Skip to main content
Top
Published in: Neuroscience Bulletin 3/2018

01-06-2018 | Original Article

Super-Resolution Track-Density Imaging Reveals Fine Anatomical Features in Tree Shrew Primary Visual Cortex and Hippocampus

Authors: Jian-Kun Dai, Shu-Xia Wang, Dai Shan, Hai-Chen Niu, Hao Lei

Published in: Neuroscience Bulletin | Issue 3/2018

Login to get access

Abstract

Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to study white and gray matter (GM) micro-organization and structural connectivity in the brain. Super-resolution track-density imaging (TDI) is an image reconstruction method for dMRI data, which is capable of providing spatial resolution beyond the acquired data, as well as novel and meaningful anatomical contrast that cannot be obtained with conventional reconstruction methods. TDI has been used to reveal anatomical features in human and animal brains. In this study, we used short track TDI (stTDI), a variation of TDI with enhanced contrast for GM structures, to reconstruct direction-encoded color maps of fixed tree shrew brain. The results were compared with those obtained with the traditional diffusion tensor imaging (DTI) method. We demonstrated that fine microstructures in the tree shrew brain, such as Baillarger bands in the primary visual cortex and the longitudinal component of the mossy fibers within the hippocampal CA3 subfield, were observable with stTDI, but not with DTI reconstructions from the same dMRI data. The possible mechanisms underlying the enhanced GM contrast are discussed.
Literature
1.
go back to reference Taylor DG, Bushell MC. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol 1985, 30: 345–349.CrossRefPubMed Taylor DG, Bushell MC. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol 1985, 30: 345–349.CrossRefPubMed
2.
go back to reference Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis - A technical review. NMR Biomed 2002, 15: 456–467.CrossRefPubMed Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis - A technical review. NMR Biomed 2002, 15: 456–467.CrossRefPubMed
3.
go back to reference Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 2006, 51: 527–539.CrossRefPubMed Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 2006, 51: 527–539.CrossRefPubMed
4.
go back to reference Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology 2004, 230: 77–87.CrossRefPubMed Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology 2004, 230: 77–87.CrossRefPubMed
5.
go back to reference Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 2002, 17: 77–94.CrossRefPubMed Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 2002, 17: 77–94.CrossRefPubMed
6.
go back to reference Dai JK, Wang SX, Shan D, Niu HC, Lei H. A diffusion tensor imaging atlas of white matter in tree shrew. Brain Struct Funct 2017, 222: 1733–1751.CrossRefPubMed Dai JK, Wang SX, Shan D, Niu HC, Lei H. A diffusion tensor imaging atlas of white matter in tree shrew. Brain Struct Funct 2017, 222: 1733–1751.CrossRefPubMed
7.
go back to reference Shepherd TM, Ozarslan E, Yachnis AT, King MA, Blackband SJ. Diffusion tensor microscopy indicates the cytoarchitectural basis for diffusion anisotropy in the human hippocampus. AJNR 2007, 28: 958–964.PubMed Shepherd TM, Ozarslan E, Yachnis AT, King MA, Blackband SJ. Diffusion tensor microscopy indicates the cytoarchitectural basis for diffusion anisotropy in the human hippocampus. AJNR 2007, 28: 958–964.PubMed
8.
go back to reference Shepherd TM, Ozarslan E, King MA, Mareci TH, Blackband SJ. Structural insights from high-resolution diffusion tensor imaging and tractography of the isolated rat hippocampus. Neuroimage 2006, 32: 1499–1509.CrossRefPubMed Shepherd TM, Ozarslan E, King MA, Mareci TH, Blackband SJ. Structural insights from high-resolution diffusion tensor imaging and tractography of the isolated rat hippocampus. Neuroimage 2006, 32: 1499–1509.CrossRefPubMed
9.
go back to reference Zhang J, van Zijl PC, Mori S. Three-dimensional diffusion tensor magnetic resonance microimaging of adult mouse brain and hippocampus. Neuroimage 2002, 15: 892–901.CrossRefPubMed Zhang J, van Zijl PC, Mori S. Three-dimensional diffusion tensor magnetic resonance microimaging of adult mouse brain and hippocampus. Neuroimage 2002, 15: 892–901.CrossRefPubMed
10.
