Skip to main content
Top
Published in: Endocrine 2/2020

01-02-2020 | Glucocorticoid | Original Article

Cortisol and 11 beta-hydroxysteroid dehydrogenase type 2 as potential determinants of renal citrate excretion in healthy children

Authors: Yifan Hua, Jonas Esche, Michaela F. Hartmann, Christiane Maser-Gluth, Stefan A. Wudy, Thomas Remer

Published in: Endocrine | Issue 2/2020

Login to get access

Abstract

Background

In patients with Cushing disease, renal citrate excretion is reduced. A low urinary citrate concentration is a risk factor for nephrolithiasis. Since higher acid loading is one major determinant of reduced citrate excretion, we aimed to examine whether glucocorticoids still within the physiological range may already impact on urinary citrate excretion independently of acid–base status.

Methods

Overall, 132 healthy prepubertal participants of the DOrtmund Nutritional and Anthropometric Longitudinally Designed (DONALD) Study who had collected two successive 24-h urine samples (at 1 and 2 years) before the start of their pubertal growth spurt were included in the study. Net acid excretion capacity (NAEC), urinary potential renal acid load (PRAL), creatinine, calcium, and various cortisol metabolites were measured in all samples. Glucocorticoid quantification was done by GC-MS and radioimmunoassay.

Results

In regression models multivariable-adjusted for 24-h urinary PRAL, NAEC, creatinine and calcium, urinary free cortisol (UFF), 6β-hydroxycortisol, and 20α-dihydrocortisol showed significant inverse relationships (P ≤ 0.02) with 24-h renal citrate output. By contrast, the estimate of renal 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), i.e., the ratio of urinary free cortisone/UFF, associated positively with urinary citrate (P = 0.04).

