Skip to main content
Top
Published in: Brain Structure and Function 4/2017

01-05-2017 | Original Article

A diffusion tensor imaging atlas of white matter in tree shrew

Authors: Jian-kun Dai, Shu-xia Wang, Dai Shan, Hai-chen Niu, Hao Lei

Published in: Brain Structure and Function | Issue 4/2017

Login to get access

Abstract

Tree shrews are small mammals now commonly classified in the order of Scandentia, but have relatively closer affinity to primates than rodents. The species has a high brain-to-body mass ratio and relatively well-differentiated neocortex, and thus has been frequently used in neuroscience research, especially for studies on vision and neurological/psychiatric diseases. The available atlases on tree shrew brain provided only limited information on white matter (WM) anatomy. In this study, diffusion tensor imaging (DTI) was used to study the WM anatomy of tree shrew, with the goal to establish an image-based WM atlas. DTI and T2-weighted anatomical images were acquired in vivo and from fixed brain samples. Deterministic tractography was used for three-dimensional reconstruction and rendering of major WM tracts. Myelin and neurofilaments staining were used to study the microstructural properties of certain WM tracts. Taking into account prior knowledge on tree shrew neuroanatomy, tractography results, and comparisons to the homologous structures in rodents and primates, an image-based WM atlas of tree shrew brain was constructed, which is available to research community upon request.
Literature
go back to reference Aboitiz F, Garcia VR (1997) The evolutionary origin of the language areas in the human brain. A neuroanatomical perspective. Brain Res Rev 25:381–396PubMedCrossRef Aboitiz F, Garcia VR (1997) The evolutionary origin of the language areas in the human brain. A neuroanatomical perspective. Brain Res Rev 25:381–396PubMedCrossRef
go back to reference Adluru N, Zhang H, Fox AS et al (2012) A diffusion tensor brain template for rhesus macaques. Neuroimage 59:306–318PubMedCrossRef Adluru N, Zhang H, Fox AS et al (2012) A diffusion tensor brain template for rhesus macaques. Neuroimage 59:306–318PubMedCrossRef
go back to reference Aggarwal M, Nauen DW, Troncoso JC et al (2015) Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI. Neuroimage 105:198–207PubMedCrossRef Aggarwal M, Nauen DW, Troncoso JC et al (2015) Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI. Neuroimage 105:198–207PubMedCrossRef
go back to reference Avants BB, Tustison NJ, Song G et al (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044PubMedCrossRef Avants BB, Tustison NJ, Song G et al (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044PubMedCrossRef
go back to reference Behrens TE, Berg HJ, Jbabdi S et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155PubMedCrossRef Behrens TE, Berg HJ, Jbabdi S et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155PubMedCrossRef
go back to reference Benveniste H, Einstein G, Kim KR et al (1999) Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci USA 96:14079–14084PubMedPubMedCentralCrossRef Benveniste H, Einstein G, Kim KR et al (1999) Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci USA 96:14079–14084PubMedPubMedCentralCrossRef
go back to reference Berke JJ (1960) The claustrum, the external capsule and the extreme capsule of Macaca mulatta. J Comp Neurol 115:297–331PubMedCrossRef Berke JJ (1960) The claustrum, the external capsule and the extreme capsule of Macaca mulatta. J Comp Neurol 115:297–331PubMedCrossRef
go back to reference Bora E, Yucel M, Fornito A et al (2012) White matter microstructure in opiate addiction. Addict Biol 17:141–148PubMedCrossRef Bora E, Yucel M, Fornito A et al (2012) White matter microstructure in opiate addiction. Addict Biol 17:141–148PubMedCrossRef
