Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2019

01-08-2019 | Original Article

MicroRNA-29b-3p Targets SPARC Gene to Protect Cardiocytes against Autophagy and Apoptosis in Hypoxic-Induced H9c2 Cells

Authors: Shu Zhou, Dazhou Lei, Faqin Bu, Hongqiang Han, Shucai Zhao, Yan Wang

Published in: Journal of Cardiovascular Translational Research | Issue 4/2019

Login to get access

Abstract

MicroRNAs participate in the regulation of abnormal cardiomyocyte apoptosis and autophagy, which leads to heart failure (HF). Lower miR-29b-3p levels were found in HF patients in this study. However, the role of miR-29b-3p in the molecular pathogenesis of HF remains unclear. Hypoxia-stimulated H9c2 cells were used an in vitro model of HF. It was found that hypoxia stimulation decreased the miR-29b-3p expression and enhanced cell apoptosis and autophagy response in H9c2 cells. While the effects of hypoxia on cell apoptosis and autophagy were reversed by miR-29b-3p transfection, especially 100 nM. The secreted protein acidic and rich in cysteine (SPARC), predicted as a direct target of miR-29b-3p, aggravated the hypoxia-induced cells apoptosis, autophagy, and TGFβ1/Smad3 activation. While the changes were dramatically reversed by miR-29b-3p. Taken together, our data suggest that miR-29b-3p plays an important role in the progression of HF through targeting SPARC and regulating TGFβ1/Smad3 pathway.
Literature
1.
go back to reference Brito D., Cepeda B. (2017) Heart failure, congestive (CHF). Brito D., Cepeda B. (2017) Heart failure, congestive (CHF).
2.
go back to reference Jose Corbalan, J., Vatner, D. E., & Vatner, S. F. (2016). Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Research in Cardiology, 111(3), 31.CrossRefPubMed Jose Corbalan, J., Vatner, D. E., & Vatner, S. F. (2016). Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Research in Cardiology, 111(3), 31.CrossRefPubMed
3.
go back to reference Xia, P., Liu, Y., & Cheng, Z. (2016). Signaling pathways in cardiac myocyte apoptosis. BioMed Research International, 2016, 9583268.PubMedPubMedCentral Xia, P., Liu, Y., & Cheng, Z. (2016). Signaling pathways in cardiac myocyte apoptosis. BioMed Research International, 2016, 9583268.PubMedPubMedCentral
5.
go back to reference Mialet-Perez, J., & Vindis, C. (2017). Autophagy in health and disease: focus on the cardiovascular system. Essays in Biochemistry, 61(6), 721–732.CrossRefPubMed Mialet-Perez, J., & Vindis, C. (2017). Autophagy in health and disease: focus on the cardiovascular system. Essays in Biochemistry, 61(6), 721–732.CrossRefPubMed
6.
go back to reference Wong, L. L., Rademaker, M. T., Saw, E. L., Lew, K. S., Ellmers, L. J., Charles, C. J., Richards, A. M., & Wang, P. (2017). Identification of novel microRNAs in the sheep heart and their regulation in heart failure. Scientific Reports, 7(1), 8250.CrossRefPubMedPubMedCentral Wong, L. L., Rademaker, M. T., Saw, E. L., Lew, K. S., Ellmers, L. J., Charles, C. J., Richards, A. M., & Wang, P. (2017). Identification of novel microRNAs in the sheep heart and their regulation in heart failure. Scientific Reports, 7(1), 8250.CrossRefPubMedPubMedCentral
7.
go back to reference Tijsen, A. J., Pinto, Y. M., & Creemers, E. E. (2012). Non-cardiomyocyte microRNAs in heart failure. Cardiovascular Research, 93(4), 573–582.CrossRefPubMed Tijsen, A. J., Pinto, Y. M., & Creemers, E. E. (2012). Non-cardiomyocyte microRNAs in heart failure. Cardiovascular Research, 93(4), 573–582.CrossRefPubMed
9.
