Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 2/2014

01-04-2014

The Hyper IgM Syndromes

Authors: Nashmia Qamar, Ramsay L. Fuleihan

Published in: Clinical Reviews in Allergy & Immunology | Issue 2/2014

Login to get access

Abstract

The hyper IgM syndromes are a group of rare inherited immune deficiency disorders characterized by impairment of immunoglobulin isotype switching resulting from defects in the CD40 ligand/CD40 signaling pathway. X-linked forms of hyper IgM are caused by defects in the CD40 ligand gene or NF-κB essential modulator, while autosomal recessive forms of hyper IgM are caused by defects in CD40 or downstream signaling molecules including activation-induced cytidine deaminase, uracil N glycosylase or postmeiotic segregation increased 2. The loss of interaction between CD40 and its ligand results in an impairment of T cell function, of B cell differentiation and of monocyte function while only B cell differentiation appears to be affected in defects of sinaling molecules downstream of CD40 with the exception of defects of the NF-κB complex, which mediates signaling via multiple receptor pathways. With many genetic defects in the hyper IgM syndrome identified, it is possible to diagnose patients definitively, to perform genetic screening, and to delineate the clinical manifestations of the different diseases in this syndrome. Stem cell transplantation is an available therapeutic option for defects that result in a combined immunodeficiency while antibody replacement appears sufficient for the strictly humoral immunodeficiencies.
Literature
1.
go back to reference Notarangelo LD, Duse M, Ugazio AG (1992) Immunodeficiency with hyper-IgM (HIM). Immunod Rev 3:101–122 Notarangelo LD, Duse M, Ugazio AG (1992) Immunodeficiency with hyper-IgM (HIM). Immunod Rev 3:101–122
2.
go back to reference Hayward AR, Levy J, Facchetti F et al (1997) Cholangiopathy and tumors of the pancreas, liver, and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J Immunol 158:977–983PubMed Hayward AR, Levy J, Facchetti F et al (1997) Cholangiopathy and tumors of the pancreas, liver, and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J Immunol 158:977–983PubMed
3.
go back to reference Rosen FS, Kevy S, Merler E, Janeway CA, Gitlin D (1961) Recurrent Bacterial infections and dysgammaglobulinemia: deficiency of &S gammaglobulins in the presence of elevated 19S gamma-globulins. Report of two cases. Pediatrics 28:182–195PubMed Rosen FS, Kevy S, Merler E, Janeway CA, Gitlin D (1961) Recurrent Bacterial infections and dysgammaglobulinemia: deficiency of &S gammaglobulins in the presence of elevated 19S gamma-globulins. Report of two cases. Pediatrics 28:182–195PubMed
4.
go back to reference Burtin P (1961) Un example d'agammaglobulinémie atypique (un cas de grande hypogammaglobulinémie avec augmentation de la β2-macroglobuline). Rev Franc Étud Clin Biol 6:286–289PubMed Burtin P (1961) Un example d'agammaglobulinémie atypique (un cas de grande hypogammaglobulinémie avec augmentation de la β2-macroglobuline). Rev Franc Étud Clin Biol 6:286–289PubMed
5.
go back to reference Ochs HD, Hitzig WH (2012) History of primary immunodeficiency diseases. Curr Opin Allergy Clin Immunol 12:577–587PubMed Ochs HD, Hitzig WH (2012) History of primary immunodeficiency diseases. Curr Opin Allergy Clin Immunol 12:577–587PubMed
6.
go back to reference Fuleihan R, Ramesh N, Geha RS (1993) Role of CD40-CD40-ligand interaction in Ig-isotype switching. Curr Opin Immunol 5:963–967PubMed Fuleihan R, Ramesh N, Geha RS (1993) Role of CD40-CD40-ligand interaction in Ig-isotype switching. Curr Opin Immunol 5:963–967PubMed
7.
go back to reference Fuleihan R, Ramesh N, Loh R et al (1993) Defective expression of the CD40 ligand in X chromosome-linked immunoglobulin deficiency with normal or elevated IgM. Proc Natl Acad Sci U S A 90:2170–2173PubMedCentralPubMed Fuleihan R, Ramesh N, Loh R et al (1993) Defective expression of the CD40 ligand in X chromosome-linked immunoglobulin deficiency with normal or elevated IgM. Proc Natl Acad Sci U S A 90:2170–2173PubMedCentralPubMed
8.
go back to reference Allen RC, Armitage RJ, Conley ME et al (1993) CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome [see comments]. Science 259:990–993PubMed Allen RC, Armitage RJ, Conley ME et al (1993) CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome [see comments]. Science 259:990–993PubMed
9.
go back to reference Aruffo A, Farrington M, Hollenbaugh D et al (1993) The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72:291–300PubMed Aruffo A, Farrington M, Hollenbaugh D et al (1993) The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72:291–300PubMed
