Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2012

01-08-2012

Chromatin Modifications Associated with Diabetes

Authors: Samuel T. Keating, Assam El-Osta

Published in: Journal of Cardiovascular Translational Research | Issue 4/2012

Login to get access

Abstract

Accelerated rates of vascular complications are associated with diabetes mellitus. Environmental factors including hyperglycaemia contribute to the progression of diabetic complications. Epidemiological and experimental animal studies identified poor glycaemic control as a major contributor to the development of complications. These studies suggest that early exposure to hyperglycaemia can instigate the development of complications that present later in the progression of the disease, despite improved glycaemic control. Recent experiments reveal a striking commonality associated with gene-activating hyperglycaemic events and chromatin modification. The best characterised to date are associated with the chemical changes of amino-terminal tails of histone H3. Enzymes that write specified histone tail modifications are not well understood in models of hyperglycaemia and metabolic memory as well as human diabetes. The best-characterised enzyme is the lysine specific Set7 methyltransferase. The contribution of Set7 to the aetiology of diabetic complications may extend to other transcriptional events through methylation of non-histone substrates.
Literature
1.
go back to reference International Diabetes Federation. (2009). IDF diabetes atlas (4th ed.). Brussels: International Diabetes Federation. International Diabetes Federation. (2009). IDF diabetes atlas (4th ed.). Brussels: International Diabetes Federation.
2.
go back to reference Shaw, J. E., & Chisholm, D. J. (2003). 1: Epidemiology and prevention of type 2 diabetes and the metabolic syndrome. The Medical Journal of Australia, 179(7), 379–383.PubMed Shaw, J. E., & Chisholm, D. J. (2003). 1: Epidemiology and prevention of type 2 diabetes and the metabolic syndrome. The Medical Journal of Australia, 179(7), 379–383.PubMed
4.
go back to reference Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813–820.PubMedCrossRef Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813–820.PubMedCrossRef
5.
go back to reference Anonymous (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. New England Journal of Medicine, 329(14), 977–986. Anonymous (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. New England Journal of Medicine, 329(14), 977–986.
6.
go back to reference Prospective, U. K. (1991). Diabetes study (UKPDS). VIII. Study design, progress and performance. Diabetologia, 34(12), 877–890.CrossRef Prospective, U. K. (1991). Diabetes study (UKPDS). VIII. Study design, progress and performance. Diabetologia, 34(12), 877–890.CrossRef
7.
go back to reference The Diabetes Control and Complications Trial (DCCT). (1986). Design and methodologic considerations for the feasibility phase. The DCCT research group. Diabetes, 35(5), 530–545.CrossRef The Diabetes Control and Complications Trial (DCCT). (1986). Design and methodologic considerations for the feasibility phase. The DCCT research group. Diabetes, 35(5), 530–545.CrossRef
8.
go back to reference Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. (2003). Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA, 290(16), 2159–2167.CrossRef Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. (2003). Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA, 290(16), 2159–2167.CrossRef
9.
go back to reference Nathan, D. M., Cleary, P. A., Backlund, J. Y., et al. (2005). Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. The New England Journal of Medicine, 353(25), 2643–2653.PubMedCrossRef Nathan, D. M., Cleary, P. A., Backlund, J. Y., et al. (2005). Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. The New England Journal of Medicine, 353(25), 2643–2653.PubMedCrossRef
10.
go back to reference Cleary, P. A., Orchard, T. J., Genuth, S., et al. (2006). The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Diabetes, 55(12), 3556–3565.PubMedCrossRef Cleary, P. A., Orchard, T. J., Genuth, S., et al. (2006). The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Diabetes, 55(12), 3556–3565.PubMedCrossRef
11.
go back to reference Nathan, D. M., Lachin, J., Cleary, P., et al. (2003). Intensive diabetes therapy and carotid intima–media thickness in type 1 diabetes mellitus. The New England Journal of Medicine, 348(23), 2294–2303.PubMedCrossRef Nathan, D. M., Lachin, J., Cleary, P., et al. (2003). Intensive diabetes therapy and carotid intima–media thickness in type 1 diabetes mellitus. The New England Journal of Medicine, 348(23), 2294–2303.PubMedCrossRef
12.
go back to reference Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R., & Neil, H. A. (2008). 10-year follow-up of intensive glucose control in type 2 diabetes. The New England Journal of Medicine, 359(15), 1577–1589.PubMedCrossRef Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R., & Neil, H. A. (2008). 10-year follow-up of intensive glucose control in type 2 diabetes. The New England Journal of Medicine, 359(15), 1577–1589.PubMedCrossRef
13.
go back to reference Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. (2002). Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA, 287(19), 2563–2569.CrossRef Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. (2002). Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA, 287(19), 2563–2569.CrossRef
14.
go back to reference Engerman, R. L., & Kern, T. S. (1987). Progression of incipient diabetic retinopathy during good glycemic control. Diabetes, 36(7), 808–812.PubMedCrossRef Engerman, R. L., & Kern, T. S. (1987). Progression of incipient diabetic retinopathy during good glycemic control. Diabetes, 36(7), 808–812.PubMedCrossRef
15.
go back to reference Hammes, H. P., Klinzing, I., Wiegand, S., Bretzel, R. G., Cohen, A. M., & Federlin, K. (1993). Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Investigative Ophthalmology & Visual Science, 34(6), 2092–2096. Hammes, H. P., Klinzing, I., Wiegand, S., Bretzel, R. G., Cohen, A. M., & Federlin, K. (1993). Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Investigative Ophthalmology & Visual Science, 34(6), 2092–2096.
