Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2012

01-08-2012

Oxidative Stress, Nox Isoforms and Complications of Diabetes—Potential Targets for Novel Therapies

Authors: Mona Sedeek, Augusto C. Montezano, Richard L. Hebert, Stephen P. Gray, Elyse Di Marco, Jay C. Jha, Mark E. Cooper, Karin Jandeleit-Dahm, Ernesto L. Schiffrin, Jennifer L. Wilkinson-Berka, Rhian M. Touyz

Published in: Journal of Cardiovascular Translational Research | Issue 4/2012

Login to get access

Abstract

Most diabetes-related complications and causes of death arise from cardiovascular disease and end-stage renal disease. Amongst the major complications of diabetes mellitus are retinopathy, neuropathy, nephropathy and accelerated atherosclerosis. Increased bioavailability of reactive oxygen species (ROS) (termed oxidative stress), derived in large part from the NADPH oxidase (Nox) family of free radical producing enzymes, has been demonstrated in experimental and clinical diabetes and has been implicated in the cardiovascular and renal complications of diabetes. The present review focuses on the role of Noxs and oxidative stress in some major complications of diabetes, including nephropathy, retinopathy and atherosclerosis. We also discuss Nox isoforms as potential targets for therapy.
Literature
1.
go back to reference Emerging Risk Factors Collaboration, Sarwar, N., Gao, P., Seshasai, S. R., Gobin, R., Kaptoge, S., et al. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet, 375, 2215–2222.PubMedCrossRef Emerging Risk Factors Collaboration, Sarwar, N., Gao, P., Seshasai, S. R., Gobin, R., Kaptoge, S., et al. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet, 375, 2215–2222.PubMedCrossRef
2.
go back to reference Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, (2011). Atlanta: Department of Health and Human Services, Centers for Disease Control and Prevention. Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, (2011). Atlanta: Department of Health and Human Services, Centers for Disease Control and Prevention.
3.
go back to reference Ismail-Beigi, F. (2012). Clinical practice. Glycemic management of type 2 diabetes mellitus. The New England Journal of Medicine, 366(14), 1319–1327.PubMedCrossRef Ismail-Beigi, F. (2012). Clinical practice. Glycemic management of type 2 diabetes mellitus. The New England Journal of Medicine, 366(14), 1319–1327.PubMedCrossRef
4.
go back to reference Tikellis, C., Pickering, R.J., Tsorotes, D., Du, X.J., Kiriazis, H., Nguyen-Huu, T.P., Head, G.A., Cooper, M.E., Thomas, M.C. (2012) The interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes. Clinical Science (London) [Epub ahead of print]. Tikellis, C., Pickering, R.J., Tsorotes, D., Du, X.J., Kiriazis, H., Nguyen-Huu, T.P., Head, G.A., Cooper, M.E., Thomas, M.C. (2012) The interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes. Clinical Science (London) [Epub ahead of print].
5.
go back to reference Huang, A., Yang, Y. M., Feher, A., Bagi, Z., Kaley, G., & Sun, D. (2012). Exacerbation of endothelial dysfunction during the progression of diabetes: role of oxidative stress. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 302(6), R674–R681.PubMedCrossRef Huang, A., Yang, Y. M., Feher, A., Bagi, Z., Kaley, G., & Sun, D. (2012). Exacerbation of endothelial dysfunction during the progression of diabetes: role of oxidative stress. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 302(6), R674–R681.PubMedCrossRef
6.
go back to reference Chang, C.M., Hsieh, C.J., Huang, J.C., Huang, I.C. (2012). Acute and chronic fluctuations in blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta Diabetologia. 2012 May 1. [Epub ahead of print]. Chang, C.M., Hsieh, C.J., Huang, J.C., Huang, I.C. (2012). Acute and chronic fluctuations in blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta Diabetologia. 2012 May 1. [Epub ahead of print].
7.
go back to reference Tang, W. H., Martin, K. A., & Hwa, J. (2012). Aldose reductase, oxidative stress, and diabetic mellitus. Frontiers in Pharmacology, 3, 87–90.PubMedCrossRef Tang, W. H., Martin, K. A., & Hwa, J. (2012). Aldose reductase, oxidative stress, and diabetic mellitus. Frontiers in Pharmacology, 3, 87–90.PubMedCrossRef
8.
go back to reference Whaley-Connell, A., Sowers, J.R. (2012). Oxidative stress in the cardiorenal metabolic syndrome. Current Hypertension Reports. May 13. [Epub ahead of print]. Whaley-Connell, A., Sowers, J.R. (2012). Oxidative stress in the cardiorenal metabolic syndrome. Current Hypertension Reports. May 13. [Epub ahead of print].
9.
go back to reference Coughlan, M. T., Patel, S. K., Jerums, G., Penfold, S. A., Nguyen, T. V., Sourris, K. C., et al. (2011). Advanced glycation urinary protein-bound biomarkers and severity of diabetic nephropathy in man. American Journal of Nephrology, 34(4), 347–355.PubMedCrossRef Coughlan, M. T., Patel, S. K., Jerums, G., Penfold, S. A., Nguyen, T. V., Sourris, K. C., et al. (2011). Advanced glycation urinary protein-bound biomarkers and severity of diabetic nephropathy in man. American Journal of Nephrology, 34(4), 347–355.PubMedCrossRef
10.
go back to reference Jay, D., Hitomi, H., & Griendling, K. K. (2006). Oxidative stress and diabetic cardiovascular complications. Free Radical Biology & Medicine, 40(2), 183–192.CrossRef Jay, D., Hitomi, H., & Griendling, K. K. (2006). Oxidative stress and diabetic cardiovascular complications. Free Radical Biology & Medicine, 40(2), 183–192.CrossRef
11.
go back to reference Luther, J. M., & Brown, N. (2011). The renin–angiotensin–aldosterone system and glucose homeostasis. Trends in Pharmacological Sciences, 32(12), 734–739.PubMedCrossRef Luther, J. M., & Brown, N. (2011). The renin–angiotensin–aldosterone system and glucose homeostasis. Trends in Pharmacological Sciences, 32(12), 734–739.PubMedCrossRef
12.
go back to reference Shen, G. X. (2010). Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. Canadian Journal of Physiology and Pharmacology, 88(3), 241–248.PubMedCrossRef Shen, G. X. (2010). Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. Canadian Journal of Physiology and Pharmacology, 88(3), 241–248.PubMedCrossRef
13.
go back to reference Thum, T., Fraccarollo, D., Schultheiss, M., Froese, S., Galuppo, P., Widder, J. D., et al. (2007). Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes, 56(3), 666–674.PubMedCrossRef Thum, T., Fraccarollo, D., Schultheiss, M., Froese, S., Galuppo, P., Widder, J. D., et al. (2007). Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes, 56(3), 666–674.PubMedCrossRef
15.