go back to reference Bosking WH, Zhang Y, Schofield B et al (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17:2112–2127PubMed Bosking WH, Zhang Y, Schofield B et al (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17:2112–2127PubMed
go back to reference Campbell CB, Jane JA, Yashon D (1967) The retinal projections of the tree shrew and hedgehog. Brain Res 5:406–418PubMedCrossRef Campbell CB, Jane JA, Yashon D (1967) The retinal projections of the tree shrew and hedgehog. Brain Res 5:406–418PubMedCrossRef
go back to reference Cao J, Yang EB, Su JJ et al (2003) The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol 32:123–130PubMedCrossRef Cao J, Yang EB, Su JJ et al (2003) The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol 32:123–130PubMedCrossRef
go back to reference Carey RG, Neal TL (1986) Reciprocal connections between the claustrum and visual thalamus in the tree shrew (tupaia-glis). Brain Res 386:155–168PubMedCrossRef Carey RG, Neal TL (1986) Reciprocal connections between the claustrum and visual thalamus in the tree shrew (tupaia-glis). Brain Res 386:155–168PubMedCrossRef
go back to reference Carey RG, Fitzpatrick D, Diamond IT (1979) Layer I of striate cortex of tupaia glis and galago senegalensis: projections from thalamus and claustrum revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 186:393–437PubMedCrossRef Carey RG, Fitzpatrick D, Diamond IT (1979) Layer I of striate cortex of tupaia glis and galago senegalensis: projections from thalamus and claustrum revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 186:393–437PubMedCrossRef
go back to reference Carey RG, Bear MF, Diamond IT (1980) Laminar organization of the reciprocal projections between the claustrum and striate cortex in the tree shrew, tupaia-glis. Brain Res 184:193–198PubMedCrossRef Carey RG, Bear MF, Diamond IT (1980) Laminar organization of the reciprocal projections between the claustrum and striate cortex in the tree shrew, tupaia-glis. Brain Res 184:193–198PubMedCrossRef
go back to reference Casseday HJ, Diamond IT, Harting JK (1976) Auditory pathways to the cortex in tupaia glis. J Comp Neurol 166:303–340PubMedCrossRef Casseday HJ, Diamond IT, Harting JK (1976) Auditory pathways to the cortex in tupaia glis. J Comp Neurol 166:303–340PubMedCrossRef
go back to reference Catani M, Howard RJ, Pajevic S et al (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94PubMedCrossRef Catani M, Howard RJ, Pajevic S et al (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94PubMedCrossRef
go back to reference Chan E, Kovacevic N, Ho SK et al (2007) Development of a high resolution three-dimensional surgical atlas of the murine head for strains 129S1/SvImJ and C57Bl/6J using magnetic resonance imaging and micro-computed tomography. Neuroscience 144:604–615PubMedCrossRef Chan E, Kovacevic N, Ho SK et al (2007) Development of a high resolution three-dimensional surgical atlas of the murine head for strains 129S1/SvImJ and C57Bl/6J using magnetic resonance imaging and micro-computed tomography. Neuroscience 144:604–615PubMedCrossRef
go back to reference Chomsung RD, Petry HM, Bickford ME (2008) Ultrastructural examination of diffuse and specific tectopulvinar projections in the tree shrew. J Comp Neurol 510:24–46PubMedPubMedCentralCrossRef Chomsung RD, Petry HM, Bickford ME (2008) Ultrastructural examination of diffuse and specific tectopulvinar projections in the tree shrew. J Comp Neurol 510:24–46PubMedPubMedCentralCrossRef
go back to reference Chomsung RD, Wei H, Day-Brown JD et al (2010) Synaptic organization of connections between the temporal cortex and pulvinar nucleus of the tree shrew. Cereb Cortex 20:997–1011PubMedCrossRef Chomsung RD, Wei H, Day-Brown JD et al (2010) Synaptic organization of connections between the temporal cortex and pulvinar nucleus of the tree shrew. Cereb Cortex 20:997–1011PubMedCrossRef