Conclusions

In line with studies in hypercortisolic state, even moderately high cortisol levels in healthy children, still within the physiological range, may negatively impact on the kidney’s citrate excretion. Besides, a higher 11β-HSD2 activity, favoring cortisol inactivation, is paralleled by an increased citrate excretion.
Literature
1.
go back to reference M.A. Cameron, K. Sakhaee, O.W. Moe, Nephrolithiasis in children. Pediatr. Nephrol. 20(11), 1587–1592 (2005)PubMed M.A. Cameron, K. Sakhaee, O.W. Moe, Nephrolithiasis in children. Pediatr. Nephrol. 20(11), 1587–1592 (2005)PubMed
2.
go back to reference A. Faggiano, R. Pivonello, D. Melis et al. Nephrolithiasis in Cushing's disease: prevalence, etiopathogenesis, and modification after disease cure. J. Clin. Endocrinol. Metab. 88(5), 2076–2080 (2003)PubMed A. Faggiano, R. Pivonello, D. Melis et al. Nephrolithiasis in Cushing's disease: prevalence, etiopathogenesis, and modification after disease cure. J. Clin. Endocrinol. Metab. 88(5), 2076–2080 (2003)PubMed
3.
go back to reference L.L. Hamm, Renal handling of citrate. Kidney Int. 38(4), 728–735 (1990)PubMed L.L. Hamm, Renal handling of citrate. Kidney Int. 38(4), 728–735 (1990)PubMed
4.
go back to reference C. Schuck, Urinary excretion of citric acid. J. Nutr. 7(6), 691–700 (1934) C. Schuck, Urinary excretion of citric acid. J. Nutr. 7(6), 691–700 (1934)
5.
go back to reference D.P. Simpson, Citrate excretion: a window on renal metabolism. Am. J. Physiol. 244(3), F223–F234 (1983)PubMed D.P. Simpson, Citrate excretion: a window on renal metabolism. Am. J. Physiol. 244(3), F223–F234 (1983)PubMed
6.
go back to reference A. Kroke, F. Manz, M. Kersting et al. The DONALD Study. History, current status and future perspectives. Eur. J. Nutr. 43(1), 45–54 (2004)PubMed A. Kroke, F. Manz, M. Kersting et al. The DONALD Study. History, current status and future perspectives. Eur. J. Nutr. 43(1), 45–54 (2004)PubMed
7.
go back to reference A.E. Buyken, N. Karaolis-Danckert, T. Remer, Association of prepubertal body composition in healthy girls and boys with the timing of early and late pubertal markers. Am. J. Clin. Nutr. 89(1), 221–230 (2009)PubMed A.E. Buyken, N. Karaolis-Danckert, T. Remer, Association of prepubertal body composition in healthy girls and boys with the timing of early and late pubertal markers. Am. J. Clin. Nutr. 89(1), 221–230 (2009)PubMed
8.
go back to reference L. Shi, T. Remer, A.E. Buyken, M.F. Hartmann, P. Hoffmann, S.A. Wudy, Prepubertal urinary estrogen excretion and its relationship with pubertal timing. Am. J. Physiol. Endocrinol. Metab. 299(6), E990–E997 (2010)PubMed L. Shi, T. Remer, A.E. Buyken, M.F. Hartmann, P. Hoffmann, S.A. Wudy, Prepubertal urinary estrogen excretion and its relationship with pubertal timing. Am. J. Physiol. Endocrinol. Metab. 299(6), E990–E997 (2010)PubMed
9.
go back to reference T. Remer, G. Montenegro-Bethancourt, L. Shi, Long-term urine biobanking: storage stability of clinical chemical parameters under moderate freezing conditions without use of preservatives. Clin. Biochem. 47(18), 307–311 (2014)PubMed T. Remer, G. Montenegro-Bethancourt, L. Shi, Long-term urine biobanking: storage stability of clinical chemical parameters under moderate freezing conditions without use of preservatives. Clin. Biochem. 47(18), 307–311 (2014)PubMed
10.
go back to reference H. Moellering, W. Gruber, Determination of citrate with citrate lyase. Anal. Biochem. 17(3), 369–376 (1966)PubMed H. Moellering, W. Gruber, Determination of citrate with citrate lyase. Anal. Biochem. 17(3), 369–376 (1966)PubMed
11.
go back to reference G. Garibotto, D. Verzola, A. Sofia et al. Mechanisms of renal ammonia production and protein turnover. Metab. brain Dis. 24(1), 159–167 (2009)PubMed G. Garibotto, D. Verzola, A. Sofia et al. Mechanisms of renal ammonia production and protein turnover. Metab. brain Dis. 24(1), 159–167 (2009)PubMed
12.