go back to reference Al Ghouleh, I., Khoo, N. K., Knaus, U. G., Griendling, K. K., Touyz, R. M., Thannickal, V. J., et al. (2011). Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radical Biology & Medicine, 1, 1271–1288.CrossRef Al Ghouleh, I., Khoo, N. K., Knaus, U. G., Griendling, K. K., Touyz, R. M., Thannickal, V. J., et al. (2011). Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radical Biology & Medicine, 1, 1271–1288.CrossRef
16.
go back to reference Dworakowski, R., Alom-Ruiz, S. P., & Shah, A. M. (2008). NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype. Pharmacological Reports, 60(1), 21–28.PubMed Dworakowski, R., Alom-Ruiz, S. P., & Shah, A. M. (2008). NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype. Pharmacological Reports, 60(1), 21–28.PubMed
17.
go back to reference Sirker, A., Zhang, M., & Shah, A. M. (2011). NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Research in Cardiology, 106(5), 735–4.PubMedCrossRef Sirker, A., Zhang, M., & Shah, A. M. (2011). NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Research in Cardiology, 106(5), 735–4.PubMedCrossRef
18.
go back to reference Redmond, E. M., & Cahill, P. A. (2012). The NOX–ROS connection: targeting Nox1 control of N-cadherin shedding in vascular smooth muscle cells. Cardiovascular Research, 93(3), 386–390.PubMedCrossRef Redmond, E. M., & Cahill, P. A. (2012). The NOX–ROS connection: targeting Nox1 control of N-cadherin shedding in vascular smooth muscle cells. Cardiovascular Research, 93(3), 386–390.PubMedCrossRef
19.
go back to reference Dikalova, A. E., Góngora, M. C., Harrison, D. G., Lambeth, J. D., Dikalov, S., & Griendling, K. K. (2010). Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. American Journal of Physiology—Heart and Circulatory Physiology, 299(3), H673–H679.PubMedCrossRef Dikalova, A. E., Góngora, M. C., Harrison, D. G., Lambeth, J. D., Dikalov, S., & Griendling, K. K. (2010). Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. American Journal of Physiology—Heart and Circulatory Physiology, 299(3), H673–H679.PubMedCrossRef
20.
go back to reference Bayat, H., Schröder, K., Pimentel, D. R., Brandes, R. P., Verbeuren, T. J., Cohen, R. A., et al. (2012). Activation of thromboxane receptor modulates interleukin-1β-induced monocyte adhesion—a novel role of Nox1. Free Radical Biology & Medicine, 52(9), 1760–1766.CrossRef Bayat, H., Schröder, K., Pimentel, D. R., Brandes, R. P., Verbeuren, T. J., Cohen, R. A., et al. (2012). Activation of thromboxane receptor modulates interleukin-1β-induced monocyte adhesion—a novel role of Nox1. Free Radical Biology & Medicine, 52(9), 1760–1766.CrossRef
21.
go back to reference Yogi, A., Mercure, C., Touyz, J., Callera, G. E., Montezano, A. C., Aranha, A. B., et al. (2008). Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension. Hypertension, 51(2), 500–506.PubMedCrossRef Yogi, A., Mercure, C., Touyz, J., Callera, G. E., Montezano, A. C., Aranha, A. B., et al. (2008). Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension. Hypertension, 51(2), 500–506.PubMedCrossRef
22.
go back to reference Paik, Y. H., Iwaisako, K., Seki, E., Inokuchi, S., Schnabl, B., Osterreicher, C. H., et al. (2011). The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology, 53(5), 1730–1741.PubMedCrossRef Paik, Y. H., Iwaisako, K., Seki, E., Inokuchi, S., Schnabl, B., Osterreicher, C. H., et al. (2011). The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology, 53(5), 1730–1741.PubMedCrossRef
23.
go back to reference Yasuda, M., Kato, S., Yamanaka, N., Iimori, M., Utsumi, D., Kitahara, Y., et al. (2012). Potential role of the NADPH oxidase NOX1 in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice. American Journal of Physiology—Gastrointestinal and Liver Physiology, 302(10), G1133–G1142.PubMedCrossRef Yasuda, M., Kato, S., Yamanaka, N., Iimori, M., Utsumi, D., Kitahara, Y., et al. (2012). Potential role of the NADPH oxidase NOX1 in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice. American Journal of Physiology—Gastrointestinal and Liver Physiology, 302(10), G1133–G1142.PubMedCrossRef
24.
go back to reference Sheehan, A. L., Carrell, S., Johnson, B., Stanic, B., Banfi, B., & Miller, F. J., Jr. (2011). Role for Nox1 NADPH oxidase in atherosclerosis. Atherosclerosis, 216(2), 321–326.PubMedCrossRef Sheehan, A. L., Carrell, S., Johnson, B., Stanic, B., Banfi, B., & Miller, F. J., Jr. (2011). Role for Nox1 NADPH oxidase in atherosclerosis. Atherosclerosis, 216(2), 321–326.PubMedCrossRef
25.
go back to reference Youn, J.Y., Gao, L., Cai, H. (2012). The p47(phox)- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia 55, 2069–2079. Youn, J.Y., Gao, L., Cai, H. (2012). The p47(phox)- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia 55, 2069–2079.
26.
go back to reference Liu, J., Ormsby, A., Oja-Tebbe, N., & Pagano, P. J. (2004). Gene transfer of NAD(P)H oxidase inhibitor to the vascular adventitia attenuates medial smooth muscle hypertrophy. Circulation Research, 95(6), 587–594.PubMedCrossRef Liu, J., Ormsby, A., Oja-Tebbe, N., & Pagano, P. J. (2004). Gene transfer of NAD(P)H oxidase inhibitor to the vascular adventitia attenuates medial smooth muscle hypertrophy. Circulation Research, 95(6), 587–594.PubMedCrossRef
27.
go back to reference Touyz, R. M., Mercure, C., He, Y., Javeshghani, D., Yao, G., & Reudelhuber, T. (2005). Angiotensin II-dependent chronic hypertension and cardiac hypertrophy in mice do not require gp91phox-containing NADPH oxidase. Hypertension, 45, 530–537.PubMedCrossRef Touyz, R. M., Mercure, C., He, Y., Javeshghani, D., Yao, G., & Reudelhuber, T. (2005). Angiotensin II-dependent chronic hypertension and cardiac hypertrophy in mice do not require gp91phox-containing NADPH oxidase. Hypertension, 45, 530–537.PubMedCrossRef
28.
go back to reference Syed, I., Kyathanahalli, C. N., Jayaram, B., Govind, S., Rhodes, C. J., Kowluru, R. A., et al. (2011). Increased phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human islets: role of Rac1-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. Diabetes, 60(11), 2843–2852.PubMedCrossRef Syed, I., Kyathanahalli, C. N., Jayaram, B., Govind, S., Rhodes, C. J., Kowluru, R. A., et al. (2011). Increased phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human islets: role of Rac1-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. Diabetes, 60(11), 2843–2852.PubMedCrossRef
29.
