Skip to main content
Top
Published in: Annals of Nuclear Medicine 9/2020

01-09-2020 | Computed Tomography | Original Article

Visualization of translocator protein (18 kDa) (TSPO) in the retina of diabetic retinopathy rats using fluorine-18-DPA-714

Authors: Yujing Zhou, Yinghui Ou, Zizhao Ju, Xiaoqing Zhang, Lingling Zheng, Jun Li, Yu Sun, Xingdang Liu

Published in: Annals of Nuclear Medicine | Issue 9/2020

Login to get access

Abstract

Objectives

To investigate the feasibility of a noninvasive method for imaging translocator protein (18 kDa) (TSPO) in the retina of diabetic retinopathy (DR) rats using fluorine-18-DPA-714 ([18F]-DPA-714) micro-positron emission tomography (PET)/X-ray computed tomography (CT).

Methods

Sprague–Dawley (SD) rats were intraperitoneally injected with streptozocin (STZ) (65 mg kg−1, ip) to induce diabetes mellitus (DM). The TSPO in both eyes was detected by PET/CT using [18F]-DPA-714 12 weeks after the establishment of the DM model. The mean standardized uptake value (SUVmean) was analyzed. Western blot and quantitative real-time polymerase chain reaction (PCR) were performed to detect the TSPO protein and mRNA levels in the retina.

Results

PET/CT results showed that the SUV of [18F]-DPA-714 was markedly reduced in the retina of DR rats compared with that of normal controls 12 weeks after diabetes induction. The SUVmean of regions of interest (ROIs) in the retinas of DR and normal control rats was 0.883 ± 0.078 and 2.525 ± 0.213 (P < 0.001), respectively. The results of PET/CT were in line with the Western blots and quantitative real-time PCR.

