Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2019

Open Access 01-08-2019 | Original Article

A Durable Porcine Pericardial Surgical Bioprosthetic Heart Valve: a Proof of Concept

Authors: Benyamin Rahmani, Christopher McGregor, Guerard Byrne, Gaetano Burriesci

Published in: Journal of Cardiovascular Translational Research | Issue 4/2019

Login to get access

Abstract

Bioprosthetic leaflets made from animal tissues are used in the majority of surgical and transcatheter cardiac valve replacements. This study develops a new surgical bioprosthesis, using porcine pericardial leaflets. Porcine pericardium was obtained from genetically engineered pigs with a mutation in the GGTA-1 gene (GTKO) and fixed in 0.6% glutaraldehyde, and used to develop a new surgical valve design. The valves underwent in vitro hydrodynamic test in a pulse duplicator and high-cycled accelerated wear testing and were evaluated for acute haemodynamics and thrombogenicity in a juvenile sheep implant study for 48 h. The porcine surgical pericardial heart valves (pSPHVs) exhibited excellent hydrodynamics and reached 200 million cycles of in vitro durability, with no observable damage. Juvenile sheep implants demonstrated normal valve function with no acute thrombogenic response for either material. The pSPHV incorporates a minimalistic construction method using a tissue-to-tissue design to cover the stent. This new design is a proof of concept alternative to the use of bovine pericardium and synthetic fabric in surgical bioprosthetic heart valves.
Literature
1.
go back to reference Goldstone, A. B., Chiu, P., Baiocchi, M., Lingala, B., Patrick, W. L., Fischbein, M. P., & Woo, Y. J. (2017). Mechanical or biologic prostheses for aortic-valve and mitral-valve replacement. The New England Journal of Medicine, 377, 1847–1857.CrossRefPubMed Goldstone, A. B., Chiu, P., Baiocchi, M., Lingala, B., Patrick, W. L., Fischbein, M. P., & Woo, Y. J. (2017). Mechanical or biologic prostheses for aortic-valve and mitral-valve replacement. The New England Journal of Medicine, 377, 1847–1857.CrossRefPubMed
2.
go back to reference Dvir, D., Bourguignon, T., Otto, C. M., Hahn, R. T., Rosenhek, R., Webb, J. G., et al. (2018). Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation, 388–399. Dvir, D., Bourguignon, T., Otto, C. M., Hahn, R. T., Rosenhek, R., Webb, J. G., et al. (2018). Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation, 388–399.
3.
go back to reference Capodanno, D., Petronio, A. S., Prendergast, B., Eltchaninoff, H., Vahanian, A., Modine, T., … Haude, M. (2017). Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interven. European Heart Journal, 38(45), 3382–3390. Capodanno, D., Petronio, A. S., Prendergast, B., Eltchaninoff, H., Vahanian, A., Modine, T., … Haude, M. (2017). Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interven. European Heart Journal, 38(45), 3382–3390.
4.
go back to reference Johnston, D. R., Soltesz, E. G., Vakil, N., Rajeswaran, J., Roselli, E. E., Sabik, J. F., … Blackstone, E. H. (2015). Long-term durability of bioprosthetic aortic valves: implications from 12,569 implants. Annals of Thoracic Surgery, 99(4), 1239–1247. Johnston, D. R., Soltesz, E. G., Vakil, N., Rajeswaran, J., Roselli, E. E., Sabik, J. F., … Blackstone, E. H. (2015). Long-term durability of bioprosthetic aortic valves: implications from 12,569 implants. Annals of Thoracic Surgery, 99(4), 1239–1247.
5.
go back to reference Dunning, J., Gao, H., Chambers, J., Moat, N., Roxburgh, J., Cth, F., … Cth, F. (2011). Aortic valve surgery: marked increases in volume and significant decreases in mechanical valve use — an analysis of 41 , 227 patients over 5 years from the Society for Cardiothoracic Surgery in Great Britain and Ireland National database. The Journal of Thoracic and Cardiovascular Surgery, 142(4), 776–782.e3. Dunning, J., Gao, H., Chambers, J., Moat, N., Roxburgh, J., Cth, F., … Cth, F. (2011). Aortic valve surgery: marked increases in volume and significant decreases in mechanical valve use — an analysis of 41 , 227 patients over 5 years from the Society for Cardiothoracic Surgery in Great Britain and Ireland National database. The Journal of Thoracic and Cardiovascular Surgery, 142(4), 776–782.e3.