go back to reference Mukherjea, D., Jajoo, S., Sheehan, K., Kaur, T., Sheth, S., Bunch, J., et al. (2011). NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss. Antioxidants & Redox Signaling, 14(6), 999–1010.CrossRef Mukherjea, D., Jajoo, S., Sheehan, K., Kaur, T., Sheth, S., Bunch, J., et al. (2011). NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss. Antioxidants & Redox Signaling, 14(6), 999–1010.CrossRef
30.
go back to reference Chen, G., Adeyemo, A. A., Zhou, J., Chen, Y., Doumatey, A., Lashley, K., et al. (2007). A genome-wide search for linkage to renal function phenotypes in West Africans with type 2 diabetes. American Journal of Kidney Diseases, 49(3), 394–400.PubMedCrossRef Chen, G., Adeyemo, A. A., Zhou, J., Chen, Y., Doumatey, A., Lashley, K., et al. (2007). A genome-wide search for linkage to renal function phenotypes in West Africans with type 2 diabetes. American Journal of Kidney Diseases, 49(3), 394–400.PubMedCrossRef
31.
go back to reference Ye, S., Zhong, H., Yanamadala, S., & Campese, V. M. (2006). Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension, 48(2), 309–132.PubMedCrossRef Ye, S., Zhong, H., Yanamadala, S., & Campese, V. M. (2006). Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension, 48(2), 309–132.PubMedCrossRef
32.
go back to reference Streeter, J., Thiel, W., Brieger, K., Miller, Jr F. J. (2012). Opportunity Nox: the future of NADPH oxidases as therapeutic targets in cardiovascular disease. Cardiovascular Therapeutics. doi: 10.1111. Streeter, J., Thiel, W., Brieger, K., Miller, Jr F. J. (2012). Opportunity Nox: the future of NADPH oxidases as therapeutic targets in cardiovascular disease. Cardiovascular Therapeutics. doi: 10.1111.
33.
go back to reference Xi, G., Shen, X., Maile, L. A., Wai, C., Gollahon, K., & Clemmons, D. R. (2012). Hyperglycemia enhances IGF-I-stimulated Src activation via increasing Nox4-derived reactive oxygen species in a PKCζ-dependent manner in vascular smooth muscle cells. Diabetes, 61(1), 104–113.PubMedCrossRef Xi, G., Shen, X., Maile, L. A., Wai, C., Gollahon, K., & Clemmons, D. R. (2012). Hyperglycemia enhances IGF-I-stimulated Src activation via increasing Nox4-derived reactive oxygen species in a PKCζ-dependent manner in vascular smooth muscle cells. Diabetes, 61(1), 104–113.PubMedCrossRef
34.
go back to reference Fulton, D. J. (2009). Nox5 and the regulation of cellular function. Antioxidants & Redox Signaling, 11(10), 2443–2452.CrossRef Fulton, D. J. (2009). Nox5 and the regulation of cellular function. Antioxidants & Redox Signaling, 11(10), 2443–2452.CrossRef
35.
go back to reference Lyle, A. N., Deshpande, N. N., Taniyama, Y., Seidel-Rogol, B., Pounkova, L., Du, P., et al. (2009). Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circulation Research, 105(3), 249–259.PubMedCrossRef Lyle, A. N., Deshpande, N. N., Taniyama, Y., Seidel-Rogol, B., Pounkova, L., Du, P., et al. (2009). Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circulation Research, 105(3), 249–259.PubMedCrossRef
36.
go back to reference Martin-Garrido, A., Brown, D. I., Lyle, A. N., Dikalova, A., Seidel-Rogol, B., Lassègue, B., et al. (2011). NADPH oxidase 4 mediates TGF-β-induced smooth muscle α-actin via p38MAPK and serum response factor. Free Radical Biology & Medicine, 50(2), 354–356.CrossRef Martin-Garrido, A., Brown, D. I., Lyle, A. N., Dikalova, A., Seidel-Rogol, B., Lassègue, B., et al. (2011). NADPH oxidase 4 mediates TGF-β-induced smooth muscle α-actin via p38MAPK and serum response factor. Free Radical Biology & Medicine, 50(2), 354–356.CrossRef
37.
go back to reference Takac, I., Schröder, K., Zhang, L., Lardy, B., Anilkumar, N., Lambeth, J. D., et al. (2011). The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. Journal of Biological Chemistry, 286(15), 13304–13313.PubMedCrossRef Takac, I., Schröder, K., Zhang, L., Lardy, B., Anilkumar, N., Lambeth, J. D., et al. (2011). The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. Journal of Biological Chemistry, 286(15), 13304–13313.PubMedCrossRef
38.
go back to reference Schröder, K., Zhang, M., Benkhoff, S., Mieth, A., Pliquett, R., Kosowski, J., et al. (2012). Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circulation Research, 110, 1217–1225.PubMedCrossRef Schröder, K., Zhang, M., Benkhoff, S., Mieth, A., Pliquett, R., Kosowski, J., et al. (2012). Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circulation Research, 110, 1217–1225.PubMedCrossRef
39.
go back to reference Zhang, M., Brewer, A. C., Schröder, K., Santos, C. X., Grieve, D. J., Wang, M., et al. (2010). NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18121–18126.PubMedCrossRef Zhang, M., Brewer, A. C., Schröder, K., Santos, C. X., Grieve, D. J., Wang, M., et al. (2010). NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18121–18126.PubMedCrossRef
40.
go back to reference Kuroda, J., Ago, T., Matsushima, S., Zhai, P., Schneider, M. D., & Sadoshima, J. (2010). NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15565–15570.PubMedCrossRef Kuroda, J., Ago, T., Matsushima, S., Zhai, P., Schneider, M. D., & Sadoshima, J. (2010). NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15565–15570.PubMedCrossRef
41.
go back to reference Tong, X., Hou, X., Jourd’heuil, D., Weisbrod, R. M., & Cohen, R. A. (2010). Upregulation of Nox4 by TGF{beta}1 oxidizes SERCA and inhibits NO in arterial smooth muscle of the prediabetic Zucker rat. Circulation Research, 107, 975–983.PubMedCrossRef Tong, X., Hou, X., Jourd’heuil, D., Weisbrod, R. M., & Cohen, R. A. (2010). Upregulation of Nox4 by TGF{beta}1 oxidizes SERCA and inhibits NO in arterial smooth muscle of the prediabetic Zucker rat. Circulation Research, 107, 975–983.PubMedCrossRef
42.
