Skip to main content
Top
Published in: Neuroscience Bulletin 3/2018

01-06-2018 | Original Article

Whole-Brain Mapping of Direct Inputs to and Axonal Projections from GABAergic Neurons in the Parafacial Zone

Authors: Yun-Ting Su, Meng-Yang Gu, Xi Chu, Xiang Feng, Yan-Qin Yu

Published in: Neuroscience Bulletin | Issue 3/2018

Login to get access

Abstract

The GABAergic neurons in the parafacial zone (PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediating this function remain poorly characterized. Here, we performed whole-brain mapping of both the inputs and outputs of the GABAergic neurons in the PZ of the mouse brain. We used the modified rabies virus EnvA-ΔG-DsRed combined with a Cre/loxP gene-expression strategy to map the direct monosynaptic inputs to the GABAergic neurons in the PZ, and found that they receive inputs mainly from the hypothalamic area, zona incerta, and parasubthalamic nucleus in the hypothalamus; the substantia nigra, pars reticulata and deep mesencephalic nucleus in the midbrain; and the intermediate reticular nucleus and medial vestibular nucleus (parvocellular part) in the pons and medulla. We also mapped the axonal projections of the PZ GABAergic neurons with adeno-associated virus, and defined the reciprocal connections of the PZ GABAergic neurons with their input and output nuclei. The newly-found inputs and outputs of the PZ were also listed compared with the literature. This cell-type-specific neuronal whole-brain mapping of the PZ GABAergic neurons may reveal the circuits underlying various functions such as sleep-wake regulation.
Literature
1.
go back to reference Anaclet C, Lin JS, Vetrivelan R, Krenzer M, Vong L, Fuller PM, et al. Identification and characterization of a sleep-active cell group in the rostral medullary brainstem. J Neurosci 2012, 32: 17970–17976.CrossRefPubMedPubMedCentral Anaclet C, Lin JS, Vetrivelan R, Krenzer M, Vong L, Fuller PM, et al. Identification and characterization of a sleep-active cell group in the rostral medullary brainstem. J Neurosci 2012, 32: 17970–17976.CrossRefPubMedPubMedCentral
2.
go back to reference Jones BE. Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems. Ann N Y Acad Sci 2008, 1129: 26–34.CrossRefPubMed Jones BE. Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems. Ann N Y Acad Sci 2008, 1129: 26–34.CrossRefPubMed
6.
go back to reference Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, et al. The GABAergic parafacial zone is a medullary slow wave sleep–promoting center. Nat Neurosci 2014, 17: 1217–1224.CrossRefPubMedPubMedCentral Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, et al. The GABAergic parafacial zone is a medullary slow wave sleep–promoting center. Nat Neurosci 2014, 17: 1217–1224.CrossRefPubMedPubMedCentral
8.
go back to reference Brown RE, McKenna JT. Turning a negative into a positive: ascending GABAergic control of cortical activation and arousal. Front Neurol 2015, 6: 135.PubMedPubMedCentral Brown RE, McKenna JT. Turning a negative into a positive: ascending GABAergic control of cortical activation and arousal. Front Neurol 2015, 6: 135.PubMedPubMedCentral
9.
go back to reference Shammah-Lagnado SJ, Costa MS, Ricardo JA. Afferent connections of the parvocellular reticular formation: a horseradish peroxidase study in the rat. Neuroscience 1992, 50: 403–425.CrossRefPubMed Shammah-Lagnado SJ, Costa MS, Ricardo JA. Afferent connections of the parvocellular reticular formation: a horseradish peroxidase study in the rat. Neuroscience 1992, 50: 403–425.CrossRefPubMed
10.
go back to reference Travers JB, Norgren R. Afferent projections to the oral motor nuclei in the rat. J Comp Neurol 1983, 220: 280–298.CrossRefPubMed Travers JB, Norgren R. Afferent projections to the oral motor nuclei in the rat. J Comp Neurol 1983, 220: 280–298.CrossRefPubMed
11.
go back to reference Stanek E, Cheng S, Takatoh J, Han BX, Wang F. Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. eLife 2014, 3: e02511.CrossRefPubMedPubMedCentral Stanek E, Cheng S, Takatoh J, Han BX, Wang F. Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. eLife 2014, 3: e02511.CrossRefPubMedPubMedCentral
12.
go back to reference Wickersham IR, Finke S, Conzelmann KK, Callaway EM. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 2007, 4: 47–49.CrossRefPubMed Wickersham IR, Finke S, Conzelmann KK, Callaway EM. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 2007, 4: 47–49.CrossRefPubMed
13.