6.
go back to reference Isaacs, A. J., Shuhaiber, J., Salemi, A., Isom, O. W., & Sedrakyan, A. (2015). National trends in utilization and in-hospital outcomes of mechanical versus bioprosthetic aortic valve replacements. Journal of Thoracic and Cardiovascular Surgery, 149(5), 1262–1269.CrossRefPubMed Isaacs, A. J., Shuhaiber, J., Salemi, A., Isom, O. W., & Sedrakyan, A. (2015). National trends in utilization and in-hospital outcomes of mechanical versus bioprosthetic aortic valve replacements. Journal of Thoracic and Cardiovascular Surgery, 149(5), 1262–1269.CrossRefPubMed
7.
go back to reference Zhao, D. F., Seco, M., Wu, J. J., Edelman, J. B., Wilson, M. K., Vallely, M. P., … Bannon, P. G. (2016). Mechanical versus bioprosthetic aortic valve replacement in middle-aged adults: a systematic review and meta-analysis. Annals of Thoracic Surgery, 102(1), 315–327. Zhao, D. F., Seco, M., Wu, J. J., Edelman, J. B., Wilson, M. K., Vallely, M. P., … Bannon, P. G. (2016). Mechanical versus bioprosthetic aortic valve replacement in middle-aged adults: a systematic review and meta-analysis. Annals of Thoracic Surgery, 102(1), 315–327.
8.
go back to reference Kappetein, S. J. H. M. Ç. A. P. (2017). Clinical update Mechanical versus bioprosthetic aortic valve replacement. European Heart Journal, 38(28), 2183–2191.CrossRefPubMed Kappetein, S. J. H. M. Ç. A. P. (2017). Clinical update Mechanical versus bioprosthetic aortic valve replacement. European Heart Journal, 38(28), 2183–2191.CrossRefPubMed
9.
go back to reference Wang, Y., Chen, S., Shi, J., Li, G., & Dong, N. (2016). Mid-to long-term outcome comparison of the Medtronic Hancock II and bi-leaflet mechanical aortic valve replacement in patients younger than 60 years of age: a propensity-matched analysis. Interactive Cardiovascular and Thoracic Surgery, 22(3), 280–286.CrossRefPubMed Wang, Y., Chen, S., Shi, J., Li, G., & Dong, N. (2016). Mid-to long-term outcome comparison of the Medtronic Hancock II and bi-leaflet mechanical aortic valve replacement in patients younger than 60 years of age: a propensity-matched analysis. Interactive Cardiovascular and Thoracic Surgery, 22(3), 280–286.CrossRefPubMed
10.
go back to reference Cribier, A., Eltchaninoff, H., Bash, A., Borenstein, N., Tron, C., Bauer, F., … Leon, M. B. (2002). Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 106(1524–4539), 3006–3008. Cribier, A., Eltchaninoff, H., Bash, A., Borenstein, N., Tron, C., Bauer, F., … Leon, M. B. (2002). Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 106(1524–4539), 3006–3008.
11.
go back to reference Grube, E., Laborde, J. C., Gerckens, U., Felderhoff, T., Sauren, B., Buellesfeld, L., … Stone, G. W. (2006). Percutaneous implantation of the CoreValve self-expanding valve prosthesis in high-risk patients with aortic valve disease: the Siegburg first-in-man study. Circulation, 114(15), 1616–1624. Grube, E., Laborde, J. C., Gerckens, U., Felderhoff, T., Sauren, B., Buellesfeld, L., … Stone, G. W. (2006). Percutaneous implantation of the CoreValve self-expanding valve prosthesis in high-risk patients with aortic valve disease: the Siegburg first-in-man study. Circulation, 114(15), 1616–1624.
12.
go back to reference Mauri, V., Kim, W. K., Abumayyaleh, M., Walther, T., Moellmann, H., Schaefer, U., … Rudolph, T. K. (2017). Short-term outcome and hemodynamic performance of next-generation self-expanding versus balloon-expandable transcatheter aortic valves in patients with small aortic annulus: a multicenter propensity-matched comparison. Circulation: Cardiovascular Interventions, 10(10), 1–7. https://doi.org/10.1161/CIRCINTERVENTIONS.117.005013. Mauri, V., Kim, W. K., Abumayyaleh, M., Walther, T., Moellmann, H., Schaefer, U., … Rudolph, T. K. (2017). Short-term outcome and hemodynamic performance of next-generation self-expanding versus balloon-expandable transcatheter aortic valves in patients with small aortic annulus: a multicenter propensity-matched comparison. Circulation: Cardiovascular Interventions, 10(10), 1–7. https://​doi.​org/​10.​1161/​CIRCINTERVENTION​S.​117.​005013.