go back to reference Wu, X., & Williams, K. J. (2012). NOX4 pathway as a source of selective insulin resistance and responsiveness. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(5), 1236–1245.PubMedCrossRef Wu, X., & Williams, K. J. (2012). NOX4 pathway as a source of selective insulin resistance and responsiveness. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(5), 1236–1245.PubMedCrossRef
43.
go back to reference Maalouf, R. M., Eid, A. A., Gorin, Y. C., Block, K., Escobar, G. P., Bailey, S., et al. (2012). Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. American Journal of Physiology. Cell Physiology, 302(3), C597–C604.PubMedCrossRef Maalouf, R. M., Eid, A. A., Gorin, Y. C., Block, K., Escobar, G. P., Bailey, S., et al. (2012). Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. American Journal of Physiology. Cell Physiology, 302(3), C597–C604.PubMedCrossRef
44.
go back to reference Piwkowska, A., Rogacka, D., Audzeyenka, I., Jankowski, M., & Angielski, S. (2011). High glucose concentration affects the oxidant–antioxidant balance in cultured mouse podocytes. Journal of Cellular Biochemistry, 112(6), 1661–1672.PubMedCrossRef Piwkowska, A., Rogacka, D., Audzeyenka, I., Jankowski, M., & Angielski, S. (2011). High glucose concentration affects the oxidant–antioxidant balance in cultured mouse podocytes. Journal of Cellular Biochemistry, 112(6), 1661–1672.PubMedCrossRef
45.
go back to reference Sedeek, M., Callera, G., Montezano, A., Gutsol, A., Heitz, F., Szyndralewiez, C., et al. (2010). Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. American Journal of Physiology. Renal Physiology, 299(6), F1348–F1358.PubMedCrossRef Sedeek, M., Callera, G., Montezano, A., Gutsol, A., Heitz, F., Szyndralewiez, C., et al. (2010). Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. American Journal of Physiology. Renal Physiology, 299(6), F1348–F1358.PubMedCrossRef
46.
go back to reference Montezano, A. C., Buger, D., Ceravolo, G. S., Yusuf, H., Montero, M., & Touyz, R. M. (2011). Novel Noxes homologues in the vasculature: focusing on Nox4 and Nox5. Clinical Science, 120(4), 131–141.PubMedCrossRef Montezano, A. C., Buger, D., Ceravolo, G. S., Yusuf, H., Montero, M., & Touyz, R. M. (2011). Novel Noxes homologues in the vasculature: focusing on Nox4 and Nox5. Clinical Science, 120(4), 131–141.PubMedCrossRef
47.
go back to reference Pandey, D., & Fulton, D. J. (2011). Molecular regulation of NADPH oxidase 5 via the MAPK pathway. American Journal of Physiology—Heart and Circulatory Physiology, 300(4), H1336–4.PubMedCrossRef Pandey, D., & Fulton, D. J. (2011). Molecular regulation of NADPH oxidase 5 via the MAPK pathway. American Journal of Physiology—Heart and Circulatory Physiology, 300(4), H1336–4.PubMedCrossRef
48.
go back to reference Manea, A., Manea, S. A., Florea, I. C., Luca, C. M., & Raicu, M. (2012). Positive regulation of NADPH oxidase 5 by proinflammatory-related mechanisms in human aortic smooth muscle cells. Free Radical Biology & Medicine, 52(9), 1497–1507.CrossRef Manea, A., Manea, S. A., Florea, I. C., Luca, C. M., & Raicu, M. (2012). Positive regulation of NADPH oxidase 5 by proinflammatory-related mechanisms in human aortic smooth muscle cells. Free Radical Biology & Medicine, 52(9), 1497–1507.CrossRef
49.
go back to reference Hahn, N. E., Meischl, C., Kawahara, T., Musters, R. J., Verhoef, V. M., van der Velden, J., et al. (2012). NOX5 expression is increased in intramyocardial blood vessels and cardiomyocytes after acute myocardial infarction in humans. American Journal of Pathology, 180(6), 2222–2229.PubMedCrossRef Hahn, N. E., Meischl, C., Kawahara, T., Musters, R. J., Verhoef, V. M., van der Velden, J., et al. (2012). NOX5 expression is increased in intramyocardial blood vessels and cardiomyocytes after acute myocardial infarction in humans. American Journal of Pathology, 180(6), 2222–2229.PubMedCrossRef
50.
go back to reference Pandey, D., Patel, A., Patel, V., Chen, F., Qian, J., Wang, Y., Barman, S.A., Venema, R.C., Stepp, D.W., Rudic, R.D., Fulton, D.J. (2012). Expression and functional significance of NADPH oxidase 5 (Nox5) and its splice variants in human blood vessels. American Journal of Physiology—Heart and CirculatoryPhysiology, 302(10), H1919–28. Pandey, D., Patel, A., Patel, V., Chen, F., Qian, J., Wang, Y., Barman, S.A., Venema, R.C., Stepp, D.W., Rudic, R.D., Fulton, D.J. (2012). Expression and functional significance of NADPH oxidase 5 (Nox5) and its splice variants in human blood vessels. American Journal of Physiology—Heart and CirculatoryPhysiology, 302(10), H1919–28.
51.
go back to reference Bhavani, N. (2011). Transient congenital hypothyroidism. Indian Journal of Endocrinology and Metabolism, 15(Suppl 2), S117–S120.PubMedCrossRef Bhavani, N. (2011). Transient congenital hypothyroidism. Indian Journal of Endocrinology and Metabolism, 15(Suppl 2), S117–S120.PubMedCrossRef
52.
go back to reference Cooper, M. E. (1998). Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet, 352(9123), 213–219.PubMedCrossRef Cooper, M. E. (1998). Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet, 352(9123), 213–219.PubMedCrossRef
53.
go back to reference Forbes, J. M., Coughlan, M. T., & Cooper, M. E. (2008). Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 57(6), 1446–1454.PubMedCrossRef Forbes, J. M., Coughlan, M. T., & Cooper, M. E. (2008). Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 57(6), 1446–1454.PubMedCrossRef
54.
go back to reference Eid, A. A., Gorin, Y., Faff, B. M., Maalouf, R., Barnes, J. L., Block, K., et al. (2009). Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes, 58(5), 1201–1211.PubMedCrossRef Eid, A. A., Gorin, Y., Faff, B. M., Maalouf, R., Barnes, J. L., Block, K., et al. (2009). Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes, 58(5), 1201–1211.PubMedCrossRef
55.
go back to reference Etoh, T., Inoguchi, T., Kakimoto, M., Sonoda, N., Kobayashi, K., Kuroda, J., et al. (2003). Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibility by interventive insulin treatment. Diabetologia, 46(10), 1428–1437.PubMedCrossRef Etoh, T., Inoguchi, T., Kakimoto, M., Sonoda, N., Kobayashi, K., Kuroda, J., et al. (2003). Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibility by interventive insulin treatment. Diabetologia, 46(10), 1428–1437.PubMedCrossRef
56.