go back to reference S. Berkemeyer, J. Vormann, A.L.B. Günther, R. Rylander, L.A. Frassetto, T. Remer, Renal net acid excretion capacity is comparable in prepubescence, adolescence, and young adulthood but falls with aging. J. Am. Geriatrics Soc. 56(8), 1442–1448 (2008) S. Berkemeyer, J. Vormann, A.L.B. Günther, R. Rylander, L.A. Frassetto, T. Remer, Renal net acid excretion capacity is comparable in prepubescence, adolescence, and young adulthood but falls with aging. J. Am. Geriatrics Soc. 56(8), 1442–1448 (2008)
13.
go back to reference F. Manz, A. Wentz, S. Lange, Factors affecting renal hydrogen ion excretion capacity in healthy children. Pediatr. Nephrol. 16(5), 443–445 (2001)PubMed F. Manz, A. Wentz, S. Lange, Factors affecting renal hydrogen ion excretion capacity in healthy children. Pediatr. Nephrol. 16(5), 443–445 (2001)PubMed
14.
go back to reference T. Remer, F. Manz, Potential renal acid load of foods and its influence on urine pH. J. Am. Dietetic Assoc. 95(7), 791–797 (1995) T. Remer, F. Manz, Potential renal acid load of foods and its influence on urine pH. J. Am. Dietetic Assoc. 95(7), 791–797 (1995)
15.
go back to reference T. Remer, K.R. Boye, M.F. Hartmann, S.A. Wudy, Urinary markers of adrenarche: reference values in healthy subjects, aged 3–18 years. J. Clin. Endocrinol. Metab. 90(4), 2015–2021 (2005)PubMed T. Remer, K.R. Boye, M.F. Hartmann, S.A. Wudy, Urinary markers of adrenarche: reference values in healthy subjects, aged 3–18 years. J. Clin. Endocrinol. Metab. 90(4), 2015–2021 (2005)PubMed
16.
go back to reference S.A. Wudy, M.F. Hartmann, T. Remer, Sexual dimorphism in cortisol secretion starts after age 10 in healthy children: urinary cortisol metabolite excretion rates during growth. Am. J. Physiol. Endocrinol. Metab. 293(4), E970–E976 (2007)PubMed S.A. Wudy, M.F. Hartmann, T. Remer, Sexual dimorphism in cortisol secretion starts after age 10 in healthy children: urinary cortisol metabolite excretion rates during growth. Am. J. Physiol. Endocrinol. Metab. 293(4), E970–E976 (2007)PubMed
17.
go back to reference L. Shi, S.A. Wudy, C. Maser-Gluth, M.F. Hartmann, T. Remer, Urine volume dependency of specific dehydroepiandrosterone (DHEA) and cortisol metabolites in healthy children. Steroids 76(1–2), 140–144 (2011)PubMed L. Shi, S.A. Wudy, C. Maser-Gluth, M.F. Hartmann, T. Remer, Urine volume dependency of specific dehydroepiandrosterone (DHEA) and cortisol metabolites in healthy children. Steroids 76(1–2), 140–144 (2011)PubMed
18.
go back to reference R. Best, B.R. Walker, Additional value of measurement of urinary cortisone and unconjugated cortisol metabolites in assessing the activity of 11beta-hydroxysteroid dehydrogenase in vivo. Clin. Endocrinol. 47(2), 231–236 (1997) R. Best, B.R. Walker, Additional value of measurement of urinary cortisone and unconjugated cortisol metabolites in assessing the activity of 11beta-hydroxysteroid dehydrogenase in vivo. Clin. Endocrinol. 47(2), 231–236 (1997)
19.
go back to reference P. Ferrari, A. Sansonnens, B. Dick, F.J. Frey, In vivo 11beta-HSD-2 activity: variability, salt-sensitivity, and effect of licorice. Hypertension 38(6), 1330–1336 (2001)PubMed P. Ferrari, A. Sansonnens, B. Dick, F.J. Frey, In vivo 11beta-HSD-2 activity: variability, salt-sensitivity, and effect of licorice. Hypertension 38(6), 1330–1336 (2001)PubMed
20.
go back to reference T. Remer, C. Maser-Gluth, S. Wudy, Glucocorticoid measurements in health and disease—metabolic implications and the potential of 24-h urine analyses. MRMC 8(2), 153–170 (2008) T. Remer, C. Maser-Gluth, S. Wudy, Glucocorticoid measurements in health and disease—metabolic implications and the potential of 24-h urine analyses. MRMC 8(2), 153–170 (2008)
21.
go back to reference M. Schöneshöfer, B. Weber, S. Nigam, Increased urinary excretion of free 20 alpha- and 20 beta-dihydrocortisol in a hypercortisolemic but hypocortisoluric patient with Cushing's disease. Clin. Chem. 29(2), 385–389 (1983)PubMed M. Schöneshöfer, B. Weber, S. Nigam, Increased urinary excretion of free 20 alpha- and 20 beta-dihydrocortisol in a hypercortisolemic but hypocortisoluric patient with Cushing's disease. Clin. Chem. 29(2), 385–389 (1983)PubMed
