Skip to main content
Top
Published in: Translational Stroke Research 2/2017

01-04-2017 | Original Article

Early Erythrolysis in the Hematoma After Experimental Intracerebral Hemorrhage

Authors: Ge Dang, Yuefan Yang, Gang Wu, Ya Hua, Richard F. Keep, Guohua Xi

Published in: Translational Stroke Research | Issue 2/2017

Login to get access

Abstract

Erythrolysis occurs in the clot after intracerebral hemorrhage (ICH), and the release of hemoglobin causes brain injury, but it is unclear when such lysis occurs. The present study examined early erythrolysis in rats. ICH rats had an intracaudate injection of 100 μl autologous blood, and sham rats had a needle insertion. All rats had T2 and T2* magnetic response imaging (MRI) scanning, and brains were used for histology and CD163 (a hemoglobin scavenger receptor) and DARPP-32 (a neuronal marker) immunohistochemistry. There was marked heterogeneity within the hematoma on T2* MRI, with a hyperintense or isointense core and a hypointense periphery. Hematoxylin and eosin staining in the same animals showed significant erythrolysis in the core with the formation of erythrocyte ghosts. The degree of erythrolysis correlated with the severity of perihematomal neuronal loss. Perihematomal CD163 was increased by day 1 after ICH and may be involved in clearing hemoglobin caused by early hemolysis. Furthermore, ICH resulted in more severe erythrolysis, neuronal loss, and perihematomal CD163 upregulation in spontaneously hypertensive rats compared to Wistar-Kyoto rats. In conclusion, T2*MRI-detectable early erythrolysis occurred in the clot after ICH and activated CD163. Hypertension is associated with enhanced erythrolysis in the hematoma.
Literature
1.
go back to reference Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.CrossRefPubMed Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.CrossRefPubMed
2.
go back to reference Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11(8):720–31.CrossRefPubMed Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11(8):720–31.CrossRefPubMed
3.
go back to reference Xiong XY, Wang J, Qian ZM, Yang QW. Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res. 2014;5(4):429–41.CrossRefPubMed Xiong XY, Wang J, Qian ZM, Yang QW. Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res. 2014;5(4):429–41.CrossRefPubMed
5.
go back to reference Xiong XY, Yang QW. Rethinking the roles of inflammation in the intracerebral hemorrhage. Transl Stroke Res. 2015;6(5):339–41.CrossRefPubMed Xiong XY, Yang QW. Rethinking the roles of inflammation in the intracerebral hemorrhage. Transl Stroke Res. 2015;6(5):339–41.CrossRefPubMed
6.
go back to reference Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89:991–6.CrossRefPubMed Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89:991–6.CrossRefPubMed
7.
go back to reference Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G. Behavioral tests after intracerebral hemorrhage in the rat. Stroke. 2002;33(10):2478–84.CrossRefPubMed Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G. Behavioral tests after intracerebral hemorrhage in the rat. Stroke. 2002;33(10):2478–84.CrossRefPubMed
8.
go back to reference Song S, Hua Y, Keep RF, Hoff JT, Xi G. A new hippocampal model for examining intracerebral hemorrhage-related neuronal death: effects of deferoxamine on hemoglobin-induced neuronal death. Stroke. 2007;38(10):2861–3.CrossRefPubMed Song S, Hua Y, Keep RF, Hoff JT, Xi G. A new hippocampal model for examining intracerebral hemorrhage-related neuronal death: effects of deferoxamine on hemoglobin-induced neuronal death. Stroke. 2007;38(10):2861–3.CrossRefPubMed
9.
go back to reference Schellinger PD, Jansen O, Fiebach JB, Hacke W, Sartor K. A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke. 1999;30(4):765–8.CrossRefPubMed Schellinger PD, Jansen O, Fiebach JB, Hacke W, Sartor K. A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke. 1999;30(4):765–8.CrossRefPubMed
10.