16.
go back to reference Kowluru, R. A. (2003). Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes, 52(3), 818–823.PubMedCrossRef Kowluru, R. A. (2003). Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes, 52(3), 818–823.PubMedCrossRef
17.
go back to reference El-Osta, A., Brasacchio, D., Yao, D., et al. (2008). Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. The Journal of Experimental Medicine, 205(10), 2409–2417.PubMedCrossRef El-Osta, A., Brasacchio, D., Yao, D., et al. (2008). Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. The Journal of Experimental Medicine, 205(10), 2409–2417.PubMedCrossRef
18.
go back to reference Thurberg, B. L., & Collins, T. (1998). The nuclear factor-kappa B/inhibitor of kappa B autoregulatory system and atherosclerosis. Current Opinion in Lipidology, 9(5), 387–396.PubMedCrossRef Thurberg, B. L., & Collins, T. (1998). The nuclear factor-kappa B/inhibitor of kappa B autoregulatory system and atherosclerosis. Current Opinion in Lipidology, 9(5), 387–396.PubMedCrossRef
19.
go back to reference Lewis, P., Stefanovic, N., Pete, J., et al. (2007). Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation, 115(16), 2178–2187.PubMedCrossRef Lewis, P., Stefanovic, N., Pete, J., et al. (2007). Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation, 115(16), 2178–2187.PubMedCrossRef
20.
go back to reference Bakker, W., Eringa, E. C., Sipkema, P., & van Hinsbergh, V. W. (2009). Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell and Tissue Research, 335(1), 165–189.PubMedCrossRef Bakker, W., Eringa, E. C., Sipkema, P., & van Hinsbergh, V. W. (2009). Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell and Tissue Research, 335(1), 165–189.PubMedCrossRef
21.
go back to reference Roy, S., Sala, R., Cagliero, E., & Lorenzi, M. (1990). Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 404–408.PubMedCrossRef Roy, S., Sala, R., Cagliero, E., & Lorenzi, M. (1990). Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 404–408.PubMedCrossRef
22.
go back to reference Nishikawa, T., Edelstein, D., Du, X. L., et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404(6779), 787–790.PubMedCrossRef Nishikawa, T., Edelstein, D., Du, X. L., et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404(6779), 787–790.PubMedCrossRef
23.
go back to reference Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54(6), 1615–1625.PubMedCrossRef Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54(6), 1615–1625.PubMedCrossRef
24.
go back to reference Ihnat, M. A., Thorpe, J. E., Kamat, C. D., et al. (2007). Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling. Diabetologia, 50(7), 1523–1531.PubMedCrossRef Ihnat, M. A., Thorpe, J. E., Kamat, C. D., et al. (2007). Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling. Diabetologia, 50(7), 1523–1531.PubMedCrossRef
27.
go back to reference Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 1074–1080.PubMedCrossRef Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 1074–1080.PubMedCrossRef
28.
go back to reference Greer, E. L., Maures, T. J., Ucar, D., et al. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature, 479(7373), 365–371.PubMedCrossRef Greer, E. L., Maures, T. J., Ucar, D., et al. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature, 479(7373), 365–371.PubMedCrossRef
29.
go back to reference Braunschweig, M., Jagannathan, V., Gutzwiller, A., & Bee, G. (2012). Investigations on transgenerational epigenetic response down the male line in f2 pigs. PLoS One, 7(2), e30583.PubMedCrossRef Braunschweig, M., Jagannathan, V., Gutzwiller, A., & Bee, G. (2012). Investigations on transgenerational epigenetic response down the male line in f2 pigs. PLoS One, 7(2), e30583.PubMedCrossRef
30.
go back to reference Iguchi-Ariga, S. M., & Schaffner, W. (1989). CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes & Development, 3(5), 612–619.CrossRef Iguchi-Ariga, S. M., & Schaffner, W. (1989). CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes & Development, 3(5), 612–619.CrossRef
31.
go back to reference Pennings, S., Allan, J., & Davey, C. S. (2005). DNA methylation, nucleosome formation and positioning. Briefings in Functional Genomics & Proteomics, 3(4), 351–361.CrossRef Pennings, S., Allan, J., & Davey, C. S. (2005). DNA methylation, nucleosome formation and positioning. Briefings in Functional Genomics & Proteomics, 3(4), 351–361.CrossRef
32.
go back to reference Chodavarapu, R. K., Feng, S., Bernatavichute, Y. V., et al. (2010). Relationship between nucleosome positioning and DNA methylation. Nature, 466(7304), 388–392.PubMedCrossRef Chodavarapu, R. K., Feng, S., Bernatavichute, Y. V., et al. (2010). Relationship between nucleosome positioning and DNA methylation. Nature, 466(7304), 388–392.PubMedCrossRef
33.
go back to reference Fuks, F., Hurd, P. J., Wolf, D., Nan, X., Bird, A. P., & Kouzarides, T. (2003). The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. Journal of Biological Chemistry, 278(6), 4035–4040.PubMedCrossRef Fuks, F., Hurd, P. J., Wolf, D., Nan, X., Bird, A. P., & Kouzarides, T. (2003). The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. Journal of Biological Chemistry, 278(6), 4035–4040.PubMedCrossRef
34.
go back to reference Meehan, R. R., Lewis, J. D., & Bird, A. P. (1992). Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Research, 20(19), 5085–5092.PubMedCrossRef Meehan, R. R., Lewis, J. D., & Bird, A. P. (1992). Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Research, 20(19), 5085–5092.PubMedCrossRef
35.
go back to reference Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & Development, 13(15), 1924–1935.CrossRef Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & Development, 13(15), 1924–1935.CrossRef
36.
go back to reference Maier, S., & Olek, A. (2002). Diabetes: a candidate disease for efficient DNA methylation profiling. Journal of Nutrition, 132(8 Suppl), 2440S–2443S.PubMed Maier, S., & Olek, A. (2002). Diabetes: a candidate disease for efficient DNA methylation profiling. Journal of Nutrition, 132(8 Suppl), 2440S–2443S.PubMed
37.