13.
go back to reference Husser, O., Kim, W. K., Pellegrini, C., Holzamer, A., Walther, T., Mayr, P. N., … Hengstenberg, C. (2017). Multicenter comparison of novel self-expanding versus balloon-expandable transcatheter heart valves. JACC: Cardiovascular Interventions, 10(20), 2078–2087. https://doi.org/10.1016/j.jcin.2017.06.026. Husser, O., Kim, W. K., Pellegrini, C., Holzamer, A., Walther, T., Mayr, P. N., … Hengstenberg, C. (2017). Multicenter comparison of novel self-expanding versus balloon-expandable transcatheter heart valves. JACC: Cardiovascular Interventions, 10(20), 2078–2087. https://​doi.​org/​10.​1016/​j.​jcin.​2017.​06.​026.
14.
go back to reference Manoharan, G., Linke, A., Moellmann, H., Redwood, S., Frerker, C., Kovac, J., & Walther, T. (2016). Multicentre clinical study evaluating a novel resheathable annular functioning self-expanding transcatheter aortic valve system: safety and performance results at 30 days with the Portico system. EuroIntervention, 12(6), 768–774.CrossRefPubMed Manoharan, G., Linke, A., Moellmann, H., Redwood, S., Frerker, C., Kovac, J., & Walther, T. (2016). Multicentre clinical study evaluating a novel resheathable annular functioning self-expanding transcatheter aortic valve system: safety and performance results at 30 days with the Portico system. EuroIntervention, 12(6), 768–774.CrossRefPubMed
15.
go back to reference Silaschi, M., Treede, H., Rastan, A. J., Baumbach, H., Beyersdorfe, F., Kappert, U., … Wendler, O. (2016). The JUPITER registry: 1-year results of transapical aortic valve implantation using a second-generation transcatheter heart valve in patients with aortic stenosis. European Journal of Cardio-Thoracic Surgery, 50(5), 874–881. https://doi.org/10.1093/ejcts/ezw170. Silaschi, M., Treede, H., Rastan, A. J., Baumbach, H., Beyersdorfe, F., Kappert, U., … Wendler, O. (2016). The JUPITER registry: 1-year results of transapical aortic valve implantation using a second-generation transcatheter heart valve in patients with aortic stenosis. European Journal of Cardio-Thoracic Surgery, 50(5), 874–881. https://​doi.​org/​10.​1093/​ejcts/​ezw170.
17.
go back to reference Caballero, A., Sulejmani, F., Martin, C., Pham, T., & Sun, W. (2017). Evaluation of transcatheter heart valve biomaterials: biomechanical characterization of bovine and porcine pericardium. Journal of the Mechanical Behavior of Biomedical Materials, 75(June), 486–494.CrossRefPubMedPubMedCentral Caballero, A., Sulejmani, F., Martin, C., Pham, T., & Sun, W. (2017). Evaluation of transcatheter heart valve biomaterials: biomechanical characterization of bovine and porcine pericardium. Journal of the Mechanical Behavior of Biomedical Materials, 75(June), 486–494.CrossRefPubMedPubMedCentral
18.
go back to reference Zhang, R., Wang, Y., Chen, L., Wang, R., Li, C., Li, X., et al. (2018). Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomaterialia, 72, 196–205.CrossRefPubMed Zhang, R., Wang, Y., Chen, L., Wang, R., Li, C., Li, X., et al. (2018). Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomaterialia, 72, 196–205.CrossRefPubMed
19.
go back to reference Konakci, K. Z., Bohle, B., Blumer, R., Hoetzenecker, W., Roth, G., Moser, B., … Ankersmit, H. J. (2005). Alpha-Gal on bioprostheses : xenograft immune response in cardiac surgery. European Journal of Clinical Investigation, 35, 17–23. Konakci, K. Z., Bohle, B., Blumer, R., Hoetzenecker, W., Roth, G., Moser, B., … Ankersmit, H. J. (2005). Alpha-Gal on bioprostheses : xenograft immune response in cardiac surgery. European Journal of Clinical Investigation, 35, 17–23.
20.
go back to reference Park, C. S., Park, S. S., Choi, S. Y., Yoon, S. H., Kim, W. H., & Kim, Y. J. (2010). Anti alpha-Gal immune response following porcine bioprosthesis implantation in children. The Journal of Heart Valve Disease, 19(1), 124–130.PubMed Park, C. S., Park, S. S., Choi, S. Y., Yoon, S. H., Kim, W. H., & Kim, Y. J. (2010). Anti alpha-Gal immune response following porcine bioprosthesis implantation in children. The Journal of Heart Valve Disease, 19(1), 124–130.PubMed