Conclusions

The PET results demonstrated that TSPO was decreased in the early stage of DR. [18F]-DPA-714 PET/CT appears to be a useful noninvasive imaging method for detecting TSPO in the retina. A decrease in the TSPO level in the retina may play an important role in the development of DR.
Literature
1.
go back to reference Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.PubMedCrossRef Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.PubMedCrossRef
2.
go back to reference Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86.PubMedCrossRef Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86.PubMedCrossRef
3.
go back to reference Robison WG, Laver NM, Jacot JL, Chandler ML, York BM, Glover JP. Efficacy of treatment after measurable diabetic like retinopathy in galactose-fed rats. Invest Ophthalmol Vis Sci. 1997;38(6):1066–73.PubMed Robison WG, Laver NM, Jacot JL, Chandler ML, York BM, Glover JP. Efficacy of treatment after measurable diabetic like retinopathy in galactose-fed rats. Invest Ophthalmol Vis Sci. 1997;38(6):1066–73.PubMed
4.
go back to reference Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol. 2002;47:S253–62.PubMedCrossRef Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol. 2002;47:S253–62.PubMedCrossRef
5.
go back to reference Corsi L, Geminiani E, Baraldi M. Peripheral benzodiazepine receptor (PBR) new insight in cell proliferation and cell differentiation review. Curr Clin Pharmacol. 2008;3(1):38–45.PubMedCrossRef Corsi L, Geminiani E, Baraldi M. Peripheral benzodiazepine receptor (PBR) new insight in cell proliferation and cell differentiation review. Curr Clin Pharmacol. 2008;3(1):38–45.PubMedCrossRef
6.
go back to reference Pierre C, Sylvaine G, Anthony SB. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int. 2002;40(6):475–86.CrossRef Pierre C, Sylvaine G, Anthony SB. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int. 2002;40(6):475–86.CrossRef
7.
go back to reference Papadopoulos V, Liu J, Culty M. Is there a mitochondrial signaling complex facilitating cholesterol import? Mol Cell Endocrinol. 2007;265-266:59–64.PubMedCrossRef Papadopoulos V, Liu J, Culty M. Is there a mitochondrial signaling complex facilitating cholesterol import? Mol Cell Endocrinol. 2007;265-266:59–64.PubMedCrossRef
8.
go back to reference Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, et al. Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27(8):402–9.PubMedCrossRef Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, et al. Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27(8):402–9.PubMedCrossRef
9.
go back to reference Karlstetter M, Nothdurfter C, Aslanidis A, Moeller K, Horn F, Scholz R, et al. Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. J Neuroinflamm. 2014;11(1):3.CrossRef Karlstetter M, Nothdurfter C, Aslanidis A, Moeller K, Horn F, Scholz R, et al. Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. J Neuroinflamm. 2014;11(1):3.CrossRef
10.
go back to reference Milenkovic VM, Rupprecht R, Wetzel CH. The translocator protein 18 kDa (TSPO) and its role in mitochondrial biology and psychiatric disorders. Mini Rev Med Chem. 2015;15(5):366–72.PubMedCrossRef Milenkovic VM, Rupprecht R, Wetzel CH. The translocator protein 18 kDa (TSPO) and its role in mitochondrial biology and psychiatric disorders. Mini Rev Med Chem. 2015;15(5):366–72.PubMedCrossRef
11.
go back to reference Bordet T, Buisson B, Michaud M, Abitbol JL, Marchand F, Grist J, et al. Specific antinociceptive activity of cholest-4-en-3-one, oxime (TRO19622) in experimental models of painful diabetic and chemotherapy-induced neuropathy. J Pharmacol Exp Ther. 2008;326(2):623–32.PubMedCrossRef Bordet T, Buisson B, Michaud M, Abitbol JL, Marchand F, Grist J, et al. Specific antinociceptive activity of cholest-4-en-3-one, oxime (TRO19622) in experimental models of painful diabetic and chemotherapy-induced neuropathy. J Pharmacol Exp Ther. 2008;326(2):623–32.PubMedCrossRef
12.
go back to reference Mitro N, Cermenati G, Giatti S, Abbiati F, Pesaresi M, Calabrese D, et al. LXR and TSPO as new therapeutic targets to increase the levels of neuroactive steroids in the central nervous system of diabetic animals. Neurochem Int. 2012;60(6):616–21.PubMedCrossRef Mitro N, Cermenati G, Giatti S, Abbiati F, Pesaresi M, Calabrese D, et al. LXR and TSPO as new therapeutic targets to increase the levels of neuroactive steroids in the central nervous system of diabetic animals. Neurochem Int. 2012;60(6):616–21.PubMedCrossRef
13.