go back to reference Reik, W., Dean, W., & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science, 293(5532), 1089–1093.PubMedCrossRef Reik, W., Dean, W., & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science, 293(5532), 1089–1093.PubMedCrossRef
38.
go back to reference Thompson, R. F., Fazzari, M. J., Niu, H., Barzilai, N., Simmons, R. A., & Greally, J. M. (2010). Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. Journal of Biological Chemistry, 285(20), 15111–15118.PubMedCrossRef Thompson, R. F., Fazzari, M. J., Niu, H., Barzilai, N., Simmons, R. A., & Greally, J. M. (2010). Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. Journal of Biological Chemistry, 285(20), 15111–15118.PubMedCrossRef
39.
go back to reference Einstein, F., Thompson, R. F., Bhagat, T. D., et al. (2010). Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One, 5(1), e8887.PubMedCrossRef Einstein, F., Thompson, R. F., Bhagat, T. D., et al. (2010). Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One, 5(1), e8887.PubMedCrossRef
40.
go back to reference Kuroda, A., Rauch, T. A., Todorov, I., et al. (2009). Insulin gene expression is regulated by DNA methylation. PLoS One, 4(9), e6953.PubMedCrossRef Kuroda, A., Rauch, T. A., Todorov, I., et al. (2009). Insulin gene expression is regulated by DNA methylation. PLoS One, 4(9), e6953.PubMedCrossRef
41.
go back to reference Stenvinkel, P., Karimi, M., Johansson, S., et al. (2007). Impact of inflammation on epigenetic DNA methylation—a novel risk factor for cardiovascular disease? Journal of Internal Medicine, 261(5), 488–499.PubMedCrossRef Stenvinkel, P., Karimi, M., Johansson, S., et al. (2007). Impact of inflammation on epigenetic DNA methylation—a novel risk factor for cardiovascular disease? Journal of Internal Medicine, 261(5), 488–499.PubMedCrossRef
42.
go back to reference Brennan, E. P., Ehrich, M., O’Donovan, H., et al. (2010). DNA methylation profiling in cell models of diabetic nephropathy. Epigenetics, 5(5), 396–401.PubMedCrossRef Brennan, E. P., Ehrich, M., O’Donovan, H., et al. (2010). DNA methylation profiling in cell models of diabetic nephropathy. Epigenetics, 5(5), 396–401.PubMedCrossRef
43.
go back to reference Chan, Y., Fish, J. E., D’Abreo, C., et al. (2004). The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. Journal of Biological Chemistry, 279(33), 35087–35100.PubMedCrossRef Chan, Y., Fish, J. E., D’Abreo, C., et al. (2004). The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. Journal of Biological Chemistry, 279(33), 35087–35100.PubMedCrossRef
44.
go back to reference Bell, C. G., Teschendorff, A. E., Rakyan, V. K., Maxwell, A. P., Beck, S., & Savage, D. A. (2010). Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Medical Genomics, 3, 33.PubMedCrossRef Bell, C. G., Teschendorff, A. E., Rakyan, V. K., Maxwell, A. P., Beck, S., & Savage, D. A. (2010). Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Medical Genomics, 3, 33.PubMedCrossRef
45.
go back to reference Kim, M., Long, T. I., Arakawa, K., Wang, R., Yu, M. C., & Laird, P. W. (2010). DNA methylation as a biomarker for cardiovascular disease risk. PLoS One, 5(3), e9692.PubMedCrossRef Kim, M., Long, T. I., Arakawa, K., Wang, R., Yu, M. C., & Laird, P. W. (2010). DNA methylation as a biomarker for cardiovascular disease risk. PLoS One, 5(3), e9692.PubMedCrossRef
46.
go back to reference Hiltunen, M. O., Turunen, M. P., Hakkinen, T. P., et al. (2002). DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vascular Medicine, 7(1), 5–11.PubMedCrossRef Hiltunen, M. O., Turunen, M. P., Hakkinen, T. P., et al. (2002). DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vascular Medicine, 7(1), 5–11.PubMedCrossRef
47.
go back to reference Hiltunen, M. O., & Yla-Herttuala, S. (2003). DNA methylation, smooth muscle cells, and atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(10), 1750–1753.PubMedCrossRef Hiltunen, M. O., & Yla-Herttuala, S. (2003). DNA methylation, smooth muscle cells, and atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(10), 1750–1753.PubMedCrossRef
48.
go back to reference Laukkanen, M. O., Mannermaa, S., Hiltunen, M. O., et al. (1999). Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(9), 2171–2178.PubMedCrossRef Laukkanen, M. O., Mannermaa, S., Hiltunen, M. O., et al. (1999). Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(9), 2171–2178.PubMedCrossRef
49.
go back to reference Rakyan, V. K., Beyan, H., Down, T. A., et al. (2011). Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genetics, 7(9), e1002300.PubMedCrossRef Rakyan, V. K., Beyan, H., Down, T. A., et al. (2011). Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genetics, 7(9), e1002300.PubMedCrossRef
51.
go back to reference Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403(6765), 41–45.PubMedCrossRef Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403(6765), 41–45.PubMedCrossRef
52.
go back to reference Malik, H. S., & Henikoff, S. (2003). Phylogenomics of the nucleosome. Natural Structural Biology, 10(11), 882–891.CrossRef Malik, H. S., & Henikoff, S. (2003). Phylogenomics of the nucleosome. Natural Structural Biology, 10(11), 882–891.CrossRef
53.