21.
go back to reference McGregor, C. G., Carpentier, A., Lila, N., Logan, J. S., & Byrne, G. W. (2011). Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves. The Journal of Thoracic and Cardiovascular Surgery, 141(1), 269–275.CrossRefPubMed McGregor, C. G., Carpentier, A., Lila, N., Logan, J. S., & Byrne, G. W. (2011). Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves. The Journal of Thoracic and Cardiovascular Surgery, 141(1), 269–275.CrossRefPubMed
22.
go back to reference Lila, N., McGregor, C. G. a., Carpentier, S., Rancic, J., Byrne, G. W., & Carpentier, A. (2010). Gal knockout pig pericardium: new source of material for heart valve bioprostheses. Journal of Heart and Lung Transplantation, 29(5), 538–543.CrossRefPubMed Lila, N., McGregor, C. G. a., Carpentier, S., Rancic, J., Byrne, G. W., & Carpentier, A. (2010). Gal knockout pig pericardium: new source of material for heart valve bioprostheses. Journal of Heart and Lung Transplantation, 29(5), 538–543.CrossRefPubMed
23.
go back to reference McGregor, C., Byrne, G., Rahmani, B., Chisari, E., Kyriakopoulou, K., & Burriesci, G. (2016). Physical equivalency of wild type and galactose α 1,3 galactose free porcine pericardium; a new source material for bioprosthetic heart valves. Acta Biomaterialia, 41, 204–209.CrossRefPubMedPubMedCentral McGregor, C., Byrne, G., Rahmani, B., Chisari, E., Kyriakopoulou, K., & Burriesci, G. (2016). Physical equivalency of wild type and galactose α 1,3 galactose free porcine pericardium; a new source material for bioprosthetic heart valves. Acta Biomaterialia, 41, 204–209.CrossRefPubMedPubMedCentral
24.
go back to reference Burriesci, G., Rahmani, B., McGregor, C., & Byrne, G. (2018). Prosthetic heart valve. WO2018011592. Burriesci, G., Rahmani, B., McGregor, C., & Byrne, G. (2018). Prosthetic heart valve. WO2018011592.
25.
go back to reference Burriesci, G., Rahmani, B. (2016). Design application No: 003002088-0001. Burriesci, G., Rahmani, B. (2016). Design application No: 003002088-0001.
26.
go back to reference ISO 5840-2. (2015). Cardiovascular implants. Cardiac valve prostheses. In Surgically implanted heart valve substitutes. Geneva: ISO. ISO 5840-2. (2015). Cardiovascular implants. Cardiac valve prostheses. In Surgically implanted heart valve substitutes. Geneva: ISO.
27.
go back to reference Garcia, D., & Kadem, L. (2006). What do you mean by aortic valve area: geometric orifice area, effective orifice area, or gorlin area? The Journal of Heart Valve Disease, 15, 601–608.PubMed Garcia, D., & Kadem, L. (2006). What do you mean by aortic valve area: geometric orifice area, effective orifice area, or gorlin area? The Journal of Heart Valve Disease, 15, 601–608.PubMed
28.
go back to reference Gorlin, R., & Gorlin, S. G. (1951). Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. American Heart Journal, 41(1), 1–29.CrossRefPubMed Gorlin, R., & Gorlin, S. G. (1951). Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. American Heart Journal, 41(1), 1–29.CrossRefPubMed
29.
go back to reference Avelar, A. H. F., Canestri, J. A., Bim, C., Silva, M. G. M., Huebner, R., & Pinotti, M. (2017). Quantification and analysis of leaflet flutter on biological prosthetic cardiac valves. Artificial Organs, 41(9), 835–844.CrossRefPubMed Avelar, A. H. F., Canestri, J. A., Bim, C., Silva, M. G. M., Huebner, R., & Pinotti, M. (2017). Quantification and analysis of leaflet flutter on biological prosthetic cardiac valves. Artificial Organs, 41(9), 835–844.CrossRefPubMed
30.
go back to reference Siddiqui, R. F., Abraham, J. R., & Butany, J. (2009). Bioprosthetic heart valves: modes of failure. Histopathology, 55(2), 135–144.CrossRefPubMed Siddiqui, R. F., Abraham, J. R., & Butany, J. (2009). Bioprosthetic heart valves: modes of failure. Histopathology, 55(2), 135–144.CrossRefPubMed
31.
go back to reference Tasca, G., Fiore, G. B., Redaelli, P., Romagnoni, C., Redaelli, A., Gamba, A., … Vismara, R. (2017). Hydrodynamic and geometric behavior of two pericardial prostheses implanted in small aortic roots. ASAIO Journal, 64(1), 86–90. Tasca, G., Fiore, G. B., Redaelli, P., Romagnoni, C., Redaelli, A., Gamba, A., … Vismara, R. (2017). Hydrodynamic and geometric behavior of two pericardial prostheses implanted in small aortic roots. ASAIO Journal, 64(1), 86–90.