go back to reference Linfante I, Llinas RH, Caplan LR, Warach S. MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke. 1999;30(11):2263–7.CrossRefPubMed Linfante I, Llinas RH, Caplan LR, Warach S. MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke. 1999;30(11):2263–7.CrossRefPubMed
11.
12.
go back to reference Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409(6817):198–201.CrossRefPubMed Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409(6817):198–201.CrossRefPubMed
13.
go back to reference Liu B, Hu B, Shao S, Wu W, Fan L, Bai G, et al. CD163/hemoglobin oxygenase-1 pathway regulates inflammation in hematoma surrounding tissues after intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2015;24(12):2800–9.CrossRefPubMed Liu B, Hu B, Shao S, Wu W, Fan L, Bai G, et al. CD163/hemoglobin oxygenase-1 pathway regulates inflammation in hematoma surrounding tissues after intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2015;24(12):2800–9.CrossRefPubMed
14.
go back to reference Cao S, Zheng M, Hua Y, Chen G, Keep RF, Xi G. Hematoma changes during clot resolution after experimental intracerebral hemorrhage. Stroke. 2016;47(6):1626–31.CrossRefPubMed Cao S, Zheng M, Hua Y, Chen G, Keep RF, Xi G. Hematoma changes during clot resolution after experimental intracerebral hemorrhage. Stroke. 2016;47(6):1626–31.CrossRefPubMed
15.
go back to reference Dandapani BK, Suzuki S, Kelley RE, Reyes-Iglesias Y, Duncan RC. Relation between blood pressure and outcome in intracerebral hemorrhage. Stroke. 1995;26(1):21–4.CrossRefPubMed Dandapani BK, Suzuki S, Kelley RE, Reyes-Iglesias Y, Duncan RC. Relation between blood pressure and outcome in intracerebral hemorrhage. Stroke. 1995;26(1):21–4.CrossRefPubMed
16.
go back to reference Wu G, Bao X, Xi G, Keep RF, Thompson BG, Hua Y. Brain injury after intracerebral hemorrhage in spontaneously hypertensive rats. J Neurosurg. 2011;114(6):1805–11.CrossRefPubMedPubMedCentral Wu G, Bao X, Xi G, Keep RF, Thompson BG, Hua Y. Brain injury after intracerebral hemorrhage in spontaneously hypertensive rats. J Neurosurg. 2011;114(6):1805–11.CrossRefPubMedPubMedCentral
17.
go back to reference Odashiro K, Saito K, Arita T, Maruyama T, Fujino T, Akashi K. Impaired deformability of circulating erythrocytes obtained from nondiabetic hypertensive patients: investigation by a nickel mesh filtration technique. Clin Hypertens. 2015;21:17.CrossRefPubMedPubMedCentral Odashiro K, Saito K, Arita T, Maruyama T, Fujino T, Akashi K. Impaired deformability of circulating erythrocytes obtained from nondiabetic hypertensive patients: investigation by a nickel mesh filtration technique. Clin Hypertens. 2015;21:17.CrossRefPubMedPubMedCentral
18.
go back to reference Ariyoshi K, Maruyama T, Odashiro K, Akashi K, Fujino T, Uyesaka N. Impaired erythrocyte filterability of spontaneously hypertensive rats: investigation by nickel filtration technique. Circ J. 2010;74(1):129–36.CrossRefPubMed Ariyoshi K, Maruyama T, Odashiro K, Akashi K, Fujino T, Uyesaka N. Impaired erythrocyte filterability of spontaneously hypertensive rats: investigation by nickel filtration technique. Circ J. 2010;74(1):129–36.CrossRefPubMed
19.
go back to reference Wu G, Xi G, Hua Y, Sagher O. T2* magnetic resonance imaging sequences reflect brain tissue iron deposition following intracerebral hemorrhage. Transl Stroke Res. 2010;1:31–4.CrossRefPubMedPubMedCentral Wu G, Xi G, Hua Y, Sagher O. T2* magnetic resonance imaging sequences reflect brain tissue iron deposition following intracerebral hemorrhage. Transl Stroke Res. 2010;1:31–4.CrossRefPubMedPubMedCentral
20.
go back to reference Hatakeyama T, Okauchi M, Hua Y, Keep RF, Xi G. Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats. Transl Stroke Res. 2013;4(5):546–53.CrossRefPubMed Hatakeyama T, Okauchi M, Hua Y, Keep RF, Xi G. Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats. Transl Stroke Res. 2013;4(5):546–53.CrossRefPubMed
21.
go back to reference Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G. Role of iron in brain injury after intraventricular hemorrhage. Stroke. 2011;42(2):465–70.CrossRefPubMed Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G. Role of iron in brain injury after intraventricular hemorrhage. Stroke. 2011;42(2):465–70.CrossRefPubMed