54.
go back to reference An, W. (2007). Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcellular Biochemistry, 41, 351–369.PubMedCrossRef An, W. (2007). Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcellular Biochemistry, 41, 351–369.PubMedCrossRef
55.
go back to reference Roth, S. Y., Denu, J. M., & Allis, C. D. (2001). Histone acetyltransferases. Annual Review of Biochemistry, 70, 81–120.PubMedCrossRef Roth, S. Y., Denu, J. M., & Allis, C. D. (2001). Histone acetyltransferases. Annual Review of Biochemistry, 70, 81–120.PubMedCrossRef
56.
go back to reference Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R., & Peterson, C. L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311(5762), 844–847.PubMedCrossRef Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R., & Peterson, C. L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311(5762), 844–847.PubMedCrossRef
57.
go back to reference Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D., & Broach, J. R. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes & Development, 7(4), 592–604.CrossRef Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D., & Broach, J. R. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes & Development, 7(4), 592–604.CrossRef
58.
go back to reference Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature, 389(6649), 349–352.PubMedCrossRef Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature, 389(6649), 349–352.PubMedCrossRef
59.
go back to reference Eberharter, A., & Becker, P. B. (2002). Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Reports, 3(3), 224–229.PubMedCrossRef Eberharter, A., & Becker, P. B. (2002). Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Reports, 3(3), 224–229.PubMedCrossRef
60.
go back to reference Roh, T. Y., Cuddapah, S., & Zhao, K. (2005). Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes & Development, 19(5), 542–552.CrossRef Roh, T. Y., Cuddapah, S., & Zhao, K. (2005). Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes & Development, 19(5), 542–552.CrossRef
61.
go back to reference Roh, T. Y., Wei, G., Farrell, C. M., & Zhao, K. (2007). Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns. Genome Research, 17(1), 74–81.PubMedCrossRef Roh, T. Y., Wei, G., Farrell, C. M., & Zhao, K. (2007). Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns. Genome Research, 17(1), 74–81.PubMedCrossRef
62.
go back to reference de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochemistry Journal, 370(Pt 3), 737–749. de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochemistry Journal, 370(Pt 3), 737–749.
63.
go back to reference Wade, P. A., & Wolffe, A. P. (1997). Histone acetyltransferases in control. Current Biology, 7(2), R82–R84.PubMedCrossRef Wade, P. A., & Wolffe, A. P. (1997). Histone acetyltransferases in control. Current Biology, 7(2), R82–R84.PubMedCrossRef
64.
go back to reference Chen, S., Feng, B., George, B., Chakrabarti, R., Chen, M., & Chakrabarti, S. (2010). Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. American Journal of Physiology, Endocrinology and Metabolism, 298(1), E127–E137.CrossRef Chen, S., Feng, B., George, B., Chakrabarti, R., Chen, M., & Chakrabarti, S. (2010). Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. American Journal of Physiology, Endocrinology and Metabolism, 298(1), E127–E137.CrossRef
65.
go back to reference Mosley, A. L., & Ozcan, S. (2003). Glucose regulates insulin gene transcription by hyperacetylation of histone h4. Journal of Biological Chemistry, 278(22), 19660–19666.PubMedCrossRef Mosley, A. L., & Ozcan, S. (2003). Glucose regulates insulin gene transcription by hyperacetylation of histone h4. Journal of Biological Chemistry, 278(22), 19660–19666.PubMedCrossRef
66.
go back to reference Mosley, A. L., Corbett, J. A., & Ozcan, S. (2004). Glucose regulation of insulin gene expression requires the recruitment of p300 by the beta-cell-specific transcription factor Pdx-1. Molecular Endocrinology, 18(9), 2279–2290.PubMedCrossRef Mosley, A. L., Corbett, J. A., & Ozcan, S. (2004). Glucose regulation of insulin gene expression requires the recruitment of p300 by the beta-cell-specific transcription factor Pdx-1. Molecular Endocrinology, 18(9), 2279–2290.PubMedCrossRef
67.
go back to reference Suganuma, T., & Workman, J. L. (2011). Signals and combinatorial functions of histone modifications. Annual Review of Biochemistry, 80, 473–499.PubMedCrossRef Suganuma, T., & Workman, J. L. (2011). Signals and combinatorial functions of histone modifications. Annual Review of Biochemistry, 80, 473–499.PubMedCrossRef
68.
go back to reference Cheung, P., & Lau, P. (2005). Epigenetic regulation by histone methylation and histone variants. Molecular Endocrinology, 19(3), 563–573.PubMedCrossRef Cheung, P., & Lau, P. (2005). Epigenetic regulation by histone methylation and histone variants. Molecular Endocrinology, 19(3), 563–573.PubMedCrossRef
69.
go back to reference Zhang, Y., & Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes & Development, 15(18), 2343–2360.CrossRef Zhang, Y., & Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes & Development, 15(18), 2343–2360.CrossRef
70.
go back to reference Qian, C., & Zhou, M. M. (2006). SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cellular and Molecular Life Sciences, 63(23), 2755–2763.PubMedCrossRef Qian, C., & Zhou, M. M. (2006). SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cellular and Molecular Life Sciences, 63(23), 2755–2763.PubMedCrossRef
71.
go back to reference Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G., & Reuter, G. (1994). The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO Journal, 13(16), 3822–3831.PubMed Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G., & Reuter, G. (1994). The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO Journal, 13(16), 3822–3831.PubMed
72.
go back to reference Stassen, M. J., Bailey, D., Nelson, S., Chinwalla, V., & Harte, P. J. (1995). The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mechanisms of Development, 52(2–3), 209–223.PubMedCrossRef Stassen, M. J., Bailey, D., Nelson, S., Chinwalla, V., & Harte, P. J. (1995). The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mechanisms of Development, 52(2–3), 209–223.PubMedCrossRef
73.
go back to reference Jenuwein, T., Laible, G., Dorn, R., & Reuter, G. (1998). SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cellular and Molecular Life Sciences, 54(1), 80–93.PubMedCrossRef Jenuwein, T., Laible, G., Dorn, R., & Reuter, G. (1998). SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cellular and Molecular Life Sciences, 54(1), 80–93.PubMedCrossRef
74.