go back to reference Aggarwal M, Nauen DW, Troncoso JC, Mori S. Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI. Neuroimage 2015, 105: 198–207.CrossRefPubMed Aggarwal M, Nauen DW, Troncoso JC, Mori S. Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI. Neuroimage 2015, 105: 198–207.CrossRefPubMed
11.
go back to reference Kleinnijenhuis M, Zerbi V, Kusters B, Slump CH, Barth M, van Cappellen van Walsum AM. Layer-specific diffusion weighted imaging in human primary visual cortex in vitro. Cortex 2013, 49: 2569–2582.CrossRefPubMed Kleinnijenhuis M, Zerbi V, Kusters B, Slump CH, Barth M, van Cappellen van Walsum AM. Layer-specific diffusion weighted imaging in human primary visual cortex in vitro. Cortex 2013, 49: 2569–2582.CrossRefPubMed
12.
go back to reference Kurniawan ND, Richards KL, Yang ZY, She D, Ullmann JFP, Moldrich RX, et al. Visualization of mouse barrel cortex using ex-vivo track density imaging. Neuroimage 2014, 87: 465–475.CrossRefPubMed Kurniawan ND, Richards KL, Yang ZY, She D, Ullmann JFP, Moldrich RX, et al. Visualization of mouse barrel cortex using ex-vivo track density imaging. Neuroimage 2014, 87: 465–475.CrossRefPubMed
13.
go back to reference Calamante F, Tournier JD, Kurniawan ND, Yang Z, Gyengesi E, Galloway GJ, et al. Super-resolution track-density imaging studies of mouse brain: comparison to histology. Neuroimage 2012, 59: 286–296.CrossRefPubMed Calamante F, Tournier JD, Kurniawan ND, Yang Z, Gyengesi E, Galloway GJ, et al. Super-resolution track-density imaging studies of mouse brain: comparison to histology. Neuroimage 2012, 59: 286–296.CrossRefPubMed
14.
go back to reference Calamante F, Tournier JD, Jackson GD, Connelly A. Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage 2010, 53: 1233–1243.CrossRefPubMed Calamante F, Tournier JD, Jackson GD, Connelly A. Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage 2010, 53: 1233–1243.CrossRefPubMed
15.
go back to reference Calamante F, Oh SH, Tournier JD, Park SY, Son YD, Chung JY, et al. Super-resolution track-density imaging of thalamic substructures: comparison with high-resolution anatomical magnetic resonance imaging at 7.0T. Hum Brain Mapp 2013, 34: 2538–2548.CrossRefPubMed Calamante F, Oh SH, Tournier JD, Park SY, Son YD, Chung JY, et al. Super-resolution track-density imaging of thalamic substructures: comparison with high-resolution anatomical magnetic resonance imaging at 7.0T. Hum Brain Mapp 2013, 34: 2538–2548.CrossRefPubMed
16.
go back to reference Hoch MJ, Chung S, Ben-Eliezer N, Bruno MT, Fatterpekar GM, Shepherd TM. New clinically feasible 3T MRI protocol to discriminate internal brain stem anatomy. AJNR 2016, 37: 1058–1065.CrossRefPubMedPubMedCentral Hoch MJ, Chung S, Ben-Eliezer N, Bruno MT, Fatterpekar GM, Shepherd TM. New clinically feasible 3T MRI protocol to discriminate internal brain stem anatomy. AJNR 2016, 37: 1058–1065.CrossRefPubMedPubMedCentral
17.
go back to reference Wu D, Reisinger D, Xu J, Fatemi SA, van Zijl PC, Mori S, et al. Localized diffusion magnetic resonance micro-imaging of the live mouse brain. Neuroimage 2014, 91: 12–20.CrossRefPubMedPubMedCentral Wu D, Reisinger D, Xu J, Fatemi SA, van Zijl PC, Mori S, et al. Localized diffusion magnetic resonance micro-imaging of the live mouse brain. Neuroimage 2014, 91: 12–20.CrossRefPubMedPubMedCentral
18.