22.
go back to reference Zheng M, Du H, Ni W, Koch LG, Britton SL, Keep RF, et al. Iron-induced necrotic brain cell death in rats with different aerobic capacity. Transl Stroke Res. 2015;6(3):215–23.CrossRefPubMedPubMedCentral Zheng M, Du H, Ni W, Koch LG, Britton SL, Keep RF, et al. Iron-induced necrotic brain cell death in rats with different aerobic capacity. Transl Stroke Res. 2015;6(3):215–23.CrossRefPubMedPubMedCentral
23.
go back to reference Zhao J, Chen Z, Xi G, Keep RF, Hua Y. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats. Transl Stroke Res. 2014;5:586–94.CrossRefPubMedPubMedCentral Zhao J, Chen Z, Xi G, Keep RF, Hua Y. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats. Transl Stroke Res. 2014;5:586–94.CrossRefPubMedPubMedCentral
24.
go back to reference Jin H, Xi G, Keep RF, Wu J, Hua Y. DARPP-32 to quantify intracerebral hemorrhage-induced neuronal death in basal ganglia. Transl Stroke Res. 2013;4(1):130–4.CrossRefPubMed Jin H, Xi G, Keep RF, Wu J, Hua Y. DARPP-32 to quantify intracerebral hemorrhage-induced neuronal death in basal ganglia. Transl Stroke Res. 2013;4(1):130–4.CrossRefPubMed
25.
go back to reference Wan S, Cheng Y, Jin H, Guo D, Hua Y, Keep RF, et al. Microglia activation and polarization after intracerebral hemorrhage in mice: the role of protease-activated receptor-1. Transl Stroke Res. 2016. Wan S, Cheng Y, Jin H, Guo D, Hua Y, Keep RF, et al. Microglia activation and polarization after intracerebral hemorrhage in mice: the role of protease-activated receptor-1. Transl Stroke Res. 2016.
26.
go back to reference Song J, Li P, Chaudhary N, Gemmete JJ, Thompson BG, Xi G, et al. Correlating cerebral (18)FDG PET-CT patterns with histological analysis during early brain injury in a rat subarachnoid hemorrhage model. Transl Stroke Res. 2015;6(4):290–5.CrossRefPubMed Song J, Li P, Chaudhary N, Gemmete JJ, Thompson BG, Xi G, et al. Correlating cerebral (18)FDG PET-CT patterns with histological analysis during early brain injury in a rat subarachnoid hemorrhage model. Transl Stroke Res. 2015;6(4):290–5.CrossRefPubMed
27.
go back to reference Wang J, Jin H, Hua Y, Keep RF, Xi G. Role of protease-activated receptor-1 in brain injury after experimental global cerebral ischemia. Stroke. 2012;43(9):2476–82.CrossRefPubMedPubMedCentral Wang J, Jin H, Hua Y, Keep RF, Xi G. Role of protease-activated receptor-1 in brain injury after experimental global cerebral ischemia. Stroke. 2012;43(9):2476–82.CrossRefPubMedPubMedCentral
28.
go back to reference Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–9.CrossRefPubMed Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–9.CrossRefPubMed
29.
go back to reference Koeppen AH, Dickson AC, McEvoy JA. The cellular reactions to experimental intracerebral hemorrhage. J Neurol Sci. 1995;134:102–12.CrossRefPubMed Koeppen AH, Dickson AC, McEvoy JA. The cellular reactions to experimental intracerebral hemorrhage. J Neurol Sci. 1995;134:102–12.CrossRefPubMed
30.
go back to reference Marlet JM, Barreto Fonseca Jde P. Experimental determination of time of intracranial hemorrhage by spectrophotometric analysis of cerebrospinal fluid. J Forensic Sci. 1982;27(4):880–8.CrossRefPubMed Marlet JM, Barreto Fonseca Jde P. Experimental determination of time of intracranial hemorrhage by spectrophotometric analysis of cerebrospinal fluid. J Forensic Sci. 1982;27(4):880–8.CrossRefPubMed
31.
go back to reference Karuppagounder SS, Alim I, Khim SJ, Bourassa MW, Sleiman SF, John R, et al. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 2016;8(328):328ra29.CrossRefPubMedPubMedCentral Karuppagounder SS, Alim I, Khim SJ, Bourassa MW, Sleiman SF, John R, et al. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 2016;8(328):328ra29.CrossRefPubMedPubMedCentral
32.
go back to reference Martinez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev. 2011;63(4):967–1000.CrossRefPubMed Martinez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev. 2011;63(4):967–1000.CrossRefPubMed