go back to reference Han W, Tellez LA, Rangel MJ, Motta SC, Zhang X, Perez IO, et al. Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 2017, 168: 311–324.CrossRefPubMedPubMedCentral Han W, Tellez LA, Rangel MJ, Motta SC, Zhang X, Perez IO, et al. Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 2017, 168: 311–324.CrossRefPubMedPubMedCentral
14.
go back to reference Ter Horst GJ, Copray JC, Liem RS, Van Willigen JD. Projections from the rostral parvocellular reticular formation to pontine and medullary nuclei in the rat: involvement in autonomic regulation and orofacial motor control. Neuroscience 1991, 40: 735–758.CrossRefPubMed Ter Horst GJ, Copray JC, Liem RS, Van Willigen JD. Projections from the rostral parvocellular reticular formation to pontine and medullary nuclei in the rat: involvement in autonomic regulation and orofacial motor control. Neuroscience 1991, 40: 735–758.CrossRefPubMed
15.
go back to reference Huang ZJ, Zeng H. Genetic approaches to neural circuits in the mouse. Annu Rev Neurosci 2013, 36: 183–215.CrossRefPubMed Huang ZJ, Zeng H. Genetic approaches to neural circuits in the mouse. Annu Rev Neurosci 2013, 36: 183–215.CrossRefPubMed
19.
go back to reference Franklin KBJ, Paxinos G. The Mouse Brain in Stereotaxic Coordinates: Compact second Edition. Academic Press, 2001. Franklin KBJ, Paxinos G. The Mouse Brain in Stereotaxic Coordinates: Compact second Edition. Academic Press, 2001.
20.
go back to reference Wickersham IR, Lyon DC, Barnard RJO, Mori T, Finke S, Conzelmann KK, et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 2007, 53: 639–647.CrossRefPubMedPubMedCentral Wickersham IR, Lyon DC, Barnard RJO, Mori T, Finke S, Conzelmann KK, et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 2007, 53: 639–647.CrossRefPubMedPubMedCentral
21.
go back to reference Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I, Wall NR, et al. Cortical representations of olfactory input by trans-synaptic tracing. Nature 2011, 472: 191–196.CrossRefPubMed Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I, Wall NR, et al. Cortical representations of olfactory input by trans-synaptic tracing. Nature 2011, 472: 191–196.CrossRefPubMed
22.
go back to reference Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 2012, 74: 858–873.CrossRefPubMed Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 2012, 74: 858–873.CrossRefPubMed
23.
go back to reference Wall NR, De La Parra M, Callaway EM, Kreitzer AC. Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 2013, 79: 347–360.CrossRefPubMedPubMedCentral Wall NR, De La Parra M, Callaway EM, Kreitzer AC. Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 2013, 79: 347–360.CrossRefPubMedPubMedCentral
24.
go back to reference Zhao F, Jiang HF, Zeng WB, Shu Y, Luo MH, Duan S. Anterograde trans-synaptic tagging mediated by adeno-associated virus. Neurosci Bull 2017, 33: 348–350.CrossRefPubMedPubMedCentral Zhao F, Jiang HF, Zeng WB, Shu Y, Luo MH, Duan S. Anterograde trans-synaptic tagging mediated by adeno-associated virus. Neurosci Bull 2017, 33: 348–350.CrossRefPubMedPubMedCentral
25.
go back to reference Minkels RF, Jüch PJ, Ter Horst GJ, Van Willigen JD. Projections of the parvocellular reticular formation to the contralateral mesencephalic trigeminal nucleus in the rat. Brain Res 1991, 547: 13–21.CrossRefPubMed Minkels RF, Jüch PJ, Ter Horst GJ, Van Willigen JD. Projections of the parvocellular reticular formation to the contralateral mesencephalic trigeminal nucleus in the rat. Brain Res 1991, 547: 13–21.CrossRefPubMed
26.
go back to reference Sahara Y, Hashimoto N, Nakamura Y. Hypoglossal premotor neurons in the rostral medullary parvocellular reticular formation participate in cortically-induced rhythmical tongue movements. Neurosci Res 1996, 26: 119–131.CrossRefPubMed Sahara Y, Hashimoto N, Nakamura Y. Hypoglossal premotor neurons in the rostral medullary parvocellular reticular formation participate in cortically-induced rhythmical tongue movements. Neurosci Res 1996, 26: 119–131.CrossRefPubMed
27.
go back to reference Parenti R, Cicirata F, Pantò MR, Serapide MF. The projections of the lateral reticular nucleus to the deep cerebellar nuclei. An experimental analysis in the rat. Eur J Neurosci 1996, 8: 2157–2167.CrossRefPubMed Parenti R, Cicirata F, Pantò MR, Serapide MF. The projections of the lateral reticular nucleus to the deep cerebellar nuclei. An experimental analysis in the rat. Eur J Neurosci 1996, 8: 2157–2167.CrossRefPubMed
28.