go back to reference Ullmann JFP, Calamante F, Collin SP, Reutens DC, Kurniawan ND. Enhanced characterization of the zebrafish brain as revealed by super-resolution track-density imaging. Brain Struct Funct 2015, 220: 457–468.CrossRefPubMed Ullmann JFP, Calamante F, Collin SP, Reutens DC, Kurniawan ND. Enhanced characterization of the zebrafish brain as revealed by super-resolution track-density imaging. Brain Struct Funct 2015, 220: 457–468.CrossRefPubMed
19.
go back to reference Hamaide J, De Groof G, Van Steenkiste G, Jeurissen B, Van Audekerke J, Naeyaert M, et al. Exploring sex differences in the adult zebra finch brain: In vivo diffusion tensor imaging and ex vivo super-resolution track density imaging. Neuroimage 2017, 146: 789–803.CrossRefPubMed Hamaide J, De Groof G, Van Steenkiste G, Jeurissen B, Van Audekerke J, Naeyaert M, et al. Exploring sex differences in the adult zebra finch brain: In vivo diffusion tensor imaging and ex vivo super-resolution track density imaging. Neuroimage 2017, 146: 789–803.CrossRefPubMed
20.
go back to reference Farquharson S, Tournier JD, Calamante F, Mandelstam S, Burgess R, Schneider ME, et al. Periventricular nodular heterotopia: detection of abnormal microanatomic fiber structures with whole-brain diffusion mr imaging tractography. Radiology 2016, 281: 896–906.CrossRefPubMed Farquharson S, Tournier JD, Calamante F, Mandelstam S, Burgess R, Schneider ME, et al. Periventricular nodular heterotopia: detection of abnormal microanatomic fiber structures with whole-brain diffusion mr imaging tractography. Radiology 2016, 281: 896–906.CrossRefPubMed
21.
go back to reference Ziegler E, Rouillard M, Andre E, Coolen T, Stender J, Balteau E, et al. Mapping track density changes in nigrostriatal and extranigral pathways in Parkinson’s disease. Neuroimage 2014, 99: 498–508.CrossRefPubMedPubMedCentral Ziegler E, Rouillard M, Andre E, Coolen T, Stender J, Balteau E, et al. Mapping track density changes in nigrostriatal and extranigral pathways in Parkinson’s disease. Neuroimage 2014, 99: 498–508.CrossRefPubMedPubMedCentral
22.
go back to reference Barajas RF, Jr., Hess CP, Phillips JJ, Von Morze CJ, Yu JP, Chang SM, et al. Super-resolution track density imaging of glioblastoma: histopathologic correlation. AJNR 2013, 34: 1319–1325.CrossRefPubMedPubMedCentral Barajas RF, Jr., Hess CP, Phillips JJ, Von Morze CJ, Yu JP, Chang SM, et al. Super-resolution track density imaging of glioblastoma: histopathologic correlation. AJNR 2013, 34: 1319–1325.CrossRefPubMedPubMedCentral
23.
go back to reference Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, et al. Genome of the Chinese tree shrew. Nat Commun 2013, 4: 1426.CrossRefPubMed Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, et al. Genome of the Chinese tree shrew. Nat Commun 2013, 4: 1426.CrossRefPubMed
24.
go back to reference Liu FG, Miyamoto MM, Freire NP, Ong PQ, Tennant MR, Young TS, et al. Molecular and morphological supertrees for eutherian (placental) mammals. Science 2001, 291: 1786–1789.CrossRefPubMed Liu FG, Miyamoto MM, Freire NP, Ong PQ, Tennant MR, Young TS, et al. Molecular and morphological supertrees for eutherian (placental) mammals. Science 2001, 291: 1786–1789.CrossRefPubMed
25.
go back to reference Peng Y, Ye Z, Zou R, Wang Y, Tian B, Ma Y, et al. Biology of Chinese Tree Shrews. Kunming: Yunnan Science and Technology Press, 1991. Peng Y, Ye Z, Zou R, Wang Y, Tian B, Ma Y, et al. Biology of Chinese Tree Shrews. Kunming: Yunnan Science and Technology Press, 1991.