go back to reference Zhu, M. L., Yin, Y. L., Ping, S., Yu, H. Y., Wan, G. R., Jian, X., & Li, P. (2017). Berberine promotes ischemia-induced angiogenesis in mice heart via upregulation of microRNA-29b. Clinical and Experimental Hypertension, 39(7), 672–679.CrossRefPubMed Zhu, M. L., Yin, Y. L., Ping, S., Yu, H. Y., Wan, G. R., Jian, X., & Li, P. (2017). Berberine promotes ischemia-induced angiogenesis in mice heart via upregulation of microRNA-29b. Clinical and Experimental Hypertension, 39(7), 672–679.CrossRefPubMed
10.
go back to reference Yang, F., Li, P., Li, H., Shi, Q., Li, S., & Zhao, L. (2015). microRNA-29b mediates the antifibrotic effect of Tanshinone IIA in postinfarct cardiac remodeling. Journal of Cardiovascular Pharmacology, 65(5), 456–464.CrossRefPubMed Yang, F., Li, P., Li, H., Shi, Q., Li, S., & Zhao, L. (2015). microRNA-29b mediates the antifibrotic effect of Tanshinone IIA in postinfarct cardiac remodeling. Journal of Cardiovascular Pharmacology, 65(5), 456–464.CrossRefPubMed
11.
go back to reference Abonnenc, M., Nabeebaccus, A. A., Mayr, U., Barallobre-Barreiro, J., Dong, X., Cuello, F., Sur, S., Drozdov, I., Langley, S. R., Lu, R., et al. (2013). Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circulation Research, 113(10), 1138–1147.CrossRefPubMed Abonnenc, M., Nabeebaccus, A. A., Mayr, U., Barallobre-Barreiro, J., Dong, X., Cuello, F., Sur, S., Drozdov, I., Langley, S. R., Lu, R., et al. (2013). Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circulation Research, 113(10), 1138–1147.CrossRefPubMed
12.
go back to reference Marques, F. Z., Vizi, D., Khammy, O., Mariani, J. A., & Kaye, D. M. (2016). The transcardiac gradient of cardio-microRNAs in the failing heart. European Journal of Heart Failure, 18(8), 1000–1008.CrossRefPubMed Marques, F. Z., Vizi, D., Khammy, O., Mariani, J. A., & Kaye, D. M. (2016). The transcardiac gradient of cardio-microRNAs in the failing heart. European Journal of Heart Failure, 18(8), 1000–1008.CrossRefPubMed
13.
go back to reference Yang, Y. F., Wu, C. C., Chen, W. P., & Su, M. J. (2009). Transforming growth factor-beta type I receptor/ALK5 contributes to doxazosin-induced apoptosis in H9C2 cells. Naunyn-Schmiedeberg’s Archives of Pharmacology, 380(6), 561–567.CrossRefPubMed Yang, Y. F., Wu, C. C., Chen, W. P., & Su, M. J. (2009). Transforming growth factor-beta type I receptor/ALK5 contributes to doxazosin-induced apoptosis in H9C2 cells. Naunyn-Schmiedeberg’s Archives of Pharmacology, 380(6), 561–567.CrossRefPubMed
14.
go back to reference Ghavami, S., Cunnington, R. H., Gupta, S., Yeganeh, B., Filomeno, K. L., Freed, D. H., Chen, S., Klonisch, T., Halayko, A. J., Ambrose, E., et al. (2015). Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death & Disease, 6, e1696.CrossRef Ghavami, S., Cunnington, R. H., Gupta, S., Yeganeh, B., Filomeno, K. L., Freed, D. H., Chen, S., Klonisch, T., Halayko, A. J., Ambrose, E., et al. (2015). Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death & Disease, 6, e1696.CrossRef
15.
go back to reference Chen, K., Chen, W., Liu, S. L., Wu, T. S., Yu, K. F., Qi, J., Wang, Y., Yao, H., Huang, X. Y., Han, Y., et al. (2018). Epigallocatechingallate attenuates myocardial injury in a mouse model of heart failure through TGFbeta1/Smad3 signaling pathway. Molecular Medicine Reports, 17(6), 7652–7660.PubMedPubMedCentral Chen, K., Chen, W., Liu, S. L., Wu, T. S., Yu, K. F., Qi, J., Wang, Y., Yao, H., Huang, X. Y., Han, Y., et al. (2018). Epigallocatechingallate attenuates myocardial injury in a mouse model of heart failure through TGFbeta1/Smad3 signaling pathway. Molecular Medicine Reports, 17(6), 7652–7660.PubMedPubMedCentral
16.