go back to reference Asaba, K., Tojo, A., Onozato, M. L., Goto, A., Quinn, M. T., Fujita, T., et al. (2005). Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney International, 67(5), 1890–1898.PubMedCrossRef Asaba, K., Tojo, A., Onozato, M. L., Goto, A., Quinn, M. T., Fujita, T., et al. (2005). Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney International, 67(5), 1890–1898.PubMedCrossRef
57.
go back to reference Kitada, M., Koya, D., Sugimoto, T., Isono, M., Araki, S., Kashiwagi, A., et al. (2003). Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. Diabetes, 52(10), 2603–2614.PubMedCrossRef Kitada, M., Koya, D., Sugimoto, T., Isono, M., Araki, S., Kashiwagi, A., et al. (2003). Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. Diabetes, 52(10), 2603–2614.PubMedCrossRef
58.
go back to reference Ohshiro, Y., Ma, R. C., Yasuda, Y., Hiraoka-Yamamoto, J., Clermont, A. C., Isshiki, K., et al. (2006). Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes, 55(11), 3112–3120.PubMedCrossRef Ohshiro, Y., Ma, R. C., Yasuda, Y., Hiraoka-Yamamoto, J., Clermont, A. C., Isshiki, K., et al. (2006). Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes, 55(11), 3112–3120.PubMedCrossRef
59.
go back to reference Cai, W., Torreggiani, M., Zhu, L., Chen, X., He, J. C., Striker, G. E., et al. (2010). AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: implications for vascular disease. American Journal of Physiology. Cell Physiology, 298(3), C624–C634.PubMedCrossRef Cai, W., Torreggiani, M., Zhu, L., Chen, X., He, J. C., Striker, G. E., et al. (2010). AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: implications for vascular disease. American Journal of Physiology. Cell Physiology, 298(3), C624–C634.PubMedCrossRef
60.
go back to reference Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology, 14(8 Suppl 3), S241–S245.PubMedCrossRef Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology, 14(8 Suppl 3), S241–S245.PubMedCrossRef
61.
go back to reference Gorin, Y., Ricono, J. M., Kim, N. H., Bhandari, B., Choudhury, G. G., & Abboud, H. E. (2003). Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. American Journal of Physiology. Renal Physiology, 285(2), F219–F229.PubMed Gorin, Y., Ricono, J. M., Kim, N. H., Bhandari, B., Choudhury, G. G., & Abboud, H. E. (2003). Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. American Journal of Physiology. Renal Physiology, 285(2), F219–F229.PubMed
62.
go back to reference Nava, M., Quiroz, Y., Vaziri, N., & Rodriguez-Iturbe, B. (2003). Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. American Journal of Physiology. Renal Physiology, 284(3), F447–F454.PubMed Nava, M., Quiroz, Y., Vaziri, N., & Rodriguez-Iturbe, B. (2003). Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. American Journal of Physiology. Renal Physiology, 284(3), F447–F454.PubMed
63.
go back to reference Ha, H., Yu, M. R., Choi, Y. J., Kitamura, M., & Lee, H. B. (2002). Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. Journal of the American Society of Nephrology, 13(4), 894–902.PubMed Ha, H., Yu, M. R., Choi, Y. J., Kitamura, M., & Lee, H. B. (2002). Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. Journal of the American Society of Nephrology, 13(4), 894–902.PubMed
64.
go back to reference Weigert, C., Sauer, U., Brodbeck, K., Pfeiffer, A., Häring, H. U., & Schleicher, E. D. (2000). AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. Journal of the American Society of Nephrology, 11(11), 2007–2016.PubMed Weigert, C., Sauer, U., Brodbeck, K., Pfeiffer, A., Häring, H. U., & Schleicher, E. D. (2000). AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. Journal of the American Society of Nephrology, 11(11), 2007–2016.PubMed
65.
go back to reference Kim, N. H., Rincon-Choles, H., Bhandari, B., Choudhury, G. G., Abboud, H. E., & Gorin, Y. (2006). Redox dependence of glomerular epithelial cell hypertrophy in response to glucose. American Journal of Physiology. Renal Physiology, 290(3), F741–F751.PubMedCrossRef Kim, N. H., Rincon-Choles, H., Bhandari, B., Choudhury, G. G., Abboud, H. E., & Gorin, Y. (2006). Redox dependence of glomerular epithelial cell hypertrophy in response to glucose. American Journal of Physiology. Renal Physiology, 290(3), F741–F751.PubMedCrossRef
66.
go back to reference Susztak, K., Raff, A. C., Schiffer, M., & Böttinger, E. P. (2006). Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes, 55(1), 225–233.PubMedCrossRef Susztak, K., Raff, A. C., Schiffer, M., & Böttinger, E. P. (2006). Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes, 55(1), 225–233.PubMedCrossRef
67.
go back to reference Yau, J. W., Rogers, S. L., Kawasaki, R., Lamoureux, E. L., Kowalski, J. W., Bek, T., Wong, T. Y., & Meta-Analysis for Eye Disease (META-EYE) Study Group. (2012). Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 35(3), 556–564.PubMedCrossRef Yau, J. W., Rogers, S. L., Kawasaki, R., Lamoureux, E. L., Kowalski, J. W., Bek, T., Wong, T. Y., & Meta-Analysis for Eye Disease (META-EYE) Study Group. (2012). Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 35(3), 556–564.PubMedCrossRef
68.
go back to reference Wilkinson, C. P., Ferris, F. L., 3rd, Klein, R. E., Lee, P. P., Agardh, C. D., Davis, M., et al. (2003). Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 110, 1677–1682.PubMedCrossRef Wilkinson, C. P., Ferris, F. L., 3rd, Klein, R. E., Lee, P. P., Agardh, C. D., Davis, M., et al. (2003). Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 110, 1677–1682.PubMedCrossRef
69.
go back to reference Arden, G. B., & Sivaprasad, S. (2011). Hypoxia and oxidative stress in the causation of diabetic retinopathy. Current Diabetes Reviews, 7, 291–304.PubMed Arden, G. B., & Sivaprasad, S. (2011). Hypoxia and oxidative stress in the causation of diabetic retinopathy. Current Diabetes Reviews, 7, 291–304.PubMed
70.
go back to reference Al-Shabrawey, M., Bartoli, M., El-Remessy, A. B., Ma, G., Matragoon, S., Lemtalsi, T., et al. (2008). Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy. Investigative Ophthalmology and Visual Science, 49, 3231–3238.PubMedCrossRef Al-Shabrawey, M., Bartoli, M., El-Remessy, A. B., Ma, G., Matragoon, S., Lemtalsi, T., et al. (2008). Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy. Investigative Ophthalmology and Visual Science, 49, 3231–3238.PubMedCrossRef
71.
go back to reference Li, J., Wang, J. J., Yu, Q., Chen, K., Mahadev, K., & Zhang, S. X. (2010). Inhibition of reactive oxygen species by Lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood–retinal barrier breakdown in db/db mice: role of NADPH oxidase 4. Diabetes, 59, 1528–1538.PubMedCrossRef Li, J., Wang, J. J., Yu, Q., Chen, K., Mahadev, K., & Zhang, S. X. (2010). Inhibition of reactive oxygen species by Lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood–retinal barrier breakdown in db/db mice: role of NADPH oxidase 4. Diabetes, 59, 1528–1538.PubMedCrossRef
72.
go back to reference Dvoriantchikova et al. (2012) Neuronal NAD(P)H oxidases contribute to ROS production and mediate RGC death after ischemia. Investigative Ophthalmology & Visual Science 53, 2823–2830. Dvoriantchikova et al. (2012) Neuronal NAD(P)H oxidases contribute to ROS production and mediate RGC death after ischemia. Investigative Ophthalmology & Visual Science 53, 2823–2830.