26.
go back to reference Remple MS, Reed JL, Stepniewska I, Lyon DC, Kaas JH. The organization of frontoparietal cortex in the tree shrew (tupaia belangeri): II. Connectional evidence for a frontal-posterior parietal network. J Comp Neurol 2007, 501: 121–149.CrossRefPubMed Remple MS, Reed JL, Stepniewska I, Lyon DC, Kaas JH. The organization of frontoparietal cortex in the tree shrew (tupaia belangeri): II. Connectional evidence for a frontal-posterior parietal network. J Comp Neurol 2007, 501: 121–149.CrossRefPubMed
27.
28.
go back to reference Wong P, Kaas JH. Architectonic subdivisions of neocortex in the tree shrew (tupaia belangeri). Anat Rec (Hoboken) 2009, 292: 994–1027.CrossRefPubMedCentral Wong P, Kaas JH. Architectonic subdivisions of neocortex in the tree shrew (tupaia belangeri). Anat Rec (Hoboken) 2009, 292: 994–1027.CrossRefPubMedCentral
29.
go back to reference Cao J, Yang EB, Su JJ, Li Y, Chow P. The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol 2003, 32: 123–130.CrossRefPubMed Cao J, Yang EB, Su JJ, Li Y, Chow P. The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol 2003, 32: 123–130.CrossRefPubMed
30.
go back to reference Jobling AI, Wan R, Gentle A, Bui BV, McBrien NA. Retinal and choroidal TGF-β in the tree shrew model of myopia: isoform expression, activation and effects on function. Exp Eye Res 2009, 88: 458–466.CrossRefPubMed Jobling AI, Wan R, Gentle A, Bui BV, McBrien NA. Retinal and choroidal TGF-β in the tree shrew model of myopia: isoform expression, activation and effects on function. Exp Eye Res 2009, 88: 458–466.CrossRefPubMed
31.
go back to reference Amedo AO, Norton TT. Visual guidance of recovery from lens-induced myopia in tree shrews (Tupaia glis belangeri). Ophthalmic Physiol Opt 2012, 32: 89–99.CrossRefPubMed Amedo AO, Norton TT. Visual guidance of recovery from lens-induced myopia in tree shrews (Tupaia glis belangeri). Ophthalmic Physiol Opt 2012, 32: 89–99.CrossRefPubMed
32.
go back to reference Fuchs E. Social stress in tree shrews as an animal model of depression: An example of a behavioral model of a CNS disorder. CNS Spectrums 2005, 10: 182–190.CrossRefPubMed Fuchs E. Social stress in tree shrews as an animal model of depression: An example of a behavioral model of a CNS disorder. CNS Spectrums 2005, 10: 182–190.CrossRefPubMed
33.
go back to reference Zambello E, Fuchs E, Abumaria N, Rygula R, Domenici E, Caberlotto L. Chronic psychosocial stress alters NPY system: different effects in rat and tree shrew. Prog Neuropsychopharmacol Biol Psychiatry 2010, 34: 122–130.CrossRefPubMed Zambello E, Fuchs E, Abumaria N, Rygula R, Domenici E, Caberlotto L. Chronic psychosocial stress alters NPY system: different effects in rat and tree shrew. Prog Neuropsychopharmacol Biol Psychiatry 2010, 34: 122–130.CrossRefPubMed
34.
go back to reference Pawlik M, Fuchs E, Walker LC, Levy E. Primate-like amyloid-β sequence but no cerebral amyloidosis in aged tree shrews. Neurobiol Aging 1999, 20: 47–51.CrossRefPubMed Pawlik M, Fuchs E, Walker LC, Levy E. Primate-like amyloid-β sequence but no cerebral amyloidosis in aged tree shrews. Neurobiol Aging 1999, 20: 47–51.CrossRefPubMed
35.