go back to reference Chuang N, Mori S, Yamamoto A et al (2011) An MRI-based atlas and database of the developing mouse brain. Neuroimage 54:80–89PubMedCrossRef Chuang N, Mori S, Yamamoto A et al (2011) An MRI-based atlas and database of the developing mouse brain. Neuroimage 54:80–89PubMedCrossRef
go back to reference Dalby RB, Frandsen J, Chakravarty MM et al (2010) Depression severity is correlated to the integrity of white matter fiber tracts in late-onset major depression. Psychiatry Res 184:38–48PubMedCrossRef Dalby RB, Frandsen J, Chakravarty MM et al (2010) Depression severity is correlated to the integrity of white matter fiber tracts in late-onset major depression. Psychiatry Res 184:38–48PubMedCrossRef
go back to reference Delatour B, Witter MP (2002) Projections from the parahippocampal region to the prefrontal cortex in the rat: evidence of multiple pathways. Eur J Neurosci 15:1400–1407PubMedCrossRef Delatour B, Witter MP (2002) Projections from the parahippocampal region to the prefrontal cortex in the rat: evidence of multiple pathways. Eur J Neurosci 15:1400–1407PubMedCrossRef
go back to reference Figini M, Zucca I, Aquino D et al (2015) In vivo DTI tractography of the rat brain: an atlas of the main tracts in Paxinos space with histological comparison. Magn Reson Imaging 33:296–303PubMedCrossRef Figini M, Zucca I, Aquino D et al (2015) In vivo DTI tractography of the rat brain: an atlas of the main tracts in Paxinos space with histological comparison. Magn Reson Imaging 33:296–303PubMedCrossRef
go back to reference Fitzpatrick D (1996) The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb Cortex 6:329–341PubMedCrossRef Fitzpatrick D (1996) The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb Cortex 6:329–341PubMedCrossRef
go back to reference Fitzpatrick D, Carey RG, Diamond IT (1980) The projection of the superior colliculus upon the lateral geniculate-body in tupaia-glis and galago-senegalensis. Brain Res 194:494–499PubMedCrossRef Fitzpatrick D, Carey RG, Diamond IT (1980) The projection of the superior colliculus upon the lateral geniculate-body in tupaia-glis and galago-senegalensis. Brain Res 194:494–499PubMedCrossRef
go back to reference Flugge G, Ahrens O, Fuchs E (1994) Monoamine receptors in the amygdaloid complex of the tree shrew (tupaia belangeri). J Comp Neurol 343:597–608PubMedCrossRef Flugge G, Ahrens O, Fuchs E (1994) Monoamine receptors in the amygdaloid complex of the tree shrew (tupaia belangeri). J Comp Neurol 343:597–608PubMedCrossRef
go back to reference Fuchs E (2005) Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectr 10:182–190PubMedCrossRef Fuchs E (2005) Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectr 10:182–190PubMedCrossRef
go back to reference Fuchs E, Flugge G (2002) Social stress in tree shrews: effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol Biochem Behav 73:247–258PubMedCrossRef Fuchs E, Flugge G (2002) Social stress in tree shrews: effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol Biochem Behav 73:247–258PubMedCrossRef
go back to reference Glickstein M (1967) Laminar structure of the dorsal lateral geniculate nucleus in the tree shrew (tupaia glis). J Comp Neurol 131:93–102PubMedCrossRef Glickstein M (1967) Laminar structure of the dorsal lateral geniculate nucleus in the tree shrew (tupaia glis). J Comp Neurol 131:93–102PubMedCrossRef
go back to reference Hall WC, Lee P (1993) Interlaminar connections of the superior colliculus in the tree shrew. I. The superficial gray layer. J Comp Neurol 332:213–223PubMedCrossRef Hall WC, Lee P (1993) Interlaminar connections of the superior colliculus in the tree shrew. I. The superficial gray layer. J Comp Neurol 332:213–223PubMedCrossRef