go back to reference Sims, R. J., 3rd, Nishioka, K., & Reinberg, D. (2003). Histone lysine methylation: a signature for chromatin function. Trends in Genetics, 19(11), 629–639.PubMedCrossRef Sims, R. J., 3rd, Nishioka, K., & Reinberg, D. (2003). Histone lysine methylation: a signature for chromatin function. Trends in Genetics, 19(11), 629–639.PubMedCrossRef
75.
go back to reference Boggs, B. A., Cheung, P., Heard, E., Spector, D. L., Chinault, A. C., & Allis, C. D. (2002). Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nature Genetics, 30(1), 73–76.PubMedCrossRef Boggs, B. A., Cheung, P., Heard, E., Spector, D. L., Chinault, A. C., & Allis, C. D. (2002). Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nature Genetics, 30(1), 73–76.PubMedCrossRef
76.
go back to reference Noma, K., Allis, C. D., & Grewal, S. I. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science, 293(5532), 1150–1155.PubMedCrossRef Noma, K., Allis, C. D., & Grewal, S. I. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science, 293(5532), 1150–1155.PubMedCrossRef
77.
go back to reference Syreeni, A., El-Osta, A., Forsblom, C., et al. (2011). Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes. Diabetes, 60(11), 3073–3080.PubMedCrossRef Syreeni, A., El-Osta, A., Forsblom, C., et al. (2011). Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes. Diabetes, 60(11), 3073–3080.PubMedCrossRef
78.
go back to reference Wang, H., Cao, R., Xia, L., et al. (2001). Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Molecular Cell, 8(6), 1207–1217.PubMedCrossRef Wang, H., Cao, R., Xia, L., et al. (2001). Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Molecular Cell, 8(6), 1207–1217.PubMedCrossRef
79.
go back to reference Nishioka, K., Chuikov, S., Sarma, K., et al. (2002). Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes & Development, 16(4), 479–489.CrossRef Nishioka, K., Chuikov, S., Sarma, K., et al. (2002). Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes & Development, 16(4), 479–489.CrossRef
80.
go back to reference Zegerman, P., Canas, B., Pappin, D., & Kouzarides, T. (2002). Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. Journal of Biological Chemistry, 277(14), 11621–11624.PubMedCrossRef Zegerman, P., Canas, B., Pappin, D., & Kouzarides, T. (2002). Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. Journal of Biological Chemistry, 277(14), 11621–11624.PubMedCrossRef
81.
go back to reference Deering, T. G., Ogihara, T., Trace, A. P., Maier, B., & Mirmira, R. G. (2009). Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes. Diabetes, 58(1), 185–193.PubMedCrossRef Deering, T. G., Ogihara, T., Trace, A. P., Maier, B., & Mirmira, R. G. (2009). Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes. Diabetes, 58(1), 185–193.PubMedCrossRef
82.
go back to reference Ogihara, T., Vanderford, N. L., Maier, B., Stein, R. W., & Mirmira, R. G. (2009). Expression and function of Set7/9 in pancreatic islets. Islets, 1(3), 269–272.PubMedCrossRef Ogihara, T., Vanderford, N. L., Maier, B., Stein, R. W., & Mirmira, R. G. (2009). Expression and function of Set7/9 in pancreatic islets. Islets, 1(3), 269–272.PubMedCrossRef
83.
go back to reference Francis, J., Chakrabarti, S. K., Garmey, J. C., & Mirmira, R. G. (2005). Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. Journal of Biological Chemistry, 280(43), 36244–36253.PubMedCrossRef Francis, J., Chakrabarti, S. K., Garmey, J. C., & Mirmira, R. G. (2005). Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. Journal of Biological Chemistry, 280(43), 36244–36253.PubMedCrossRef
84.
go back to reference Li, Y., Reddy, M. A., Miao, F., et al. (2008). Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. Journal of Biological Chemistry, 283(39), 26771–26781.PubMedCrossRef Li, Y., Reddy, M. A., Miao, F., et al. (2008). Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. Journal of Biological Chemistry, 283(39), 26771–26781.PubMedCrossRef
85.
go back to reference Brasacchio, D., Okabe, J., Tikellis, C., et al. (2009). Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes, 58(5), 1229–1236.PubMedCrossRef Brasacchio, D., Okabe, J., Tikellis, C., et al. (2009). Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes, 58(5), 1229–1236.PubMedCrossRef
86.
go back to reference Okabe, J., Orlowski, C., Balcerczyk, A., et al. (2012). Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circulation Research, 110, 1067–1076.PubMedCrossRef Okabe, J., Orlowski, C., Balcerczyk, A., et al. (2012). Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circulation Research, 110, 1067–1076.PubMedCrossRef
87.
go back to reference Ea, C. K., & Baltimore, D. (2009). Regulation of NF-kappaB activity through lysine monomethylation of p65. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 18972–18977.PubMedCrossRef Ea, C. K., & Baltimore, D. (2009). Regulation of NF-kappaB activity through lysine monomethylation of p65. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 18972–18977.PubMedCrossRef
88.
go back to reference Yang, X. D., Huang, B., Li, M., Lamb, A., Kelleher, N. L., & Chen, L. F. (2009). Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBO Journal, 28(8), 1055–1066.PubMedCrossRef Yang, X. D., Huang, B., Li, M., Lamb, A., Kelleher, N. L., & Chen, L. F. (2009). Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBO Journal, 28(8), 1055–1066.PubMedCrossRef
89.
go back to reference Sun, G., Reddy, M. A., Yuan, H., Lanting, L., Kato, M., & Natarajan, R. (2010). Epigenetic histone methylation modulates fibrotic gene expression. Journal of the American Society of Nephrology, 21(12), 2069–2080.PubMedCrossRef Sun, G., Reddy, M. A., Yuan, H., Lanting, L., Kato, M., & Natarajan, R. (2010). Epigenetic histone methylation modulates fibrotic gene expression. Journal of the American Society of Nephrology, 21(12), 2069–2080.PubMedCrossRef
90.