go back to reference Yamashita A, Fuchs E, Taira M, Hayashi M. Amyloid beta (Aβ) protein- and amyloid precursor protein (APP)-immunoreactive structures in the brains of aged tree shrews. Curr Aging Sci 2010, 3: 230–238.CrossRefPubMed Yamashita A, Fuchs E, Taira M, Hayashi M. Amyloid beta (Aβ) protein- and amyloid precursor protein (APP)-immunoreactive structures in the brains of aged tree shrews. Curr Aging Sci 2010, 3: 230–238.CrossRefPubMed
36.
go back to reference Ma KL, Gao JH, Huang ZQ, Zhang Y, Kuang DX, Jiang QF, et al. Motor function in MPTP-treated tree shrews (tupaia belangeri chinensis). Neurochem Res 2013, 38: 1935–1940.CrossRef Ma KL, Gao JH, Huang ZQ, Zhang Y, Kuang DX, Jiang QF, et al. Motor function in MPTP-treated tree shrews (tupaia belangeri chinensis). Neurochem Res 2013, 38: 1935–1940.CrossRef
37.
go back to reference Shen F, Duan Y, Jin S, Sui N. Varied behavioral responses induced by morphine in the tree shrew: a possible model for human opiate addiction. Front Behav Neurosci 2014, 8: 333.CrossRefPubMedPubMedCentral Shen F, Duan Y, Jin S, Sui N. Varied behavioral responses induced by morphine in the tree shrew: a possible model for human opiate addiction. Front Behav Neurosci 2014, 8: 333.CrossRefPubMedPubMedCentral
38.
go back to reference Benveniste H, Einstein G, Kim KR, Hulette C, Johnson GA. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci U S A 1999, 96: 14079–14084.CrossRefPubMedPubMedCentral Benveniste H, Einstein G, Kim KR, Hulette C, Johnson GA. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci U S A 1999, 96: 14079–14084.CrossRefPubMedPubMedCentral
39.
go back to reference Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004, 23: S208–S219.CrossRefPubMed Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004, 23: S208–S219.CrossRefPubMed
40.
go back to reference Tournier JD, Calamante F, Connelly A. MRtrix: Diffusion tractography in crossing fiber regions. Int J Imag Syst Tech 2012, 22: 53–66.CrossRef Tournier JD, Calamante F, Connelly A. MRtrix: Diffusion tractography in crossing fiber regions. Int J Imag Syst Tech 2012, 22: 53–66.CrossRef
41.
go back to reference Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 1999, 42: 526–540.CrossRefPubMed Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 1999, 42: 526–540.CrossRefPubMed
42.
go back to reference Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 2007, 35: 1459–1472.CrossRefPubMed Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 2007, 35: 1459–1472.CrossRefPubMed
43.
go back to reference Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 2003, 50: 1077–1088.CrossRefPubMed Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 2003, 50: 1077–1088.CrossRefPubMed
44.
go back to reference Chomsung RD, Wei H, Day-Brown JD, Petry HM, Bickford ME. Synaptic organization of connections between the temporal cortex and pulvinar nucleus of the tree shrew. Cereb Cortex 2010, 20: 997–1011.CrossRefPubMed Chomsung RD, Wei H, Day-Brown JD, Petry HM, Bickford ME. Synaptic organization of connections between the temporal cortex and pulvinar nucleus of the tree shrew. Cereb Cortex 2010, 20: 997–1011.CrossRefPubMed
45.
go back to reference Kaas JH, Hall WC, Killackey H, Diamond IT. Visual cortex of the tree shrew (Tupaia glis): architectonic subdivisions and representations of the visual field. Brain Res 1972, 42: 491–496.CrossRefPubMed Kaas JH, Hall WC, Killackey H, Diamond IT. Visual cortex of the tree shrew (Tupaia glis): architectonic subdivisions and representations of the visual field. Brain Res 1972, 42: 491–496.CrossRefPubMed
46.
go back to reference Cajal SR. Histologie Du Systeme Nerveux De L’Homme Et Des Vertebretes. Paris: A. Maloine, 1911. Cajal SR. Histologie Du Systeme Nerveux De L’Homme Et Des Vertebretes. Paris: A. Maloine, 1911.