22.
go back to reference M. Schöneshöfer, B. Weber, W. Oelkers, K. Nahoul, F. Mantero, Measurement of urinary free 20 alpha-dihydrocortisol in biochemical diagnosis of chronic hypercorticoidism. Clin. Chem. 32(5), 808–810 (1986)PubMed M. Schöneshöfer, B. Weber, W. Oelkers, K. Nahoul, F. Mantero, Measurement of urinary free 20 alpha-dihydrocortisol in biochemical diagnosis of chronic hypercorticoidism. Clin. Chem. 32(5), 808–810 (1986)PubMed
23.
go back to reference I. Varga, C. Jakab, N. Szücs et al. Plasma and salivary 6beta-hydroxycortisol measurements for assessing adrenocortical activity in patients with adrenocortical adenomas. Horm. Metab. Res. 35(7), 421–426 (2003)PubMed I. Varga, C. Jakab, N. Szücs et al. Plasma and salivary 6beta-hydroxycortisol measurements for assessing adrenocortical activity in patients with adrenocortical adenomas. Horm. Metab. Res. 35(7), 421–426 (2003)PubMed
24.
go back to reference D.H. Henneman, P.H. Henneman, Depression of serum and urinary citric acid levels by 17-hydroxycorticosteroids. J. Clin. Endocrinol. Metab. 18(10), 1093–1101 (1958)PubMed D.H. Henneman, P.H. Henneman, Depression of serum and urinary citric acid levels by 17-hydroxycorticosteroids. J. Clin. Endocrinol. Metab. 18(10), 1093–1101 (1958)PubMed
25.
go back to reference J.D. Hernandez, J.S. Ellison, T.S. Lendvay, Current trends, evaluation, and management of pediatric nephrolithiasis. JAMA Pediatr. 169(10), 964–970 (2015)PubMed J.D. Hernandez, J.S. Ellison, T.S. Lendvay, Current trends, evaluation, and management of pediatric nephrolithiasis. JAMA Pediatr. 169(10), 964–970 (2015)PubMed
26.
go back to reference T. Dimitriou, C. Maser-Gluth, T. Remer, Adrenocortical activity in healthy children is associated with fat mass. Am. J. Clin. Nutr. 77(3), 731–736 (2003)PubMed T. Dimitriou, C. Maser-Gluth, T. Remer, Adrenocortical activity in healthy children is associated with fat mass. Am. J. Clin. Nutr. 77(3), 731–736 (2003)PubMed
27.
go back to reference J.W. Tomlinson, J. Finney, B.A. Hughes, S.V. Hughes, P.M. Stewart, Reduced glucocorticoid production rate, decreased 5alpha-reductase activity, and adipose tissue insulin sensitization after weight loss. Diabetes 57(6), 1536–1543 (2008)PubMed J.W. Tomlinson, J. Finney, B.A. Hughes, S.V. Hughes, P.M. Stewart, Reduced glucocorticoid production rate, decreased 5alpha-reductase activity, and adipose tissue insulin sensitization after weight loss. Diabetes 57(6), 1536–1543 (2008)PubMed
28.
go back to reference N.M. Maalouf, K. Sakhaee, J.H. Parks, F.L. Coe, B. Adams-Huet, C.Y.C. Pak, Association of urinary pH with body weight in nephrolithiasis. Kidney Int. 65(4), 1422–1425 (2004)PubMed N.M. Maalouf, K. Sakhaee, J.H. Parks, F.L. Coe, B. Adams-Huet, C.Y.C. Pak, Association of urinary pH with body weight in nephrolithiasis. Kidney Int. 65(4), 1422–1425 (2004)PubMed
29.
go back to reference C. Bumke-Vogt, V. Bähr, S. Diederich et al. Expression of the progesterone receptor and progesterone- metabolising enzymes in the female and male human kidney. J. Endocrinol. 175(2), 349–364 (2002)PubMed C. Bumke-Vogt, V. Bähr, S. Diederich et al. Expression of the progesterone receptor and progesterone- metabolising enzymes in the female and male human kidney. J. Endocrinol. 175(2), 349–364 (2002)PubMed
30.
go back to reference R.C. Givens, Y.S. Lin, A.L.S. Dowling et al. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J. Appl. Physiol. 95(3), 1297–1300 (2003)PubMed R.C. Givens, Y.S. Lin, A.L.S. Dowling et al. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J. Appl. Physiol. 95(3), 1297–1300 (2003)PubMed
31.