go back to reference Verrecchia, F., Chu, M. L., & Mauviel, A. (2001). Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. Journal of Biological Chemistry, 276(20), 17058–17062.PubMedCrossRef Verrecchia, F., Chu, M. L., & Mauviel, A. (2001). Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. Journal of Biological Chemistry, 276(20), 17058–17062.PubMedCrossRef
91.
go back to reference Chung, A. C., Zhang, H., Kong, Y. Z., et al. (2010). Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling. Journal of the American Society of Nephrology, 21(2), 249–260.PubMedCrossRef Chung, A. C., Zhang, H., Kong, Y. Z., et al. (2010). Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling. Journal of the American Society of Nephrology, 21(2), 249–260.PubMedCrossRef
92.
go back to reference Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., & Gauthier, J. M. (1998). Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO Journal, 17(11), 3091–3100.PubMedCrossRef Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., & Gauthier, J. M. (1998). Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO Journal, 17(11), 3091–3100.PubMedCrossRef
93.
go back to reference Yang, F., Chung, A. C., Huang, X. R., & Lan, H. Y. (2009). Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension, 54(4), 877–884.PubMedCrossRef Yang, F., Chung, A. C., Huang, X. R., & Lan, H. Y. (2009). Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension, 54(4), 877–884.PubMedCrossRef
94.
go back to reference Lan, H. Y. (2011). Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. International Journal of Biological Sciences, 7(7), 1056–1067.PubMedCrossRef Lan, H. Y. (2011). Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. International Journal of Biological Sciences, 7(7), 1056–1067.PubMedCrossRef
95.
go back to reference Fujimoto, M., Maezawa, Y., Yokote, K., et al. (2003). Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochemical and Biophysical Research Communications, 305(4), 1002–1007.PubMedCrossRef Fujimoto, M., Maezawa, Y., Yokote, K., et al. (2003). Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochemical and Biophysical Research Communications, 305(4), 1002–1007.PubMedCrossRef
96.
go back to reference Li, J. H., Huang, X. R., Zhu, H. J., et al. (2004). Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. The FASEB Journal, 18(1), 176–178.CrossRef Li, J. H., Huang, X. R., Zhu, H. J., et al. (2004). Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. The FASEB Journal, 18(1), 176–178.CrossRef
97.
go back to reference Wang, W., Huang, X. R., Canlas, E., et al. (2006). Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circulation Research, 98(8), 1032–1039.PubMedCrossRef Wang, W., Huang, X. R., Canlas, E., et al. (2006). Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circulation Research, 98(8), 1032–1039.PubMedCrossRef
98.
go back to reference Martens, J. H., Verlaan, M., Kalkhoven, E., & Zantema, A. (2003). Cascade of distinct histone modifications during collagenase gene activation. Molecular and Cellular Biology, 23(5), 1808–1816.PubMedCrossRef Martens, J. H., Verlaan, M., Kalkhoven, E., & Zantema, A. (2003). Cascade of distinct histone modifications during collagenase gene activation. Molecular and Cellular Biology, 23(5), 1808–1816.PubMedCrossRef
99.
go back to reference Pradhan, S., Chin, H. G., Esteve, P. O., & Jacobsen, S. E. (2009). SET7/9 mediated methylation of non-histone proteins in mammalian cells. Epigenetics, 4(6), 383–387.PubMedCrossRef Pradhan, S., Chin, H. G., Esteve, P. O., & Jacobsen, S. E. (2009). SET7/9 mediated methylation of non-histone proteins in mammalian cells. Epigenetics, 4(6), 383–387.PubMedCrossRef
100.
go back to reference Dhayalan, A., Kudithipudi, S., Rathert, P., & Jeltsch, A. (2011). Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chemical Biology, 18(1), 111–120.CrossRef Dhayalan, A., Kudithipudi, S., Rathert, P., & Jeltsch, A. (2011). Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chemical Biology, 18(1), 111–120.CrossRef
101.
go back to reference Chuikov, S., Kurash, J. K., Wilson, J. R., et al. (2004). Regulation of p53 activity through lysine methylation. Nature, 432(7015), 353–360.PubMedCrossRef Chuikov, S., Kurash, J. K., Wilson, J. R., et al. (2004). Regulation of p53 activity through lysine methylation. Nature, 432(7015), 353–360.PubMedCrossRef
102.
go back to reference Esteve, P. O., Chin, H. G., Benner, J., et al. (2009). Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5076–5081.PubMedCrossRef Esteve, P. O., Chin, H. G., Benner, J., et al. (2009). Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5076–5081.PubMedCrossRef
103.
go back to reference Subramanian, K., Jia, D., Kapoor-Vazirani, P., et al. (2008). Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Molecular Cell, 30(3), 336–347.PubMedCrossRef Subramanian, K., Jia, D., Kapoor-Vazirani, P., et al. (2008). Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Molecular Cell, 30(3), 336–347.PubMedCrossRef
104.
go back to reference Kouskouti, A., Scheer, E., Staub, A., Tora, L., & Talianidis, I. (2004). Gene-specific modulation of TAF10 function by SET9-mediated methylation. Molecular Cell, 14(2), 175–182.PubMedCrossRef Kouskouti, A., Scheer, E., Staub, A., Tora, L., & Talianidis, I. (2004). Gene-specific modulation of TAF10 function by SET9-mediated methylation. Molecular Cell, 14(2), 175–182.PubMedCrossRef
105.
go back to reference Yang, J., Huang, J., Dasgupta, M., et al. (2010). Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21499–21504.PubMedCrossRef Yang, J., Huang, J., Dasgupta, M., et al. (2010). Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21499–21504.PubMedCrossRef
106.