47.
go back to reference Keuker JI, Rochford CD, Witter MP, Fuchs E. A cytoarchitectonic study of the hippocampal formation of the tree shrew (Tupaia belangeri). J Chem Neuroanat 2003, 26: 1–15.CrossRefPubMed Keuker JI, Rochford CD, Witter MP, Fuchs E. A cytoarchitectonic study of the hippocampal formation of the tree shrew (Tupaia belangeri). J Chem Neuroanat 2003, 26: 1–15.CrossRefPubMed
48.
go back to reference Gould E, McEwen BS, Tanapat P, Galea LAM, Fuchs E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 1997, 17: 2492–2498.CrossRefPubMed Gould E, McEwen BS, Tanapat P, Galea LAM, Fuchs E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 1997, 17: 2492–2498.CrossRefPubMed
49.
go back to reference Fitzpatrick D. The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb Cortex 1996, 6: 329–341.CrossRefPubMed Fitzpatrick D. The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb Cortex 1996, 6: 329–341.CrossRefPubMed
50.
go back to reference Nieuwenhuys R. The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Struct Funct 2013, 218: 303–352.CrossRefPubMed Nieuwenhuys R. The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Struct Funct 2013, 218: 303–352.CrossRefPubMed
51.
go back to reference Peters A, Sethares C. Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 1996, 365: 232–255.CrossRefPubMed Peters A, Sethares C. Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 1996, 365: 232–255.CrossRefPubMed
52.
go back to reference Balaram P, Young NA, Kaas JH. Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans. Eye Brain 2014, 2014: 5–18.CrossRefPubMed Balaram P, Young NA, Kaas JH. Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans. Eye Brain 2014, 2014: 5–18.CrossRefPubMed
53.
54.
go back to reference Barbier EL, Marrett S, Danek A, Vortmeyer A, van Gelderen P, Duyn J, et al. Imaging cortical anatomy by high-resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17. Magn Reson Med 2002, 48: 735–738.CrossRefPubMed Barbier EL, Marrett S, Danek A, Vortmeyer A, van Gelderen P, Duyn J, et al. Imaging cortical anatomy by high-resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17. Magn Reson Med 2002, 48: 735–738.CrossRefPubMed
55.
go back to reference Trampel R, Ott DV, Turner R. Do the congenitally blind have a stria of Gennari? First intracortical insights in vivo. Cereb Cortex 2011, 21: 2075–2081.CrossRefPubMed Trampel R, Ott DV, Turner R. Do the congenitally blind have a stria of Gennari? First intracortical insights in vivo. Cereb Cortex 2011, 21: 2075–2081.CrossRefPubMed
56.
go back to reference Chen G, Wang F, Gore JC, Roe AW. Identification of cortical lamination in awake monkeys by high resolution magnetic resonance imaging. Neuroimage 2012, 59: 3441–3449.CrossRefPubMed Chen G, Wang F, Gore JC, Roe AW. Identification of cortical lamination in awake monkeys by high resolution magnetic resonance imaging. Neuroimage 2012, 59: 3441–3449.CrossRefPubMed
57.
go back to reference Leuze CW, Anwander A, Bazin PL, Dhital B, Stuber C, Reimann K, et al. Layer-specific intracortical connectivity revealed with diffusion MRI. Cereb Cortex 2014, 24: 328–339.CrossRefPubMed Leuze CW, Anwander A, Bazin PL, Dhital B, Stuber C, Reimann K, et al. Layer-specific intracortical connectivity revealed with diffusion MRI. Cereb Cortex 2014, 24: 328–339.CrossRefPubMed
58.
go back to reference Rockland KS, Lund JS. Intrinsic laminar lattice connections in primate visual cortex. J Comp Neurol 1983, 216: 303–318.CrossRefPubMed Rockland KS, Lund JS. Intrinsic laminar lattice connections in primate visual cortex. J Comp Neurol 1983, 216: 303–318.CrossRefPubMed
59.
go back to reference Demyanenko GP, Schachner M, Anton E, Schmid R, Feng G, Sanes J, et al. Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Neuron 2004, 44: 423–437.CrossRefPubMed Demyanenko GP, Schachner M, Anton E, Schmid R, Feng G, Sanes J, et al. Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Neuron 2004, 44: 423–437.CrossRefPubMed
60.
go back to reference Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J. The Hippocampus Book. New York: Oxford University Press, Inc, 2007. Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J. The Hippocampus Book. New York: Oxford University Press, Inc, 2007.