go back to reference Hall WC, Lee P (1997) Interlaminar connections of the superior colliculus in the tree shrew. III: The optic layer. Vis Neurosci 14:647–661PubMedCrossRef Hall WC, Lee P (1997) Interlaminar connections of the superior colliculus in the tree shrew. III: The optic layer. Vis Neurosci 14:647–661PubMedCrossRef
go back to reference Harting JK, Hall WC, Diamond IT et al (1973) Anterograde degeneration study of the superior colliculus in tupaia glis: evidence for a subdivision between superficial and deep layers. J Comp Neurol 148:361–386PubMedCrossRef Harting JK, Hall WC, Diamond IT et al (1973) Anterograde degeneration study of the superior colliculus in tupaia glis: evidence for a subdivision between superficial and deep layers. J Comp Neurol 148:361–386PubMedCrossRef
go back to reference Harting JK, Huerta MF, Hashikawa T et al (1991) Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species. J Comp Neurol 304:275–306PubMedCrossRef Harting JK, Huerta MF, Hashikawa T et al (1991) Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species. J Comp Neurol 304:275–306PubMedCrossRef
go back to reference Hoover WB, Vertes RP (2011) Projections of the medial orbital and ventral orbital cortex in the rat. J Comp Neurol 519:3766–3801PubMedCrossRef Hoover WB, Vertes RP (2011) Projections of the medial orbital and ventral orbital cortex in the rat. J Comp Neurol 519:3766–3801PubMedCrossRef
go back to reference Jain N, Preuss TM, Kaas JH (1994) Subdivisions of the visual system labeled with the Cat-301 antibody in tree shrews. Vis Neurosci 11:731–741PubMedCrossRef Jain N, Preuss TM, Kaas JH (1994) Subdivisions of the visual system labeled with the Cat-301 antibody in tree shrews. Vis Neurosci 11:731–741PubMedCrossRef
go back to reference Kaas JH (2011) The evolution of auditory cortex: the core areas. In: Jeffery A, Winer CES (eds) The auditory cortex. Springer, US, pp 407–427CrossRef Kaas JH (2011) The evolution of auditory cortex: the core areas. In: Jeffery A, Winer CES (eds) The auditory cortex. Springer, US, pp 407–427CrossRef
go back to reference Keuker JI, de Biurrun G, Luiten PG et al (2004) Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews. J Comp Neurol 468:509–517PubMedCrossRef Keuker JI, de Biurrun G, Luiten PG et al (2004) Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews. J Comp Neurol 468:509–517PubMedCrossRef
go back to reference Kowianski P, Dziewiatkowski J, Kowianska J et al (1999) Comparative anatomy of the claustrum in selected species: a morphometric analysis. Brain Behav Evol 53:44–54PubMedCrossRef Kowianski P, Dziewiatkowski J, Kowianska J et al (1999) Comparative anatomy of the claustrum in selected species: a morphometric analysis. Brain Behav Evol 53:44–54PubMedCrossRef
go back to reference Lee P, Hall WC (1995) Interlaminar connections of the superior colliculus in the tree shrew. II: projections from the superficial gray to the optic layer. Vis Neurosci 12:573–588PubMedCrossRef Lee P, Hall WC (1995) Interlaminar connections of the superior colliculus in the tree shrew. II: projections from the superficial gray to the optic layer. Vis Neurosci 12:573–588PubMedCrossRef
go back to reference Liu FG, Miyamoto MM, Freire NP et al (2001) Molecular and morphological supertrees for eutherian (placental) mammals. Science 291:1786–1789PubMedCrossRef Liu FG, Miyamoto MM, Freire NP et al (2001) Molecular and morphological supertrees for eutherian (placental) mammals. Science 291:1786–1789PubMedCrossRef
go back to reference Luppino G, Matelli M, Carey RG et al (1988) New view of the organization of the pulvinar nucleus in tupaia as revealed by tectopulvinar and pulvinar-cortical projections. J Comp Neurol 273:67–86PubMedCrossRef Luppino G, Matelli M, Carey RG et al (1988) New view of the organization of the pulvinar nucleus in tupaia as revealed by tectopulvinar and pulvinar-cortical projections. J Comp Neurol 273:67–86PubMedCrossRef