go back to reference Saraheimo, M., Teppo, A. M., Forsblom, C., Fagerudd, J., & Groop, P. H. (2003). Diabetic nephropathy is associated with low-grade inflammation in type 1 diabetic patients. Diabetologia, 46(10), 1402–1407.PubMedCrossRef Saraheimo, M., Teppo, A. M., Forsblom, C., Fagerudd, J., & Groop, P. H. (2003). Diabetic nephropathy is associated with low-grade inflammation in type 1 diabetic patients. Diabetologia, 46(10), 1402–1407.PubMedCrossRef
107.
go back to reference Shikano, M., Sobajima, H., Yoshikawa, H., et al. (2000). Usefulness of a highly sensitive urinary and serum IL-6 assay in patients with diabetic nephropathy. Nephron, 85(1), 81–85.PubMedCrossRef Shikano, M., Sobajima, H., Yoshikawa, H., et al. (2000). Usefulness of a highly sensitive urinary and serum IL-6 assay in patients with diabetic nephropathy. Nephron, 85(1), 81–85.PubMedCrossRef
108.
go back to reference Tuttle, H. A., Davis-Gorman, G., Goldman, S., Copeland, J. G., & McDonagh, P. F. (2004). Proinflammatory cytokines are increased in type 2 diabetic women with cardiovascular disease. Journal of Diabetes and its Complications, 18(6), 343–351.PubMedCrossRef Tuttle, H. A., Davis-Gorman, G., Goldman, S., Copeland, J. G., & McDonagh, P. F. (2004). Proinflammatory cytokines are increased in type 2 diabetic women with cardiovascular disease. Journal of Diabetes and its Complications, 18(6), 343–351.PubMedCrossRef
109.
go back to reference Mirza, S., Hossain, M., Mathews, C., et al. (2012). Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: a cross-sectional study. Cytokine, 57(1), 136–142.PubMedCrossRef Mirza, S., Hossain, M., Mathews, C., et al. (2012). Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: a cross-sectional study. Cytokine, 57(1), 136–142.PubMedCrossRef
110.
go back to reference Berthier, C. C., Zhang, H., Schin, M., et al. (2009). Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes, 58(2), 469–477.PubMedCrossRef Berthier, C. C., Zhang, H., Schin, M., et al. (2009). Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes, 58(2), 469–477.PubMedCrossRef
111.
go back to reference Simon, A. R., Rai, U., Fanburg, B. L., & Cochran, B. H. (1998). Activation of the JAK-STAT pathway by reactive oxygen species. American Journal of Physiology, 275(6 Pt 1), C1640–C1652.PubMed Simon, A. R., Rai, U., Fanburg, B. L., & Cochran, B. H. (1998). Activation of the JAK-STAT pathway by reactive oxygen species. American Journal of Physiology, 275(6 Pt 1), C1640–C1652.PubMed
112.
go back to reference Huang, J. S., Guh, J. Y., Chen, H. C., Hung, W. C., Lai, Y. H., & Chuang, L. Y. (2001). Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. Journal of Cellular Biochemistry, 81(1), 102–113.PubMedCrossRef Huang, J. S., Guh, J. Y., Chen, H. C., Hung, W. C., Lai, Y. H., & Chuang, L. Y. (2001). Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. Journal of Cellular Biochemistry, 81(1), 102–113.PubMedCrossRef
113.
go back to reference Lu, T. C., Wang, Z. H., Feng, X., et al. (2009). Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy. Kidney International, 76(1), 63–71.PubMedCrossRef Lu, T. C., Wang, Z. H., Feng, X., et al. (2009). Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy. Kidney International, 76(1), 63–71.PubMedCrossRef
114.
go back to reference Rawlings, J. S., Rosler, K. M., & Harrison, D. A. (2004). The JAK/STAT signaling pathway. Journal of Cell Science, 117(Pt 8), 1281–1283.PubMedCrossRef Rawlings, J. S., Rosler, K. M., & Harrison, D. A. (2004). The JAK/STAT signaling pathway. Journal of Cell Science, 117(Pt 8), 1281–1283.PubMedCrossRef
115.
go back to reference Yasukawa, H., Ohishi, M., Mori, H., et al. (2003). IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nature Immunology, 4(6), 551–556.PubMedCrossRef Yasukawa, H., Ohishi, M., Mori, H., et al. (2003). IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nature Immunology, 4(6), 551–556.PubMedCrossRef
116.
go back to reference Ortiz-Munoz, G., Lopez-Parra, V., Lopez-Franco, O., et al. (2010). Suppressors of cytokine signaling abrogate diabetic nephropathy. Journal of the American Society of Nephrology, 21(5), 763–772.PubMedCrossRef Ortiz-Munoz, G., Lopez-Parra, V., Lopez-Franco, O., et al. (2010). Suppressors of cytokine signaling abrogate diabetic nephropathy. Journal of the American Society of Nephrology, 21(5), 763–772.PubMedCrossRef
117.
go back to reference Gaughan, L., Stockley, J., Wang, N., et al. (2011). Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Research, 39(4), 1266–1279.PubMedCrossRef Gaughan, L., Stockley, J., Wang, N., et al. (2011). Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Research, 39(4), 1266–1279.PubMedCrossRef
118.
go back to reference O’Meara, N. M., Blackman, J. D., Ehrmann, D. A., et al. (1993). Defects in beta-cell function in functional ovarian hyperandrogenism. Journal of Clinical Endocrinology and Metabolism, 76(5), 1241–1247.PubMedCrossRef O’Meara, N. M., Blackman, J. D., Ehrmann, D. A., et al. (1993). Defects in beta-cell function in functional ovarian hyperandrogenism. Journal of Clinical Endocrinology and Metabolism, 76(5), 1241–1247.PubMedCrossRef
119.