go back to reference Pandey, A. C., Lancaster, J. J., Harris, D. T., Goldman, S., & Juneman, E. (2017). Cellular therapeutics for heart failure: focus on mesenchymal stem cells. Stem Cells International, 2017, 9640108.CrossRefPubMedPubMedCentral Pandey, A. C., Lancaster, J. J., Harris, D. T., Goldman, S., & Juneman, E. (2017). Cellular therapeutics for heart failure: focus on mesenchymal stem cells. Stem Cells International, 2017, 9640108.CrossRefPubMedPubMedCentral
17.
go back to reference Hashimoto, H., Olson, E. N., & Bassel-Duby, R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nature Reviews. Cardiology. Hashimoto, H., Olson, E. N., & Bassel-Duby, R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nature Reviews. Cardiology.
18.
go back to reference Zhang, J., Liu, D., Zhang, M., & Zhang, Y. (2018). Cardiomyocyte programmed necrosis: mitochondria, death receptor and beyond. Br J Pharmacol. Zhang, J., Liu, D., Zhang, M., & Zhang, Y. (2018). Cardiomyocyte programmed necrosis: mitochondria, death receptor and beyond. Br J Pharmacol.
19.
go back to reference Moon, S. H., Bae, D., Jung, T. H., Chung, E. B., Jeong, Y. H., Park, S. J., & Chung, H. M. (2017). From bench to market: preparing human pluripotent stem cells derived cardiomyocytes for various applications. Int J Stem Cells, 10(1), 1–11.CrossRefPubMedPubMedCentral Moon, S. H., Bae, D., Jung, T. H., Chung, E. B., Jeong, Y. H., Park, S. J., & Chung, H. M. (2017). From bench to market: preparing human pluripotent stem cells derived cardiomyocytes for various applications. Int J Stem Cells, 10(1), 1–11.CrossRefPubMedPubMedCentral
20.
go back to reference Huang, Z., Ye, B., Dai, Z., Wu, X., Lu, Z., Shan, P., & Huang, W. (2015). Curcumin inhibits autophagy and apoptosis in hypoxia/reoxygenation-induced myocytes. Molecular Medicine Reports, 11(6), 4678–4684.CrossRefPubMed Huang, Z., Ye, B., Dai, Z., Wu, X., Lu, Z., Shan, P., & Huang, W. (2015). Curcumin inhibits autophagy and apoptosis in hypoxia/reoxygenation-induced myocytes. Molecular Medicine Reports, 11(6), 4678–4684.CrossRefPubMed
21.
go back to reference Qin, L., Fan, S., Jia, R., & Liu, Y. (2018). Ginsenoside Rg1 protects cardiomyocytes from hypoxia-induced injury through the PI3K/AKT/mTOR pathway. Pharmazie, 73(6), 349–355.PubMed Qin, L., Fan, S., Jia, R., & Liu, Y. (2018). Ginsenoside Rg1 protects cardiomyocytes from hypoxia-induced injury through the PI3K/AKT/mTOR pathway. Pharmazie, 73(6), 349–355.PubMed
22.
go back to reference Roohbakhsh, A., Shamsizadeh, A., Hayes, A. W., Reiter, R. J., & Karimi, G. (2018). Melatonin as an endogenous regulator of diseases: the role of autophagy. Pharmacological Research. Roohbakhsh, A., Shamsizadeh, A., Hayes, A. W., Reiter, R. J., & Karimi, G. (2018). Melatonin as an endogenous regulator of diseases: the role of autophagy. Pharmacological Research.
23.
go back to reference Kriegel, A. J., Liu, Y., Fang, Y., Ding, X., & Liang, M. (2012). The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiological Genomics, 44(4), 237–244.CrossRefPubMedPubMedCentral Kriegel, A. J., Liu, Y., Fang, Y., Ding, X., & Liang, M. (2012). The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiological Genomics, 44(4), 237–244.CrossRefPubMedPubMedCentral
24.
go back to reference Ye, Y., Hu, Z., Lin, Y., Zhang, C., & Perez-Polo, J. R. (2010). Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovascular Research, 87(3), 535–544.CrossRefPubMed Ye, Y., Hu, Z., Lin, Y., Zhang, C., & Perez-Polo, J. R. (2010). Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovascular Research, 87(3), 535–544.CrossRefPubMed
25.