73.
go back to reference Bhatt, L., Groeger, G., McDermott, K., & Cotter, T. G. (2010). Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system. Molecular Vision, 16, 283–293.PubMed Bhatt, L., Groeger, G., McDermott, K., & Cotter, T. G. (2010). Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system. Molecular Vision, 16, 283–293.PubMed
74.
go back to reference Yokota, H., Narayanan, S. P., Zhang, W., Liu, H., Rojas, M., Xu, Z., et al. (2011). Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion. Investigative Ophthalmology and Visual Science, 52(11), 8123–8131.PubMedCrossRef Yokota, H., Narayanan, S. P., Zhang, W., Liu, H., Rojas, M., Xu, Z., et al. (2011). Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion. Investigative Ophthalmology and Visual Science, 52(11), 8123–8131.PubMedCrossRef
75.
go back to reference Tang, J., & Kern, T. S. (2011). Inflammation in diabetic retinopathy. Progress in Retinal and Eye Research, 30, 343–358.PubMedCrossRef Tang, J., & Kern, T. S. (2011). Inflammation in diabetic retinopathy. Progress in Retinal and Eye Research, 30, 343–358.PubMedCrossRef
76.
go back to reference Tarr, J. M., Ding, N., Kaul, K., Antonell, A., Perez-Jurado, L. A., & Chibber, R. (2012). Cellular crosstalk between TNF-alpha, NADPH oxidase, PKCbeta2, and C2GNT in human leukocytes. Cellular Signalling, 24, 873–878.PubMedCrossRef Tarr, J. M., Ding, N., Kaul, K., Antonell, A., Perez-Jurado, L. A., & Chibber, R. (2012). Cellular crosstalk between TNF-alpha, NADPH oxidase, PKCbeta2, and C2GNT in human leukocytes. Cellular Signalling, 24, 873–878.PubMedCrossRef
77.
go back to reference Chen, P., Guo, A. M., Edwards, P. A., Trick, G., & Scicli, A. G. (2007). Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 293, R1619–R1629.PubMedCrossRef Chen, P., Guo, A. M., Edwards, P. A., Trick, G., & Scicli, A. G. (2007). Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 293, R1619–R1629.PubMedCrossRef
78.
go back to reference Garrido-Urbani, S., Jemelin, S., Deffert, C., Carnesecchi, S., Basset, O., Szyndralewiez, C., et al. (2011). Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARalpha mediated mechanism. PLoS One, 6, e14665.PubMedCrossRef Garrido-Urbani, S., Jemelin, S., Deffert, C., Carnesecchi, S., Basset, O., Szyndralewiez, C., et al. (2011). Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARalpha mediated mechanism. PLoS One, 6, e14665.PubMedCrossRef
79.
go back to reference Arbiser, J. L., Petros, J., Klafter, R., Govindajaran, B., McLaughlin, E. R., Brown, L. F., et al. (2002). Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 99, 715–720.PubMedCrossRef Arbiser, J. L., Petros, J., Klafter, R., Govindajaran, B., McLaughlin, E. R., Brown, L. F., et al. (2002). Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 99, 715–720.PubMedCrossRef
80.
go back to reference Saito, Y., Geisen, P., Uppal, A., & Hartnett, M. E. (2007). Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. Molecular Vision, 13, 840–853.PubMed Saito, Y., Geisen, P., Uppal, A., & Hartnett, M. E. (2007). Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. Molecular Vision, 13, 840–853.PubMed
81.
go back to reference Al-Shabrawey, M., Rojas, M., Sanders, T., Behzadian, A., El-Remessy, A., Bartoli, M., et al. (2008). Role of NADPH oxidase in retinal vascular inflammation. Investigative Ophthalmology and Visual Science, 49, 3239–3244.PubMedCrossRef Al-Shabrawey, M., Rojas, M., Sanders, T., Behzadian, A., El-Remessy, A., Bartoli, M., et al. (2008). Role of NADPH oxidase in retinal vascular inflammation. Investigative Ophthalmology and Visual Science, 49, 3239–3244.PubMedCrossRef
82.
go back to reference Zhang, W., Rojas, M., Lilly, B., Tsai, N. T., Lemtalsi, T., Liou, G. I., et al. (2009). NAD(P)H oxidase-dependent regulation of CCL2 production during retinal inflammation. Investigative Ophthalmology and Visual Science, 50, 3033–3040.PubMedCrossRef Zhang, W., Rojas, M., Lilly, B., Tsai, N. T., Lemtalsi, T., Liou, G. I., et al. (2009). NAD(P)H oxidase-dependent regulation of CCL2 production during retinal inflammation. Investigative Ophthalmology and Visual Science, 50, 3033–3040.PubMedCrossRef
83.
go back to reference Tawfik, A., Sanders, T., Kahook, K., AkeeL, S., Elmarakby, A., & Al-Shabrawey, M. (2009). Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Investigative Ophthalmology and Visual Science, 50, 878–884.PubMedCrossRef Tawfik, A., Sanders, T., Kahook, K., AkeeL, S., Elmarakby, A., & Al-Shabrawey, M. (2009). Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Investigative Ophthalmology and Visual Science, 50, 878–884.PubMedCrossRef
84.
go back to reference Wilkinson-Berka, J. L., Heine, R., Tan, G., Cooper, M. E., Hatzopoulos, K. M., Fletcher, E. L., et al. (2010). RILLKKMPSV influences the vasculature, neurons and glia, and (pro)renin receptor expression in the retina. Hypertension, 55, 1454–1460.PubMedCrossRef Wilkinson-Berka, J. L., Heine, R., Tan, G., Cooper, M. E., Hatzopoulos, K. M., Fletcher, E. L., et al. (2010). RILLKKMPSV influences the vasculature, neurons and glia, and (pro)renin receptor expression in the retina. Hypertension, 55, 1454–1460.PubMedCrossRef
85.