go back to reference Dunaif, A., & Finegood, D. T. (1996). beta-Cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism, 81(3), 942–947.PubMedCrossRef Dunaif, A., & Finegood, D. T. (1996). beta-Cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism, 81(3), 942–947.PubMedCrossRef
120.
go back to reference Liu, S., Navarro, G., & Mauvais-Jarvis, F. (2010). Androgen excess produces systemic oxidative stress and predisposes to beta-cell failure in female mice. PLoS One, 5(6), e11302.PubMedCrossRef Liu, S., Navarro, G., & Mauvais-Jarvis, F. (2010). Androgen excess produces systemic oxidative stress and predisposes to beta-cell failure in female mice. PLoS One, 5(6), e11302.PubMedCrossRef
121.
go back to reference Pirola, L., Balcerczyk, A., Tothill, R. W., et al. (2011). Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Research, 21(10), 1601–1615.PubMedCrossRef Pirola, L., Balcerczyk, A., Tothill, R. W., et al. (2011). Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Research, 21(10), 1601–1615.PubMedCrossRef
122.
go back to reference Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070.PubMedCrossRef Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070.PubMedCrossRef
123.
go back to reference Noyman, I., Marikovsky, M., Sasson, S., et al. (2002). Hyperglycemia reduces nitric oxide synthase and glycogen synthase activity in endothelial cells. Nitric Oxide, 7(3), 187–193.PubMedCrossRef Noyman, I., Marikovsky, M., Sasson, S., et al. (2002). Hyperglycemia reduces nitric oxide synthase and glycogen synthase activity in endothelial cells. Nitric Oxide, 7(3), 187–193.PubMedCrossRef
124.
go back to reference Zhang, Q., Malik, P., Pandey, D., et al. (2008). Paradoxical activation of endothelial nitric oxide synthase by NADPH oxidase. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(9), 1627–1633.PubMedCrossRef Zhang, Q., Malik, P., Pandey, D., et al. (2008). Paradoxical activation of endothelial nitric oxide synthase by NADPH oxidase. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(9), 1627–1633.PubMedCrossRef
125.
go back to reference Du, X., Edelstein, D., Obici, S., Higham, N., Zou, M. H., & Brownlee, M. (2006). Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. The Journal of Clinical Investigation, 116(4), 1071–1080.PubMedCrossRef Du, X., Edelstein, D., Obici, S., Higham, N., Zou, M. H., & Brownlee, M. (2006). Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. The Journal of Clinical Investigation, 116(4), 1071–1080.PubMedCrossRef
126.
go back to reference Shen, X., Zheng, S., Metreveli, N. S., & Epstein, P. N. (2006). Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes, 55(3), 798–805.PubMedCrossRef Shen, X., Zheng, S., Metreveli, N. S., & Epstein, P. N. (2006). Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes, 55(3), 798–805.PubMedCrossRef
127.
go back to reference Otero, P., Bonet, B., Herrera, E., & Rabano, A. (2005). Development of atherosclerosis in the diabetic BALB/c mice. Prevention with vitamin E administration. Atherosclerosis, 182(2), 259–265.PubMedCrossRef Otero, P., Bonet, B., Herrera, E., & Rabano, A. (2005). Development of atherosclerosis in the diabetic BALB/c mice. Prevention with vitamin E administration. Atherosclerosis, 182(2), 259–265.PubMedCrossRef
128.
go back to reference Zhang, Y., Wada, J., Hashimoto, I., et al. (2006). Therapeutic approach for diabetic nephropathy using gene delivery of translocase of inner mitochondrial membrane 44 by reducing mitochondrial superoxide production. Journal of the American Society of Nephrology, 17(4), 1090–1101.PubMedCrossRef Zhang, Y., Wada, J., Hashimoto, I., et al. (2006). Therapeutic approach for diabetic nephropathy using gene delivery of translocase of inner mitochondrial membrane 44 by reducing mitochondrial superoxide production. Journal of the American Society of Nephrology, 17(4), 1090–1101.PubMedCrossRef
129.
go back to reference DeRubertis, F. R., Craven, P. A., & Melhem, M. F. (2007). Acceleration of diabetic renal injury in the superoxide dismutase knockout mouse: effects of tempol. Metabolism, 56(9), 1256–1264.PubMedCrossRef DeRubertis, F. R., Craven, P. A., & Melhem, M. F. (2007). Acceleration of diabetic renal injury in the superoxide dismutase knockout mouse: effects of tempol. Metabolism, 56(9), 1256–1264.PubMedCrossRef
130.
go back to reference Kowluru, R. A., Kowluru, V., Xiong, Y., & Ho, Y. S. (2006). Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radical Biology & Medicine, 41(8), 1191–1196.CrossRef Kowluru, R. A., Kowluru, V., Xiong, Y., & Ho, Y. S. (2006). Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radical Biology & Medicine, 41(8), 1191–1196.CrossRef
131.
go back to reference Vincent, A. M., Russell, J. W., Sullivan, K. A., et al. (2007). SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy. Experimental Neurology, 208(2), 216–227.PubMedCrossRef Vincent, A. M., Russell, J. W., Sullivan, K. A., et al. (2007). SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy. Experimental Neurology, 208(2), 216–227.PubMedCrossRef
132.
go back to reference Kurash, J. K., Lei, H., Shen, Q., et al. (2008). Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Molecular Cell, 29(3), 392–400.PubMedCrossRef Kurash, J. K., Lei, H., Shen, Q., et al. (2008). Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Molecular Cell, 29(3), 392–400.PubMedCrossRef
Metadata
Title
Chromatin Modifications Associated with Diabetes
Authors
Samuel T. Keating
Assam El-Osta
Publication date
01-08-2012
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2012
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-012-9380-9

Other articles of this Issue 4/2012

Journal of Cardiovascular Translational Research 4/2012 Go to the issue