go back to reference N. Szucs, I. Varga, A. Patócs, M. Tóth, E. Gláz, K. Rácz, Secretion of 6beta-hydroxycortisol by normal human adrenals and adrenocortical adenomas. Steroids 68(5), 477–482 (2003)PubMed N. Szucs, I. Varga, A. Patócs, M. Tóth, E. Gláz, K. Rácz, Secretion of 6beta-hydroxycortisol by normal human adrenals and adrenocortical adenomas. Steroids 68(5), 477–482 (2003)PubMed
32.
go back to reference N. Yamamoto, T. Tamura, Y. Kamiya, I. Sekine, H. Kunitoh, N. Saijo, Correlation between docetaxel clearance and estimated cytochrome P450 activity by urinary metabolite of exogenous cortisol. J. Clin. Oncol. 18(11), 2301–2308 (2000)PubMed N. Yamamoto, T. Tamura, Y. Kamiya, I. Sekine, H. Kunitoh, N. Saijo, Correlation between docetaxel clearance and estimated cytochrome P450 activity by urinary metabolite of exogenous cortisol. J. Clin. Oncol. 18(11), 2301–2308 (2000)PubMed
33.
go back to reference N. Szücs, I. Varga, A. Patócs et al. Plasma 6beta-hydroxycortisol measurements for assessing altered hepatic drug metabolizing enzyme activity. Acta Physiol. Hungarica 90(3), 217–223 (2003) N. Szücs, I. Varga, A. Patócs et al. Plasma 6beta-hydroxycortisol measurements for assessing altered hepatic drug metabolizing enzyme activity. Acta Physiol. Hungarica 90(3), 217–223 (2003)
34.
go back to reference R.W. Brian, R.S. Jonathan. International Textbook of Obesity: Cortisol Metabolism. 1st ed. (John Wiley Sons Ltd, Chichester, 2001) R.W. Brian, R.S. Jonathan. International Textbook of Obesity: Cortisol Metabolism. 1st ed. (John Wiley Sons Ltd, Chichester, 2001)
36.
go back to reference C.Y.C. Pak, Citrate and renal calculi: new insights and future directions. Am. J. Kidney Dis. 17(4), 420–425 (1991)PubMed C.Y.C. Pak, Citrate and renal calculi: new insights and future directions. Am. J. Kidney Dis. 17(4), 420–425 (1991)PubMed
37.
go back to reference B. Hess, R. Michel, R. Takkinen, D. Ackermann, P. Jaeger, Risk factors for low urinary citrate in calcium nephrolithiasis: Low vegetable fibre intake and low urine volume to be added to the list. Nephrol. Dialysis Transplant. 9(6), 642–649 (1994) B. Hess, R. Michel, R. Takkinen, D. Ackermann, P. Jaeger, Risk factors for low urinary citrate in calcium nephrolithiasis: Low vegetable fibre intake and low urine volume to be added to the list. Nephrol. Dialysis Transplant. 9(6), 642–649 (1994)
38.
go back to reference M. Zacchia, P. Preisig, Low urinary citrate: an overview. J. Nephrol. 23(Suppl 16), S49–S56 (2010)PubMed M. Zacchia, P. Preisig, Low urinary citrate: an overview. J. Nephrol. 23(Suppl 16), S49–S56 (2010)PubMed
39.
go back to reference R. Shioji, S. Rikimaru, H. Ito, Urinary citrate excretion in primary aldosteronism. Tohoku J. Exp. Med. 93(1), 63–69 (1967)PubMed R. Shioji, S. Rikimaru, H. Ito, Urinary citrate excretion in primary aldosteronism. Tohoku J. Exp. Med. 93(1), 63–69 (1967)PubMed
40.
go back to reference J.Z. Melnick, P.A. Preisig, S. Haynes, C.Y. Pak, K. Sakhaee, R.J. Alpern, Converting enzyme inhibition causes hypocitraturia independent of acidosis or hypokalemia. Kidney Int. 54(5), 1670–1674 (1998)PubMed J.Z. Melnick, P.A. Preisig, S. Haynes, C.Y. Pak, K. Sakhaee, R.J. Alpern, Converting enzyme inhibition causes hypocitraturia independent of acidosis or hypokalemia. Kidney Int. 54(5), 1670–1674 (1998)PubMed
41.
go back to reference R.W. Hunter, M.A. Bailey, Glucocorticoids and 11β-hydroxysteroid dehydrogenases: mechanisms for hypertension. Curr. Opin. Pharmacol. 21, 105–114 (2015)PubMed R.W. Hunter, M.A. Bailey, Glucocorticoids and 11β-hydroxysteroid dehydrogenases: mechanisms for hypertension. Curr. Opin. Pharmacol. 21, 105–114 (2015)PubMed
Metadata
Title
Cortisol and 11 beta-hydroxysteroid dehydrogenase type 2 as potential determinants of renal citrate excretion in healthy children
Authors
Yifan Hua
Jonas Esche
Michaela F. Hartmann
Christiane Maser-Gluth
Stefan A. Wudy
Thomas Remer
Publication date
01-02-2020
Publisher
Springer US
Keyword
Glucocorticoid
Published in
Endocrine / Issue 2/2020
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-019-02151-0

Other articles of this Issue 2/2020

Endocrine 2/2020 Go to the issue