go back to reference Lyon DC, Jain N, Kaas JH (2003a) The visual pulvinar in tree shrews I. Multiple subdivisions revealed through acetylcholinesterase and Cat-301 chemoarchitecture. J Comp Neurol 467:593–606PubMedCrossRef Lyon DC, Jain N, Kaas JH (2003a) The visual pulvinar in tree shrews I. Multiple subdivisions revealed through acetylcholinesterase and Cat-301 chemoarchitecture. J Comp Neurol 467:593–606PubMedCrossRef
go back to reference Lyon DC, Jain N, Kaas JH (2003b) The visual pulvinar in tree shrews II. Projections of four nuclei to areas of visual cortex. J Comp Neurol 467:607–627PubMedCrossRef Lyon DC, Jain N, Kaas JH (2003b) The visual pulvinar in tree shrews II. Projections of four nuclei to areas of visual cortex. J Comp Neurol 467:607–627PubMedCrossRef
go back to reference Ma KL, Gao JH, Huang ZQ et al (2013) Motor function in MPTP-treated tree shrews (tupaia belangeri chinensis). Neurochem Res 38:1935–1940CrossRef Ma KL, Gao JH, Huang ZQ et al (2013) Motor function in MPTP-treated tree shrews (tupaia belangeri chinensis). Neurochem Res 38:1935–1940CrossRef
go back to reference Makris N, Pandya DN (2009) The extreme capsule in humans and rethinking of the language circuitry. Brain Struct Funct 213:343–358PubMedCrossRef Makris N, Pandya DN (2009) The extreme capsule in humans and rethinking of the language circuitry. Brain Struct Funct 213:343–358PubMedCrossRef
go back to reference Marrocco RT, De Valois RL, Boles JI (1970) A stereotaxic atlas of the brain of the tree shrew (tupaia glis). J Hirnforsch 12:307–312PubMed Marrocco RT, De Valois RL, Boles JI (1970) A stereotaxic atlas of the brain of the tree shrew (tupaia glis). J Hirnforsch 12:307–312PubMed
go back to reference Matsuo K, Mizuno T, Yamada K et al (2008) Cerebral white matter damage in frontotemporal dementia assessed by diffusion tensor tractography. Neuroradiology 50:605–611PubMedCrossRef Matsuo K, Mizuno T, Yamada K et al (2008) Cerebral white matter damage in frontotemporal dementia assessed by diffusion tensor tractography. Neuroradiology 50:605–611PubMedCrossRef
go back to reference May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378PubMedCrossRef May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378PubMedCrossRef
go back to reference McCollum LA, Roberts RC (2014) Ultrastructural localization of tyrosine hydroxylase in tree shrew nucleus accumbens core and shell. Neuroscience 271:23–34PubMedPubMedCentralCrossRef McCollum LA, Roberts RC (2014) Ultrastructural localization of tyrosine hydroxylase in tree shrew nucleus accumbens core and shell. Neuroscience 271:23–34PubMedPubMedCentralCrossRef
go back to reference Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480PubMedCrossRef Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480PubMedCrossRef
go back to reference Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539PubMedCrossRef Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539PubMedCrossRef
go back to reference Murphy WJ, Eizirik E, O’Brien SJ et al (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351PubMedCrossRef Murphy WJ, Eizirik E, O’Brien SJ et al (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351PubMedCrossRef
go back to reference Ohl F, Kirschbaum C, Fuchs E (1999) Evaluation of hypothalamo-pituitary-adrenal activity in the tree shrew (tupaia belangeri) via salivary cortisol measurement. Lab Anim 33:269–274PubMedCrossRef Ohl F, Kirschbaum C, Fuchs E (1999) Evaluation of hypothalamo-pituitary-adrenal activity in the tree shrew (tupaia belangeri) via salivary cortisol measurement. Lab Anim 33:269–274PubMedCrossRef