go back to reference Sarlos, S., & Wilkinson-Berka, J. L. (2005). The renin–angiotensin system and the developing retinal vasculature. Investigative Ophthalmology and Visual Science, 46, 1069–1077.PubMedCrossRef Sarlos, S., & Wilkinson-Berka, J. L. (2005). The renin–angiotensin system and the developing retinal vasculature. Investigative Ophthalmology and Visual Science, 46, 1069–1077.PubMedCrossRef
86.
go back to reference Wilkinson-Berka, J. L. (2006). Angiotensin and diabetic retinopathy. The International Journal of Biochemistry & Cell Biology, 38, 752–765.CrossRef Wilkinson-Berka, J. L. (2006). Angiotensin and diabetic retinopathy. The International Journal of Biochemistry & Cell Biology, 38, 752–765.CrossRef
87.
go back to reference Fukumoto, M., Takai, S., Ishizaki, E., Sugiyama, T., Oku, H., Jin, D., et al. (2008). Involvement of angiotensin II-dependent vascular endothelial growth factor gene expression via NADPH oxidase in the retina in a type 2 diabetic rat model. Current Eye Research, 33, 885–891.PubMedCrossRef Fukumoto, M., Takai, S., Ishizaki, E., Sugiyama, T., Oku, H., Jin, D., et al. (2008). Involvement of angiotensin II-dependent vascular endothelial growth factor gene expression via NADPH oxidase in the retina in a type 2 diabetic rat model. Current Eye Research, 33, 885–891.PubMedCrossRef
88.
go back to reference Li, L., & Renier, G. (2006). Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism, 55, 1516–1523.PubMedCrossRef Li, L., & Renier, G. (2006). Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism, 55, 1516–1523.PubMedCrossRef
89.
go back to reference Yamagishi, S., Nakamura, K., Matsui, T., Inagaki, Y., Takenaka, K., Jinnouchi, Y., et al. (2006). Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. Journal of Biological Chemistry, 281(29), 20213–20220.PubMedCrossRef Yamagishi, S., Nakamura, K., Matsui, T., Inagaki, Y., Takenaka, K., Jinnouchi, Y., et al. (2006). Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. Journal of Biological Chemistry, 281(29), 20213–20220.PubMedCrossRef
90.
go back to reference Miller, A. G., Tan, G., Binger, K. J., Pickering, R. J., Thomas, M. C., Nagaraj, R. H., et al. (2010). Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes, 59, 3208–3215.PubMedCrossRef Miller, A. G., Tan, G., Binger, K. J., Pickering, R. J., Thomas, M. C., Nagaraj, R. H., et al. (2010). Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes, 59, 3208–3215.PubMedCrossRef
91.
go back to reference Barry-Lane, P. A., Patterson, C., Van der Merwe, M., Hu, Z., Holland, S. M., Yeh, E. T. H., et al. (2001). p47phox is required for atherosclerotic lesion progression in ApoE−/− mice. Journal of Clinical Investigation, 108, 1513–1522.PubMed Barry-Lane, P. A., Patterson, C., Van der Merwe, M., Hu, Z., Holland, S. M., Yeh, E. T. H., et al. (2001). p47phox is required for atherosclerotic lesion progression in ApoE−/− mice. Journal of Clinical Investigation, 108, 1513–1522.PubMed
92.
go back to reference Judkins, C. P., Diep, H., Broughton, B. R. S., Mast, A. E., Hooker, E. U., Miller, A. A., et al. (2010). Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. American Journal of Physiology—Heart and Circulatory Physiology, 298, H24–H32.PubMedCrossRef Judkins, C. P., Diep, H., Broughton, B. R. S., Mast, A. E., Hooker, E. U., Miller, A. A., et al. (2010). Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. American Journal of Physiology—Heart and Circulatory Physiology, 298, H24–H32.PubMedCrossRef
93.
go back to reference Dikalova, A., Clempus, R., Lassegue, B., Cheng, G., Mccoy, J., Dikalov, S., et al. (2005). Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation, 112, 2668–2676.PubMedCrossRef Dikalova, A., Clempus, R., Lassegue, B., Cheng, G., Mccoy, J., Dikalov, S., et al. (2005). Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation, 112, 2668–2676.PubMedCrossRef
94.
go back to reference Shimizu, H., Nakagawa, Y., Murakami, C., Aoki, N., Kim-Mitsuyama, S., & Miyazaki, H. (2010). Protein tyrosine phosphatase PTPepsilonM negatively regulates PDGF beta-receptor signaling induced by high glucose and PDGF in vascular smooth muscle cells. American Journal of Physiology. Cell Physiology, 299(5), C1144–C1145.PubMedCrossRef Shimizu, H., Nakagawa, Y., Murakami, C., Aoki, N., Kim-Mitsuyama, S., & Miyazaki, H. (2010). Protein tyrosine phosphatase PTPepsilonM negatively regulates PDGF beta-receptor signaling induced by high glucose and PDGF in vascular smooth muscle cells. American Journal of Physiology. Cell Physiology, 299(5), C1144–C1145.PubMedCrossRef
95.
go back to reference Perrotta, I., Sciangula, A., Perrotta, E., Donato, G., & Cassese, M. (2011). Ultrastructural analysis and electron microscopic localization of Nox4 in healthy and atherosclerotic human aorta. Ultrastructural Pathology, 35(1), 1–6.PubMedCrossRef Perrotta, I., Sciangula, A., Perrotta, E., Donato, G., & Cassese, M. (2011). Ultrastructural analysis and electron microscopic localization of Nox4 in healthy and atherosclerotic human aorta. Ultrastructural Pathology, 35(1), 1–6.PubMedCrossRef
96.
go back to reference Fenyo, I. M., Florea, I. C., Raicu, M., & Manea, A. (2011). Tyrphostin AG490 reduces NAPDH oxidase activity and expression in the aorta of hypercholesterolemic apolipoprotein E-deficient mice. Vascular Pharmacology, 54(3-6), 100–106.PubMedCrossRef Fenyo, I. M., Florea, I. C., Raicu, M., & Manea, A. (2011). Tyrphostin AG490 reduces NAPDH oxidase activity and expression in the aorta of hypercholesterolemic apolipoprotein E-deficient mice. Vascular Pharmacology, 54(3-6), 100–106.PubMedCrossRef
97.
go back to reference Lassègue, B., & Griendling, K. K. (2010). NADPH oxidases: functions and pathologies in the vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 653–661.PubMedCrossRef Lassègue, B., & Griendling, K. K. (2010). NADPH oxidases: functions and pathologies in the vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 653–661.PubMedCrossRef
98.
go back to reference Matsuno, K., Yamada, H., Iwata, K., Jin, D., Katsuyama, M., Matsuki, M., et al. (2005). Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation, 112, 2677–2685.PubMedCrossRef Matsuno, K., Yamada, H., Iwata, K., Jin, D., Katsuyama, M., Matsuki, M., et al. (2005). Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation, 112, 2677–2685.PubMedCrossRef
99.