go back to reference Qiu ZK, He JL, Liu X, Zhang GH, Zeng J, Nie H, et al. The antidepressant-like activity of AC-5216, a ligand for 18KDa translocator protein (TSPO), in an animal model of diabetes mellitus. Sci Rep. 2016;6:e37345.CrossRef Qiu ZK, He JL, Liu X, Zhang GH, Zeng J, Nie H, et al. The antidepressant-like activity of AC-5216, a ligand for 18KDa translocator protein (TSPO), in an animal model of diabetes mellitus. Sci Rep. 2016;6:e37345.CrossRef
14.
go back to reference Li J, Papadopoulos V. Translocator protein (18 kDa) as a pharmacological target in adipocytes to regulate glucose homeostasis. Biochem Pharmacol. 2015;97(1):99–110.PubMedCrossRef Li J, Papadopoulos V. Translocator protein (18 kDa) as a pharmacological target in adipocytes to regulate glucose homeostasis. Biochem Pharmacol. 2015;97(1):99–110.PubMedCrossRef
15.
go back to reference Scholz R, Caramoy A, Bhuckory MB, Rashid K, Chen M, Xu H, et al. Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflamm. 2015;12:e201.CrossRef Scholz R, Caramoy A, Bhuckory MB, Rashid K, Chen M, Xu H, et al. Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflamm. 2015;12:e201.CrossRef
16.
go back to reference Zobel EH, Winther SA, Hasbak P, von Scholten BJ, Holmvang L, Kjaer A, et al. Myocardial flow reserve assessed by cardiac 82Rb positron emission tomography/computed tomography is associated with albumin excretion in patients with Type 1 diabetes. Eur Heart J Cardiovasc Imaging. 2019;20(7):796–803.PubMedCrossRef Zobel EH, Winther SA, Hasbak P, von Scholten BJ, Holmvang L, Kjaer A, et al. Myocardial flow reserve assessed by cardiac 82Rb positron emission tomography/computed tomography is associated with albumin excretion in patients with Type 1 diabetes. Eur Heart J Cardiovasc Imaging. 2019;20(7):796–803.PubMedCrossRef
17.
go back to reference Tang D, Hight MR, McKinley ET, Fu A, Buck JR, Smith RA, et al. Quantitative preclinical imaging of TSPO expression in glioma using N, N-diethyl-2-(2-(4-(2–18F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide. J Nucl Med. 2012;53(2):287–94.PubMedPubMedCentralCrossRef Tang D, Hight MR, McKinley ET, Fu A, Buck JR, Smith RA, et al. Quantitative preclinical imaging of TSPO expression in glioma using N, N-diethyl-2-(2-(4-(2–18F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide. J Nucl Med. 2012;53(2):287–94.PubMedPubMedCentralCrossRef
18.
go back to reference Vivash L, O’Brien TJ. Imaging microglial activation with TSPO PET: lighting up neurologic diseases? J Nucl Med. 2016;57(2):165–8.PubMedCrossRef Vivash L, O’Brien TJ. Imaging microglial activation with TSPO PET: lighting up neurologic diseases? J Nucl Med. 2016;57(2):165–8.PubMedCrossRef
19.
go back to reference Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015;70(5):1–20. Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015;70(5):1–20.
21.
go back to reference Junod A, Lambert AE, Orci L, Pictet R, Gonet AE, Renold AE. Studies of the diabetogenic action of streptozotocin. Proc Soc Exp Biol Med. 1967;126(1):201–5.PubMedCrossRef Junod A, Lambert AE, Orci L, Pictet R, Gonet AE, Renold AE. Studies of the diabetogenic action of streptozotocin. Proc Soc Exp Biol Med. 1967;126(1):201–5.PubMedCrossRef
22.
go back to reference Anderson HR, Stitt AW, Gardiner TA, Archer DB. Diabetic retinopathy: morphometric analysis of basement membrane thickening of capillaries in different retinal layers within arterial and venous environments. Br J Ophthalmol. 1995;79(12):1120–3.PubMedPubMedCentralCrossRef Anderson HR, Stitt AW, Gardiner TA, Archer DB. Diabetic retinopathy: morphometric analysis of basement membrane thickening of capillaries in different retinal layers within arterial and venous environments. Br J Ophthalmol. 1995;79(12):1120–3.PubMedPubMedCentralCrossRef
23.
go back to reference Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA. Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med. 2000;27(11):1719–22.PubMedCrossRef Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA. Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med. 2000;27(11):1719–22.PubMedCrossRef
24.
go back to reference Wilson H, Giordano B, Turkheimer FE, Chaudhuri KR, Politis M. Serotonergic dysregulation is linked to sleep problems in Parkinson’s disease. NeuroImage Clin. 2018;18:630–7.PubMedPubMedCentralCrossRef Wilson H, Giordano B, Turkheimer FE, Chaudhuri KR, Politis M. Serotonergic dysregulation is linked to sleep problems in Parkinson’s disease. NeuroImage Clin. 2018;18:630–7.PubMedPubMedCentralCrossRef
25.