go back to reference Zhang, J., He, Z., Xiao, W., Na, Q., Wu, T., Su, K., & Cui, X. (2016). Overexpression of BAG3 attenuates hypoxia-induced cardiomyocyte apoptosis by inducing autophagy. Cellular Physiology and Biochemistry, 39(2), 491–500.CrossRefPubMed Zhang, J., He, Z., Xiao, W., Na, Q., Wu, T., Su, K., & Cui, X. (2016). Overexpression of BAG3 attenuates hypoxia-induced cardiomyocyte apoptosis by inducing autophagy. Cellular Physiology and Biochemistry, 39(2), 491–500.CrossRefPubMed
26.
go back to reference Mehrhof, F. B., Muller, F. U., Bergmann, M. W., Li, P., Wang, Y., Schmitz, W., Dietz, R., & von Harsdorf, R. (2001). In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation, 104(17), 2088–2094.CrossRefPubMed Mehrhof, F. B., Muller, F. U., Bergmann, M. W., Li, P., Wang, Y., Schmitz, W., Dietz, R., & von Harsdorf, R. (2001). In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation, 104(17), 2088–2094.CrossRefPubMed
27.
go back to reference Hu, Z., Cai, H. Y., Luo, Y. Y., Xiao, J. M., Li, L., & Guo, T. (2018). Effect of varying hypoxia reoxygenation times on autophagy of cardiomyocytes. Acta Cirúrgica Brasileira, 33(3), 223–230.CrossRefPubMed Hu, Z., Cai, H. Y., Luo, Y. Y., Xiao, J. M., Li, L., & Guo, T. (2018). Effect of varying hypoxia reoxygenation times on autophagy of cardiomyocytes. Acta Cirúrgica Brasileira, 33(3), 223–230.CrossRefPubMed
28.
go back to reference Harris, B. S., Zhang, Y., Card, L., Rivera, L. B., Brekken, R. A., & Bradshaw, A. D. (2011). SPARC regulates collagen interaction with cardiac fibroblast cell surfaces. American Journal of Physiology. Heart and Circulatory Physiology, 301(3), H841–H847.CrossRefPubMedPubMedCentral Harris, B. S., Zhang, Y., Card, L., Rivera, L. B., Brekken, R. A., & Bradshaw, A. D. (2011). SPARC regulates collagen interaction with cardiac fibroblast cell surfaces. American Journal of Physiology. Heart and Circulatory Physiology, 301(3), H841–H847.CrossRefPubMedPubMedCentral
29.
go back to reference Hartley, P. S., Motamedchaboki, K., Bodmer, R., & Ocorr, K. (2016). SPARC-dependent cardiomyopathy in drosophila. Circulation. Cardiovascular Genetics, 9(2), 119–129.CrossRefPubMedPubMedCentral Hartley, P. S., Motamedchaboki, K., Bodmer, R., & Ocorr, K. (2016). SPARC-dependent cardiomyopathy in drosophila. Circulation. Cardiovascular Genetics, 9(2), 119–129.CrossRefPubMedPubMedCentral
30.
go back to reference Lindsey, M. L., Mann, D. L., Entman, M. L., & Spinale, F. G. (2003). Extracellular matrix remodeling following myocardial injury. Annals of Medicine, 35(5), 316–326.CrossRefPubMed Lindsey, M. L., Mann, D. L., Entman, M. L., & Spinale, F. G. (2003). Extracellular matrix remodeling following myocardial injury. Annals of Medicine, 35(5), 316–326.CrossRefPubMed
31.
go back to reference Wang, Y., Wang, Q., Zhang, L., Ke, Z., Zhao, Y., Wang, D., Chen, H., Jiang, X., Gu, M., Fan, S., et al. (2017). Coptisine protects cardiomyocyte against hypoxia/reoxygenation-induced damage via inhibition of autophagy. Biochemical and Biophysical Research Communications, 490(2), 231–238.CrossRefPubMed Wang, Y., Wang, Q., Zhang, L., Ke, Z., Zhao, Y., Wang, D., Chen, H., Jiang, X., Gu, M., Fan, S., et al. (2017). Coptisine protects cardiomyocyte against hypoxia/reoxygenation-induced damage via inhibition of autophagy. Biochemical and Biophysical Research Communications, 490(2), 231–238.CrossRefPubMed
Metadata
Title
MicroRNA-29b-3p Targets SPARC Gene to Protect Cardiocytes against Autophagy and Apoptosis in Hypoxic-Induced H9c2 Cells
Authors
Shu Zhou
Dazhou Lei
Faqin Bu
Hongqiang Han
Shucai Zhao
Yan Wang
Publication date
01-08-2019
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2019
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-018-9858-1

Other articles of this Issue 4/2019

Journal of Cardiovascular Translational Research 4/2019 Go to the issue