61.
go back to reference Wu D, Zhang J. In vivo mapping of macroscopic neuronal projections in the mouse hippocampus using high-resolution diffusion MRI. Neuroimage 2016, 125: 84–93.CrossRefPubMed Wu D, Zhang J. In vivo mapping of macroscopic neuronal projections in the mouse hippocampus using high-resolution diffusion MRI. Neuroimage 2016, 125: 84–93.CrossRefPubMed
62.
go back to reference Smith RE, Tournier JD, Calamante F, Connelly A. SIFT: Spherical-deconvolution informed filtering of tractograms. Neuroimage 2013, 67: 298–312.CrossRefPubMed Smith RE, Tournier JD, Calamante F, Connelly A. SIFT: Spherical-deconvolution informed filtering of tractograms. Neuroimage 2013, 67: 298–312.CrossRefPubMed
63.
go back to reference Calamante F. Track-weighted imaging methods: extracting information from a streamlines tractogram. MAGMA 2017, 30: 317–335.CrossRefPubMed Calamante F. Track-weighted imaging methods: extracting information from a streamlines tractogram. MAGMA 2017, 30: 317–335.CrossRefPubMed
64.
go back to reference Richards K, Calamante F, Tournier JD, Kurniawan ND, Sadeghian F, Retchford AR, et al. Mapping somatosensory connectivity in adult mice using diffusion MRI tractography and super-resolution track density imaging. Neuroimage 2014, 102: 381–392.CrossRefPubMed Richards K, Calamante F, Tournier JD, Kurniawan ND, Sadeghian F, Retchford AR, et al. Mapping somatosensory connectivity in adult mice using diffusion MRI tractography and super-resolution track density imaging. Neuroimage 2014, 102: 381–392.CrossRefPubMed
65.
go back to reference Tournier JD, Calamante F, Connelly A. Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed 2013, 26: 1775–1786.CrossRefPubMed Tournier JD, Calamante F, Connelly A. Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed 2013, 26: 1775–1786.CrossRefPubMed
66.
go back to reference Willats L, Raffelt D, Smith RE, Tournier JD, Connelly A, Calamante F. Quantification of track-weighted imaging (TWI): characterisation of within-subject reproducibility and between-subject variability. Neuroimage 2014, 87: 18–31.CrossRefPubMed Willats L, Raffelt D, Smith RE, Tournier JD, Connelly A, Calamante F. Quantification of track-weighted imaging (TWI): characterisation of within-subject reproducibility and between-subject variability. Neuroimage 2014, 87: 18–31.CrossRefPubMed
67.
go back to reference Calamante F, Smith RE, Tournier JD, Raffelt D, Connelly A. Quantification of voxel-wise total fibre density: Investigating the problems associated with track-count mapping. Neuroimage 2015, 117: 284–293.CrossRefPubMed Calamante F, Smith RE, Tournier JD, Raffelt D, Connelly A. Quantification of voxel-wise total fibre density: Investigating the problems associated with track-count mapping. Neuroimage 2015, 117: 284–293.CrossRefPubMed
Metadata
Title
Super-Resolution Track-Density Imaging Reveals Fine Anatomical Features in Tree Shrew Primary Visual Cortex and Hippocampus
Authors
Jian-Kun Dai
Shu-Xia Wang
Dai Shan
Hai-Chen Niu
Hao Lei
Publication date
01-06-2018
Publisher
Springer Singapore
Published in
Neuroscience Bulletin / Issue 3/2018
Print ISSN: 1673-7067
Electronic ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-017-0199-x

Other articles of this Issue 3/2018

Neuroscience Bulletin 3/2018 Go to the issue