go back to reference Bauer M, Karch R, Tournier N, Cisternino S, Wadsak W, Hacker M, et al. Assessment of P-glycoprotein transport activity at the human blood-retina barrier with (R)-C-verapamil PET. J Nucl Med. 2017;58(4):678–81.PubMedCrossRef Bauer M, Karch R, Tournier N, Cisternino S, Wadsak W, Hacker M, et al. Assessment of P-glycoprotein transport activity at the human blood-retina barrier with (R)-C-verapamil PET. J Nucl Med. 2017;58(4):678–81.PubMedCrossRef
26.
go back to reference Caravaggio F, Scifo E, Sibille EL, Hernandez-Da Mota SE, Gerretsen P, Remington G, et al. Expression of dopamine D2 and D3 receptors in the human retina revealed by positron emission tomography and targeted mass spectrometry. Exp Eye Res. 2018;175:32–41.PubMedPubMedCentralCrossRef Caravaggio F, Scifo E, Sibille EL, Hernandez-Da Mota SE, Gerretsen P, Remington G, et al. Expression of dopamine D2 and D3 receptors in the human retina revealed by positron emission tomography and targeted mass spectrometry. Exp Eye Res. 2018;175:32–41.PubMedPubMedCentralCrossRef
27.
go back to reference Sun Y, Zhao N, Liu W, Liu M, Ju Z, Li J, et al. Study of vesicular monoamine transporter 2 in myopic retina using [(18)F]FP-(+)-DTBZ. Mol Imaging Biol. 2018;20(5):771–9.PubMedCrossRef Sun Y, Zhao N, Liu W, Liu M, Ju Z, Li J, et al. Study of vesicular monoamine transporter 2 in myopic retina using [(18)F]FP-(+)-DTBZ. Mol Imaging Biol. 2018;20(5):771–9.PubMedCrossRef
28.
go back to reference Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35(12):2304–19.PubMedCrossRef Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35(12):2304–19.PubMedCrossRef
29.
go back to reference Miyoshi M, Ito H, Arakawa R, Takahashi H, Takano H, Higuchi M, et al. Quantitative analysis of peripheral benzodiazepine receptor in the human brain using PET with (11)C-AC-5216. J Nucl Med. 2009;50(7):1095–101.PubMedCrossRef Miyoshi M, Ito H, Arakawa R, Takahashi H, Takano H, Higuchi M, et al. Quantitative analysis of peripheral benzodiazepine receptor in the human brain using PET with (11)C-AC-5216. J Nucl Med. 2009;50(7):1095–101.PubMedCrossRef
30.
go back to reference Ciudin A, Simo-Servat O, Hernandez C, Arcos G, Diego S, Sanabria A, et al. Retinal microperimetry: a new tool for identifying patients with type 2 diabetes at risk for developing Alzheimer disease. Diabetes. 2017;66(12):3098–104.PubMedCrossRef Ciudin A, Simo-Servat O, Hernandez C, Arcos G, Diego S, Sanabria A, et al. Retinal microperimetry: a new tool for identifying patients with type 2 diabetes at risk for developing Alzheimer disease. Diabetes. 2017;66(12):3098–104.PubMedCrossRef
31.
go back to reference Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy. Arch Ophthalmol. 2008;126(2):227–32.PubMedCrossRef Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy. Arch Ophthalmol. 2008;126(2):227–32.PubMedCrossRef
32.
go back to reference Wang M, Wang X, Zhao L, Ma W, Rodriguez IR, Fariss RN, et al. Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci. 2014;34(10):3793–806.PubMedPubMedCentralCrossRef Wang M, Wang X, Zhao L, Ma W, Rodriguez IR, Fariss RN, et al. Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci. 2014;34(10):3793–806.PubMedPubMedCentralCrossRef
33.
go back to reference Fan J, Rone MB, Papadopoulos V. Translocator protein 2 is involved in cholesterol redistribution during erythropoiesis. J Biol Chem. 2009;284(44):30484–97.PubMedPubMedCentralCrossRef Fan J, Rone MB, Papadopoulos V. Translocator protein 2 is involved in cholesterol redistribution during erythropoiesis. J Biol Chem. 2009;284(44):30484–97.PubMedPubMedCentralCrossRef
34.
go back to reference Girard C, Liu S, Cadepond F, Adams D, Lacroix C, Verleye M, et al. Etifoxine improves peripheral nerve regeneration and functional recovery. Proc Natl Acad Sci USA. 2008;105(51):20505–10.PubMedCrossRef Girard C, Liu S, Cadepond F, Adams D, Lacroix C, Verleye M, et al. Etifoxine improves peripheral nerve regeneration and functional recovery. Proc Natl Acad Sci USA. 2008;105(51):20505–10.PubMedCrossRef
Metadata
Title
Visualization of translocator protein (18 kDa) (TSPO) in the retina of diabetic retinopathy rats using fluorine-18-DPA-714
Authors
Yujing Zhou
Yinghui Ou
Zizhao Ju
Xiaoqing Zhang
Lingling Zheng
Jun Li
Yu Sun
Xingdang Liu
Publication date
01-09-2020
Publisher
Springer Singapore
Published in
Annals of Nuclear Medicine / Issue 9/2020
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-020-01495-2

Other articles of this Issue 9/2020

Annals of Nuclear Medicine 9/2020 Go to the issue