go back to reference Hart, B. A., Elferink, J. G., & Nibbering, P. H. (1992). Effect of apocynin on the induction of ulcerative lesions in rat skin injected with tubercle bacteria. International Journal of Immunopharmacology, 14(6), 953–961.PubMedCrossRef Hart, B. A., Elferink, J. G., & Nibbering, P. H. (1992). Effect of apocynin on the induction of ulcerative lesions in rat skin injected with tubercle bacteria. International Journal of Immunopharmacology, 14(6), 953–961.PubMedCrossRef
100.
go back to reference Gatley, S. J., & Sherratt, H. A. S. (1976). The effects of diphenyleneiodonium on mitochondrial reactions. Relation of binding of diphenylene[125I]iodonium to mitochondria to the extent of inhibition of oxygen uptake. Biochemical Journal, 158, 307–315.PubMed Gatley, S. J., & Sherratt, H. A. S. (1976). The effects of diphenyleneiodonium on mitochondrial reactions. Relation of binding of diphenylene[125I]iodonium to mitochondria to the extent of inhibition of oxygen uptake. Biochemical Journal, 158, 307–315.PubMed
101.
go back to reference Aldieri, E., Riganti, C., Polimeni, M., Gazzano, E., Lussiana, C., Campia, I., et al. (2008). Classical inhibitors of NOX NAD(P)H oxidases are not specific. Current Drug Metabolism, 9, 686–696.PubMedCrossRef Aldieri, E., Riganti, C., Polimeni, M., Gazzano, E., Lussiana, C., Campia, I., et al. (2008). Classical inhibitors of NOX NAD(P)H oxidases are not specific. Current Drug Metabolism, 9, 686–696.PubMedCrossRef
102.
go back to reference Wind, S., Beuerlein, D., Eucker, T., Müller, H., Scheurer, P., Armitage, M. E., et al. (2010). Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. British Journal of Pharmacology, 161, 885–898.PubMedCrossRef Wind, S., Beuerlein, D., Eucker, T., Müller, H., Scheurer, P., Armitage, M. E., et al. (2010). Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. British Journal of Pharmacology, 161, 885–898.PubMedCrossRef
103.
go back to reference Drummond, G. R., Selemidis, S., Griendling, K. K., & Sobey, C. G. (2011). Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nature Reviews. Drug Discovery, 10(6), 453–457.PubMedCrossRef Drummond, G. R., Selemidis, S., Griendling, K. K., & Sobey, C. G. (2011). Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nature Reviews. Drug Discovery, 10(6), 453–457.PubMedCrossRef
104.
go back to reference Kim, J. A., Neupane, G. P., Lee, E. S., Jeong, B. S., Park, B. C., & Thapa, P. (2011). NADPH oxidase inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 21(8), 1147–1158.PubMedCrossRef Kim, J. A., Neupane, G. P., Lee, E. S., Jeong, B. S., Park, B. C., & Thapa, P. (2011). NADPH oxidase inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 21(8), 1147–1158.PubMedCrossRef
106.
go back to reference Laleu, B., Gaggini, F., Orchard, M., Fioraso-Cartier, I., Cagnon, I., Houngninou-Molango, S., et al. (2010). First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. Journal of Medicinal Chemistry, 53, 7715–7730.PubMedCrossRef Laleu, B., Gaggini, F., Orchard, M., Fioraso-Cartier, I., Cagnon, I., Houngninou-Molango, S., et al. (2010). First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. Journal of Medicinal Chemistry, 53, 7715–7730.PubMedCrossRef
107.
go back to reference Page, P., Orchard, M., Fioraso-Cartier, l., Mottironi, B. (2008). Pyrazolo pyridine derivatives as NADPH oxidase inhibitors, Patent WO 2008/113856 A1. Switzerland patent application. Page, P., Orchard, M., Fioraso-Cartier, l., Mottironi, B. (2008). Pyrazolo pyridine derivatives as NADPH oxidase inhibitors, Patent WO 2008/113856 A1. Switzerland patent application.
108.
go back to reference Stielow, C., Catar, R. A., Muller, G., Wingler, K., Scheurer, P., Schmidt, H. H. H. W., et al. (2006). Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochemical and Biophysical Research Communications, 344, 200–205.PubMedCrossRef Stielow, C., Catar, R. A., Muller, G., Wingler, K., Scheurer, P., Schmidt, H. H. H. W., et al. (2006). Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochemical and Biophysical Research Communications, 344, 200–205.PubMedCrossRef
109.
go back to reference Ten Freyhaus, H., Huntgeburth, M., Wingler, K., Schnitker, J., Bäumer, A. T., Vantler, M., et al. (2006). Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovascular Research, 71, 331–341.PubMedCrossRef Ten Freyhaus, H., Huntgeburth, M., Wingler, K., Schnitker, J., Bäumer, A. T., Vantler, M., et al. (2006). Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovascular Research, 71, 331–341.PubMedCrossRef
110.
go back to reference Niethammer, P., Grabher, C., Look, A. T., & Mitchison, T. J. (2009). A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 459, 996–999.PubMedCrossRef Niethammer, P., Grabher, C., Look, A. T., & Mitchison, T. J. (2009). A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 459, 996–999.PubMedCrossRef
111.
go back to reference Spychalowicz, A., Wilk, G., Sliwa, T., Ludew, D., Guzik, T.J. (2012). Novel therapeutic approaches in limiting oxidative stress and inflammation. Current Pharmaceutical Biotechnology. [Epub ahead of print]. Spychalowicz, A., Wilk, G., Sliwa, T., Ludew, D., Guzik, T.J. (2012). Novel therapeutic approaches in limiting oxidative stress and inflammation. Current Pharmaceutical Biotechnology. [Epub ahead of print].
112.
go back to reference Bonner, M.Y., Arbiser, J.L., Targeting, N.A.D.P.H. (2012 May 13). oxidases for the treatment of cancer and inflammation. Cellular and Molecular Life Sciences. [Epub ahead of print]. Bonner, M.Y., Arbiser, J.L., Targeting, N.A.D.P.H. (2012 May 13). oxidases for the treatment of cancer and inflammation. Cellular and Molecular Life Sciences. [Epub ahead of print].
Metadata
Title
Oxidative Stress, Nox Isoforms and Complications of Diabetes—Potential Targets for Novel Therapies
Authors
Mona Sedeek
Augusto C. Montezano
Richard L. Hebert
Stephen P. Gray
Elyse Di Marco
Jay C. Jha
Mark E. Cooper
Karin Jandeleit-Dahm
Ernesto L. Schiffrin
Jennifer L. Wilkinson-Berka
Rhian M. Touyz
Publication date
01-08-2012
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2012
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-012-9387-2

Other articles of this Issue 4/2012

Journal of Cardiovascular Translational Research 4/2012 Go to the issue