go back to reference Ohl F, Michaelis T, Vollmann-Honsdorf GK et al (2000) Effect of chronic psychosocial stress and long-term cortisol treatment on hippocampus-mediated memory and hippocampal volume: a pilot-study in tree shrews. Psychoneuroendocrinology 25:357–363PubMedCrossRef Ohl F, Michaelis T, Vollmann-Honsdorf GK et al (2000) Effect of chronic psychosocial stress and long-term cortisol treatment on hippocampus-mediated memory and hippocampal volume: a pilot-study in tree shrews. Psychoneuroendocrinology 25:357–363PubMedCrossRef
go back to reference Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219PubMedCrossRef Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219PubMedCrossRef
go back to reference Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42:526–540PubMedCrossRef Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42:526–540PubMedCrossRef
go back to reference Palchaudhuri M, Flugge G (2005) 5-HT1A receptor expression in pyramidal neurons of cortical and limbic brain regions. Cell Tissue Res 321:159–172PubMedCrossRef Palchaudhuri M, Flugge G (2005) 5-HT1A receptor expression in pyramidal neurons of cortical and limbic brain regions. Cell Tissue Res 321:159–172PubMedCrossRef
go back to reference Pawlik M, Fuchs E, Walker LC et al (1999) Primate-like amyloid-β sequence but no cerebral amyloidosis in aged tree shrews. Neurobiol Aging 20:47–51PubMedCrossRef Pawlik M, Fuchs E, Walker LC et al (1999) Primate-like amyloid-β sequence but no cerebral amyloidosis in aged tree shrews. Neurobiol Aging 20:47–51PubMedCrossRef
go back to reference Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego
go back to reference Peng Y, Ye Z, Zou R et al (1991) Biology of Chinese tree shrews. Yunnan Science and Technology Press, Kunming Peng Y, Ye Z, Zou R et al (1991) Biology of Chinese tree shrews. Yunnan Science and Technology Press, Kunming
go back to reference Petros TJ, Rebsam A, Mason CA (2008) Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci 31:295–315PubMedCrossRef Petros TJ, Rebsam A, Mason CA (2008) Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci 31:295–315PubMedCrossRef
go back to reference Poletti CE, Creswell G (1977) Fornix system efferent projections in the squirrel monkey: an experimental degeneration study. J Comp Neurol 175:101–128PubMedCrossRef Poletti CE, Creswell G (1977) Fornix system efferent projections in the squirrel monkey: an experimental degeneration study. J Comp Neurol 175:101–128PubMedCrossRef
go back to reference Pritzel M, Kretz R, Rager G (1988) Callosal projections between areas-17 in the adult tree shrew (tupaia-belangeri). Exp Brain Res 72:481–493PubMedCrossRef Pritzel M, Kretz R, Rager G (1988) Callosal projections between areas-17 in the adult tree shrew (tupaia-belangeri). Exp Brain Res 72:481–493PubMedCrossRef
go back to reference Remple MS, Reed JL, Stepniewska I et al (2006) Organization of frontoparietal cortex in the tree shrew (tupaia belangeri). I. Architecture, microelectrode maps, and corticospinal connections. J Comp Neurol 497:133–154PubMedCrossRef Remple MS, Reed JL, Stepniewska I et al (2006) Organization of frontoparietal cortex in the tree shrew (tupaia belangeri). I. Architecture, microelectrode maps, and corticospinal connections. J Comp Neurol 497:133–154PubMedCrossRef
go back to reference Remple MS, Reed JL, Stepniewska I et al (2007) The organization of frontoparietal cortex in the tree shrew (tupaia belangeri): II. Connectional evidence for a frontal-posterior parietal network. J Comp Neurol 501:121–149PubMedCrossRef Remple MS, Reed JL, Stepniewska I et al (2007) The organization of frontoparietal cortex in the tree shrew (tupaia belangeri): II. Connectional evidence for a frontal-posterior parietal network. J Comp Neurol 501:121–149PubMedCrossRef
go back to reference Rilling JK, Glasser MF, Preuss TM et al (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428PubMedCrossRef Rilling JK, Glasser MF, Preuss TM et al (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428PubMedCrossRef