33.
go back to reference Graversen JH, Moestrup SK. Drug trafficking into macrophages via the endocytotic receptor CD163. Membranes (Basel). 2015;5(2):228–52.CrossRef Graversen JH, Moestrup SK. Drug trafficking into macrophages via the endocytotic receptor CD163. Membranes (Basel). 2015;5(2):228–52.CrossRef
34.
go back to reference Alayash AI, Andersen CB, Moestrup SK, Bulow L. Haptoglobin: the hemoglobin detoxifier in plasma. Trends Biotechnol. 2013;31(1):2–3.CrossRefPubMed Alayash AI, Andersen CB, Moestrup SK, Bulow L. Haptoglobin: the hemoglobin detoxifier in plasma. Trends Biotechnol. 2013;31(1):2–3.CrossRefPubMed
35.
go back to reference Thomsen JH, Etzerodt A, Svendsen P, Moestrup SK. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxidative Med Cell Longev. 2013;2013:523652.CrossRef Thomsen JH, Etzerodt A, Svendsen P, Moestrup SK. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxidative Med Cell Longev. 2013;2013:523652.CrossRef
36.
go back to reference Garton TP, He Y, Garton HJ, Keep RF, Xi G, Strahle JM. Hemoglobin-induced neuronal degeneration in the hippocampus after neonatal intraventricular hemorrhage. Brain Res. 2016;1635:86–94.CrossRefPubMed Garton TP, He Y, Garton HJ, Keep RF, Xi G, Strahle JM. Hemoglobin-induced neuronal degeneration in the hippocampus after neonatal intraventricular hemorrhage. Brain Res. 2016;1635:86–94.CrossRefPubMed
37.
go back to reference Chen-Roetling J, Regan RF. Haptoglobin increases the vulnerability of CD163-expressing neurons to hemoglobin. J Neurochem. 2016. Chen-Roetling J, Regan RF. Haptoglobin increases the vulnerability of CD163-expressing neurons to hemoglobin. J Neurochem. 2016.
38.
go back to reference Cicco G, Pirrelli A. Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension. Clin Hemorheol Microcirc. 1999;21(3–4):169–77.PubMed Cicco G, Pirrelli A. Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension. Clin Hemorheol Microcirc. 1999;21(3–4):169–77.PubMed
39.
go back to reference Kaczmarska M, Fornal M, Messerli FH, Korecki J, Grodzicki T, Burda K. Erythrocyte membrane properties in patients with essential hypertension. Cell Biochem Biophys. 2013;67(3):1089–102.CrossRefPubMed Kaczmarska M, Fornal M, Messerli FH, Korecki J, Grodzicki T, Burda K. Erythrocyte membrane properties in patients with essential hypertension. Cell Biochem Biophys. 2013;67(3):1089–102.CrossRefPubMed
40.
go back to reference Pytel E, Duchnowicz P, Jackowska P, Wojdan K, Koter-Michalak M, Broncel M. Disorders of erythrocyte structure and function in hypertensive patients. Med Sci Monit. 2012;18(8):BR331–6.CrossRefPubMedPubMedCentral Pytel E, Duchnowicz P, Jackowska P, Wojdan K, Koter-Michalak M, Broncel M. Disorders of erythrocyte structure and function in hypertensive patients. Med Sci Monit. 2012;18(8):BR331–6.CrossRefPubMedPubMedCentral
41.
go back to reference Amaiden MR, Monesterolo NE, Santander VS, Campetelli AN, Arce CA, Pie J, et al. Involvement of membrane tubulin in erythrocyte deformability and blood pressure. J Hypertens. 2012;30(7):1414–22.CrossRefPubMed Amaiden MR, Monesterolo NE, Santander VS, Campetelli AN, Arce CA, Pie J, et al. Involvement of membrane tubulin in erythrocyte deformability and blood pressure. J Hypertens. 2012;30(7):1414–22.CrossRefPubMed
42.
go back to reference Chabanel A, Schachter D, Chien S. Increased rigidity of red blood cell membrane in young spontaneously hypertensive rats. Hypertension. 1987;10(6):603–7.CrossRefPubMed Chabanel A, Schachter D, Chien S. Increased rigidity of red blood cell membrane in young spontaneously hypertensive rats. Hypertension. 1987;10(6):603–7.CrossRefPubMed
Metadata
Title
Early Erythrolysis in the Hematoma After Experimental Intracerebral Hemorrhage
Authors
Ge Dang
Yuefan Yang
Gang Wu
Ya Hua
Richard F. Keep
Guohua Xi
Publication date
01-04-2017
Publisher
Springer US
Published in
Translational Stroke Research / Issue 2/2017
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-016-0505-3

Other articles of this Issue 2/2017

Translational Stroke Research 2/2017 Go to the issue