go back to reference Anaclet C, Pedersen NP, Fuller PM, Lu J. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep. PLoS One 2010, 5: e8788.CrossRefPubMedPubMedCentral Anaclet C, Pedersen NP, Fuller PM, Lu J. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep. PLoS One 2010, 5: e8788.CrossRefPubMedPubMedCentral
29.
go back to reference Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 2002, 16: 1959–1973.CrossRefPubMed Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 2002, 16: 1959–1973.CrossRefPubMed
31.
go back to reference Morairty SR, Dittrich L, Pasumarthi RK, Valladao D, Heiss JE, Gerashchenko D, et al. A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proc Natl Acad Sci U S A 2013, 110: 20272–20277.CrossRefPubMedPubMedCentral Morairty SR, Dittrich L, Pasumarthi RK, Valladao D, Heiss JE, Gerashchenko D, et al. A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proc Natl Acad Sci U S A 2013, 110: 20272–20277.CrossRefPubMedPubMedCentral
32.
go back to reference Hayashi Y, Kashiwagi M, Yasuda K, Ando R, Kanuka M, Sakai K, et al. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science 2015, 350: 957–961.CrossRefPubMed Hayashi Y, Kashiwagi M, Yasuda K, Ando R, Kanuka M, Sakai K, et al. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science 2015, 350: 957–961.CrossRefPubMed
33.
go back to reference Gerashchenko D, Wisor JP, Burns D, Reh RK, Shiromani PJ, Sakurai T, et al. Identification of a population of sleep-active cerebral cortex neurons. Proc Natl Acad Sci U S A 2008, 105: 10227–10232.CrossRefPubMedPubMedCentral Gerashchenko D, Wisor JP, Burns D, Reh RK, Shiromani PJ, Sakurai T, et al. Identification of a population of sleep-active cerebral cortex neurons. Proc Natl Acad Sci U S A 2008, 105: 10227–10232.CrossRefPubMedPubMedCentral
34.
go back to reference Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R. Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol 2004, 556: 935–946.CrossRefPubMedPubMedCentral Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R. Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol 2004, 556: 935–946.CrossRefPubMedPubMedCentral
35.
go back to reference Alam MA, Kumar S, McGinty D, Alam MN, Szymusiak R. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J Neurophysiol 2014, 111: 287–299.CrossRefPubMed Alam MA, Kumar S, McGinty D, Alam MN, Szymusiak R. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J Neurophysiol 2014, 111: 287–299.CrossRefPubMed
36.
go back to reference Kumar S, Rai S, Hsieh KC, McGinty D, Alam MN, Szymusiak R. Adenosine A(2A) receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus. Am J Physiol Regul Integr Comp Physiol 2013, 305: R31–41.CrossRefPubMedPubMedCentral Kumar S, Rai S, Hsieh KC, McGinty D, Alam MN, Szymusiak R. Adenosine A(2A) receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus. Am J Physiol Regul Integr Comp Physiol 2013, 305: R31–41.CrossRefPubMedPubMedCentral
37.
38.
39.
go back to reference Cho JR, Treweek JB, Robinson JE, Xiao C, Bremner LR, Greenbaum A, et al. Dorsal raphe dopamine neurons modulate arousal and promote wakefulness by salient stimuli. Neuron 2017, 94: 1205–1219.CrossRefPubMed Cho JR, Treweek JB, Robinson JE, Xiao C, Bremner LR, Greenbaum A, et al. Dorsal raphe dopamine neurons modulate arousal and promote wakefulness by salient stimuli. Neuron 2017, 94: 1205–1219.CrossRefPubMed
40.
go back to reference Sun HX, Wang DR, Ye CB, Hu ZZ, Wang CY, Huang ZL, et al. Activation of the ventral tegmental area increased wakefulness in mice. Sleep Biol Rhythms 2017, 15: 107–115.CrossRefPubMedPubMedCentral Sun HX, Wang DR, Ye CB, Hu ZZ, Wang CY, Huang ZL, et al. Activation of the ventral tegmental area increased wakefulness in mice. Sleep Biol Rhythms 2017, 15: 107–115.CrossRefPubMedPubMedCentral
41.
go back to reference Cerri M, Del Vecchio F, Mastrotto M, Luppi M, Martelli D, Perez E, et al. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat. PLoS One 2014, 9: e112849.CrossRefPubMedPubMedCentral Cerri M, Del Vecchio F, Mastrotto M, Luppi M, Martelli D, Perez E, et al. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat. PLoS One 2014, 9: e112849.CrossRefPubMedPubMedCentral
Metadata
Title
Whole-Brain Mapping of Direct Inputs to and Axonal Projections from GABAergic Neurons in the Parafacial Zone
Authors
Yun-Ting Su
Meng-Yang Gu
Xi Chu
Xiang Feng
Yan-Qin Yu
Publication date
01-06-2018
Publisher
Springer Singapore
Published in
Neuroscience Bulletin / Issue 3/2018
Print ISSN: 1673-7067
Electronic ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-018-0216-8

Other articles of this Issue 3/2018

Neuroscience Bulletin 3/2018 Go to the issue