go back to reference Rilling JK, Glasser MF, Jbabdi S et al (2011) Continuity, divergence, and the evolution of brain language pathways. Front Evol Neurosci 3:11PubMed Rilling JK, Glasser MF, Jbabdi S et al (2011) Continuity, divergence, and the evolution of brain language pathways. Front Evol Neurosci 3:11PubMed
go back to reference Sati P, Silva AC, van Gelderen P et al (2012) In vivo quantification of T(2) anisotropy in white matter fibers in marmoset monkeys. Neuroimage 59:979–985PubMedCrossRef Sati P, Silva AC, van Gelderen P et al (2012) In vivo quantification of T(2) anisotropy in white matter fibers in marmoset monkeys. Neuroimage 59:979–985PubMedCrossRef
go back to reference Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New YorkCrossRef Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New YorkCrossRef
go back to reference Schmahmann JD, Pandya DN, Wang R et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653PubMedCrossRef Schmahmann JD, Pandya DN, Wang R et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653PubMedCrossRef
go back to reference Shen F, Duan Y, Jin S et al (2014) Varied behavioral responses induced by morphine in the tree shrew: a possible model for human opiate addiction. Front Behav Neurosci 8:333PubMedPubMedCentralCrossRef Shen F, Duan Y, Jin S et al (2014) Varied behavioral responses induced by morphine in the tree shrew: a possible model for human opiate addiction. Front Behav Neurosci 8:333PubMedPubMedCentralCrossRef
go back to reference Shenton ME, Hamoda HM, Schneiderman JS et al (2012) A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 6:137–192PubMedPubMedCentralCrossRef Shenton ME, Hamoda HM, Schneiderman JS et al (2012) A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 6:137–192PubMedPubMedCentralCrossRef
go back to reference Shibata S, Komaki Y, Seki F et al (2015) Connectomics: comprehensive approaches for whole-brain mapping. Microscopy 64:57–67PubMedCrossRef Shibata S, Komaki Y, Seki F et al (2015) Connectomics: comprehensive approaches for whole-brain mapping. Microscopy 64:57–67PubMedCrossRef
go back to reference Sillitoe RV, Malz CR, Rockland K et al (2004) Antigenic compartmentation of the primate and tree shrew cerebellum: a common topography of zebrin II in macaca mulatta and tupaia belangeri. J Anat 204:257–269PubMedPubMedCentralCrossRef Sillitoe RV, Malz CR, Rockland K et al (2004) Antigenic compartmentation of the primate and tree shrew cerebellum: a common topography of zebrin II in macaca mulatta and tupaia belangeri. J Anat 204:257–269PubMedPubMedCentralCrossRef
go back to reference Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219PubMedCrossRef Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219PubMedCrossRef
go back to reference Thiebaut de Schotten M, Dell’Acqua F, Valabregue R et al (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48:82–96PubMedCrossRef Thiebaut de Schotten M, Dell’Acqua F, Valabregue R et al (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48:82–96PubMedCrossRef
go back to reference Thomas C, Ye FQ, Irfanoglu MO et al (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA 111:16574–16579PubMedPubMedCentralCrossRef Thomas C, Ye FQ, Irfanoglu MO et al (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA 111:16574–16579PubMedPubMedCentralCrossRef
go back to reference Tigges J, Shantha TR (1969) A stereotaxic brain atlas of the tree shrew (tupaia glis). Williams & Wilkins, Baltimore Tigges J, Shantha TR (1969) A stereotaxic brain atlas of the tree shrew (tupaia glis). Williams & Wilkins, Baltimore
go back to reference Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imag Syst Tech 22:53–66CrossRef Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imag Syst Tech 22:53–66CrossRef