32.
go back to reference El Faquir, N., Ren, B., Faure, M., de Ronde, M., Geeve, P., Maugenest, A. M., … Van Mieghem, N. M. (2017). Long-term structural integrity and durability of the Medtronic CoreValve System after transcatheter aortic valve replacement. JACC: Cardiovascular Imaging, (3). El Faquir, N., Ren, B., Faure, M., de Ronde, M., Geeve, P., Maugenest, A. M., … Van Mieghem, N. M. (2017). Long-term structural integrity and durability of the Medtronic CoreValve System after transcatheter aortic valve replacement. JACC: Cardiovascular Imaging, (3).
33.
go back to reference Baron, S. J., Arnold, S. V., Reynolds, M. R., Wang, K., Deeb, M., Reardon, M. J., … Cohen, D. J. (2017). Durability of quality of life benefits of transcatheter aortic valve replacement: long-term results from the CoreValve US extreme risk trial. American Heart Journal, 194, 39–48. Baron, S. J., Arnold, S. V., Reynolds, M. R., Wang, K., Deeb, M., Reardon, M. J., … Cohen, D. J. (2017). Durability of quality of life benefits of transcatheter aortic valve replacement: long-term results from the CoreValve US extreme risk trial. American Heart Journal, 194, 39–48.
34.
go back to reference Barbanti, M., Petronio, A. S., Ettori, F., Latib, A., Bedogni, F., De Marco, F., … Tamburino, C. (2015). 5-year outcomes after transcatheter aortic valve implantation with CoreValve prosthesis. JACC: Cardiovascular Interventions, 8(8), 1084–1091. Barbanti, M., Petronio, A. S., Ettori, F., Latib, A., Bedogni, F., De Marco, F., … Tamburino, C. (2015). 5-year outcomes after transcatheter aortic valve implantation with CoreValve prosthesis. JACC: Cardiovascular Interventions, 8(8), 1084–1091.
35.
go back to reference Sulzenko, J., Tousek, P., Kocka, V., & Widimsky, P. (2015). Transcatheter aortic valve implantation: long-term clinical outcome and valve durability. Expert Review of Medical Devices, 4440(April), 1–7. Sulzenko, J., Tousek, P., Kocka, V., & Widimsky, P. (2015). Transcatheter aortic valve implantation: long-term clinical outcome and valve durability. Expert Review of Medical Devices, 4440(April), 1–7.
36.
go back to reference Arsalan, M., & Walther, T. (2016). Durability of prostheses for transcatheter aortic valve implantation. Nature Reviews Cardiology, 13(6), 360–367.CrossRefPubMed Arsalan, M., & Walther, T. (2016). Durability of prostheses for transcatheter aortic valve implantation. Nature Reviews Cardiology, 13(6), 360–367.CrossRefPubMed
37.
go back to reference Naso, F., Gandaglia, A., Bottio, T., Tarzia, V., Nottle, M. B., D’Apice, A. J. F., … Gerosa, G. (2013). First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation, 20(November 2012), 252–261. Naso, F., Gandaglia, A., Bottio, T., Tarzia, V., Nottle, M. B., D’Apice, A. J. F., … Gerosa, G. (2013). First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation, 20(November 2012), 252–261.
38.
go back to reference Naso, F., Stefanelli, U., Buratto, E., Lazzari, G., Perota, A., Galli, C., & Gandaglia, A. (2017). Alpha-Gal inactivated heart valve bioprostheses exhibit an anti-calcification propensity similar to knockout tissues. Tissue Engineering Part A, 23(19–20), 1181–1195.CrossRefPubMed Naso, F., Stefanelli, U., Buratto, E., Lazzari, G., Perota, A., Galli, C., & Gandaglia, A. (2017). Alpha-Gal inactivated heart valve bioprostheses exhibit an anti-calcification propensity similar to knockout tissues. Tissue Engineering Part A, 23(19–20), 1181–1195.CrossRefPubMed
Metadata
Title
A Durable Porcine Pericardial Surgical Bioprosthetic Heart Valve: a Proof of Concept
Authors
Benyamin Rahmani
Christopher McGregor
Guerard Byrne
Gaetano Burriesci
Publication date
01-08-2019
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2019
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-019-09868-3

Other articles of this Issue 4/2019

Journal of Cardiovascular Translational Research 4/2019 Go to the issue