80.PubMed
24.
go back to reference Li L, Miano JM, Cserjesi P, Olson EN. SM22α, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ Res. 1996;78(2):188 LP–195.CrossRef Li L, Miano JM, Cserjesi P, Olson EN. SM22α, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ Res. 1996;78(2):188 LP–195.CrossRef
25.
go back to reference Han DKM, Liau G. Identification and characterization of developmentally regulated genes in vascular smooth muscle cells. Circ Res. 1992;71(3):711–9.CrossRefPubMed Han DKM, Liau G. Identification and characterization of developmentally regulated genes in vascular smooth muscle cells. Circ Res. 1992;71(3):711–9.CrossRefPubMed
26.
go back to reference Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995;75(3):487–517.CrossRefPubMed Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995;75(3):487–517.CrossRefPubMed
27.
go back to reference Miano JM, Olson EN. Expression of the smooth muscle cell calponin gene marks the early cardiac and smooth muscle cell lineages during mouse embryogenesis [published erratum appears in J Biol Chem 1997 Oct 24;272(43):27492]. J Biol Chem. 1996;271(12):7095–103.CrossRefPubMed Miano JM, Olson EN. Expression of the smooth muscle cell calponin gene marks the early cardiac and smooth muscle cell lineages during mouse embryogenesis [published erratum appears in J Biol Chem 1997 Oct 24;272(43):27492]. J Biol Chem. 1996;271(12):7095–103.CrossRefPubMed
32.
go back to reference Regan CP, Adam PJ, Madsen CS, Owens GK. Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J Clin Invest. 2000;106:1139–47.CrossRefPubMedPubMedCentral Regan CP, Adam PJ, Madsen CS, Owens GK. Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J Clin Invest. 2000;106:1139–47.CrossRefPubMedPubMedCentral
33.
go back to reference Aikawa M, Rabkin E, Voglic SJ, Shing H, Nagai R, Schoen FJ, et al. Muscle cells expressing smooth muscle myosin heavy. Circ Res. 1998;83(10):1015–26.CrossRefPubMed Aikawa M, Rabkin E, Voglic SJ, Shing H, Nagai R, Schoen FJ, et al. Muscle cells expressing smooth muscle myosin heavy. Circ Res. 1998;83(10):1015–26.CrossRefPubMed
40.
go back to reference Borgers M, Schaper J, Schaper W. The origin of subendothelial cells in developing coronary collaterals. Virchows Arch Abt A Path Anat. 1973;358:281–94.CrossRef Borgers M, Schaper J, Schaper W. The origin of subendothelial cells in developing coronary collaterals. Virchows Arch Abt A Path Anat. 1973;358:281–94.CrossRef
41.
go back to reference Imai H, Lee KJ, Lee SK, Lett KT, O’Neal RM, Thomas WA. Ultrastructural features of aortic cells in mitosis in control and cholesterol-fed swine. Lab Investig. 1970;23:401–15.PubMed Imai H, Lee KJ, Lee SK, Lett KT, O’Neal RM, Thomas WA. Ultrastructural features of aortic cells in mitosis in control and cholesterol-fed swine. Lab Investig. 1970;23:401–15.PubMed
44.
go back to reference Chamley-Campbell J, Campbell GR, Ross R. The smooth muscle cell in culture. Physiol Rev. 1979;59(1):1–61.CrossRefPubMed Chamley-Campbell J, Campbell GR, Ross R. The smooth muscle cell in culture. Physiol Rev. 1979;59(1):1–61.CrossRefPubMed
Metadata
Title
Redistribution of Mature Smooth Muscle Markers in Brain Arteries in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy
Authors
John R. Gatti
Xiaojie Zhang
Ejona Korcari
Soo Jung Lee
Nya Greenstone
Jon G. Dean
Snehaa Maripudi
Michael M. Wang
Publication date
01-04-2019
Publisher
Springer US
Published in
Translational Stroke Research / Issue 2/2019
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-018-0643-x

Other articles of this Issue 2/2019

Translational Stroke Research 2/2019 Go to the issue