go back to reference Wakana S, Jiang H, Nagae-Poetscher LM et al (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87PubMedCrossRef Wakana S, Jiang H, Nagae-Poetscher LM et al (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87PubMedCrossRef
go back to reference Wang S, Shan D, Dai J et al (2013) Anatomical MRI templates of tree shrew brain for volumetric analysis and voxel-based morphometry. J Neurosci Methods 220:9–17PubMedCrossRef Wang S, Shan D, Dai J et al (2013) Anatomical MRI templates of tree shrew brain for volumetric analysis and voxel-based morphometry. J Neurosci Methods 220:9–17PubMedCrossRef
go back to reference Wong P, Kaas JH (2009) Architectonic subdivisions of neocortex in the tree shrew (tupaia belangeri). Anat Rec (Hoboken) 292:994–1027PubMedCentralCrossRef Wong P, Kaas JH (2009) Architectonic subdivisions of neocortex in the tree shrew (tupaia belangeri). Anat Rec (Hoboken) 292:994–1027PubMedCentralCrossRef
go back to reference Yamashita A, Fuchs E, Taira M et al (2010) Amyloid beta (Abeta) protein- and amyloid precursor protein (APP)-immunoreactive structures in the brains of aged tree shrews. Curr Aging Sci 3:230–238PubMedCrossRef Yamashita A, Fuchs E, Taira M et al (2010) Amyloid beta (Abeta) protein- and amyloid precursor protein (APP)-immunoreactive structures in the brains of aged tree shrews. Curr Aging Sci 3:230–238PubMedCrossRef
go back to reference Yamashita A, Fuchs E, Taira M et al (2012) Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques. J Med Primatol 41:147–157PubMedCrossRef Yamashita A, Fuchs E, Taira M et al (2012) Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques. J Med Primatol 41:147–157PubMedCrossRef
go back to reference Yang W, Liu J (1990) A stereotaxic atlas of the brain of tupaia belangeri and macaque monkey living in Guangxi. Guangxi Science and Technology Publishing House, Guangxi Yang W, Liu J (1990) A stereotaxic atlas of the brain of tupaia belangeri and macaque monkey living in Guangxi. Guangxi Science and Technology Publishing House, Guangxi
go back to reference Zambello E, Fuchs E, Abumaria N et al (2010) Chronic psychosocial stress alters NPY system: different effects in rat and tree shrew. Prog Neuropsychopharmacol Biol Psychiatry 34:122–130PubMedCrossRef Zambello E, Fuchs E, Abumaria N et al (2010) Chronic psychosocial stress alters NPY system: different effects in rat and tree shrew. Prog Neuropsychopharmacol Biol Psychiatry 34:122–130PubMedCrossRef
go back to reference Zhang H, Yushkevich PA, Rueckert D et al (2007) Unbiased white matter atlas construction using diffusion tensor images. Med Image Comput Comput Assist Interv 4792:211–218 Zhang H, Yushkevich PA, Rueckert D et al (2007) Unbiased white matter atlas construction using diffusion tensor images. Med Image Comput Comput Assist Interv 4792:211–218
go back to reference Zilles K (1978) A quantitative approach to cytoarchitectonics. I. The areal pattern of the cortex of tupaia belangeri. Anat Embryol (Berl) 153:195–212CrossRef Zilles K (1978) A quantitative approach to cytoarchitectonics. I. The areal pattern of the cortex of tupaia belangeri. Anat Embryol (Berl) 153:195–212CrossRef
go back to reference Zuo N, Fang J, Lv X et al (2012) White matter abnormalities in major depression: a tract-based spatial statistics and rumination study. PLoS One 7:e37561PubMedPubMedCentralCrossRef Zuo N, Fang J, Lv X et al (2012) White matter abnormalities in major depression: a tract-based spatial statistics and rumination study. PLoS One 7:e37561PubMedPubMedCentralCrossRef
Metadata
Title
A diffusion tensor imaging atlas of white matter in tree shrew
Authors
Jian-kun Dai
Shu-xia Wang
Dai Shan
Hai-chen Niu
Hao Lei
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1304-z

Other articles of this Issue 4/2017

Brain Structure and Function 4/2017 Go to the issue