10.
go back to reference DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G (1993) CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM [see comments]. Nature 361:541–543PubMed DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G (1993) CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM [see comments]. Nature 361:541–543PubMed
11.
go back to reference Korthauer U, Graf D, Mages HW et al (1993) Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM [see comments]. Nature 361:539–541PubMed Korthauer U, Graf D, Mages HW et al (1993) Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM [see comments]. Nature 361:539–541PubMed
12.
go back to reference Ramesh N, Fuleihan R, Ramesh V et al (1993) Deletions in the ligand for CD40 in X-linked immunoglobulin deficiency with normal or elevated IgM (HIGMX-1). Int Immunol 5:769–773PubMed Ramesh N, Fuleihan R, Ramesh V et al (1993) Deletions in the ligand for CD40 in X-linked immunoglobulin deficiency with normal or elevated IgM (HIGMX-1). Int Immunol 5:769–773PubMed
13.
go back to reference Fuleihan R, Ramesh N, Horner A et al (1994) Cyclosporin A inhibits CD40 ligand expression in T lymphocytes. J Clin Invest 93:1315–1320PubMedCentralPubMed Fuleihan R, Ramesh N, Horner A et al (1994) Cyclosporin A inhibits CD40 ligand expression in T lymphocytes. J Clin Invest 93:1315–1320PubMedCentralPubMed
15.
go back to reference Hanson EP, Monaco-Shawver L, Solt LA et al (2008) Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol 122(1169–1177):e1116 Hanson EP, Monaco-Shawver L, Solt LA et al (2008) Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol 122(1169–1177):e1116
16.
go back to reference Villa A, Notarangelo LD, Di Santo JP et al (1994) Organization of the human CD40L gene: implications for molecular defects in X chromosome-linked hyper-IgM syndrome and prenatal diagnosis. Proc Natl Acad Sci U S A 91:2110–2114PubMedCentralPubMed Villa A, Notarangelo LD, Di Santo JP et al (1994) Organization of the human CD40L gene: implications for molecular defects in X chromosome-linked hyper-IgM syndrome and prenatal diagnosis. Proc Natl Acad Sci U S A 91:2110–2114PubMedCentralPubMed
17.
go back to reference Graf D, Korthauer U, Mages HW, Senger G, Kroczek RA (1992) Cloning of TRAP, a ligand for CD40 on human T cells. Eur J Immunol 22:3191–3194PubMed Graf D, Korthauer U, Mages HW, Senger G, Kroczek RA (1992) Cloning of TRAP, a ligand for CD40 on human T cells. Eur J Immunol 22:3191–3194PubMed
18.
go back to reference Vogel LA, Noelle RJ (1998) CD40 and its crucial role as a member of the TNFR family. Semin Immunol 10:435–442PubMed Vogel LA, Noelle RJ (1998) CD40 and its crucial role as a member of the TNFR family. Semin Immunol 10:435–442PubMed
19.
go back to reference Conley ME, Larche M, Bonagura VR et al (1994) Hyper IgM syndrome associated with defective CD40-mediated B cell activation [see comments]. J Clin Invest 94:1404–1409PubMedCentralPubMed Conley ME, Larche M, Bonagura VR et al (1994) Hyper IgM syndrome associated with defective CD40-mediated B cell activation [see comments]. J Clin Invest 94:1404–1409PubMedCentralPubMed
20.
go back to reference Durandy A, Hivroz C, Mazerolles F et al (1997) Abnormal CD40-mediated activation pathway in B lymphocytes from patients with hyper-IgM syndrome and normal CD40 ligand expression. J Immunol 158:2576–2584PubMed Durandy A, Hivroz C, Mazerolles F et al (1997) Abnormal CD40-mediated activation pathway in B lymphocytes from patients with hyper-IgM syndrome and normal CD40 ligand expression. J Immunol 158:2576–2584PubMed
21.
go back to reference Ferrari S, Giliani S, Insalaco A et al (2001) Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A 98:12614–12619PubMedCentralPubMed Ferrari S, Giliani S, Insalaco A et al (2001) Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A 98:12614–12619PubMedCentralPubMed
22.
go back to reference Revy P, Muto T, Levy Y et al (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2) [see comments]. Cell 102:565–575PubMed Revy P, Muto T, Levy Y et al (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2) [see comments]. Cell 102:565–575PubMed
23.
go back to reference Minegishi Y, Lavoie A, Cunningham-Rundles C et al (2000) Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin Immunol 97:203–210PubMed Minegishi Y, Lavoie A, Cunningham-Rundles C et al (2000) Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin Immunol 97:203–210PubMed
24.
go back to reference Imai K, Slupphaug G, Lee WI et al (2003) Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4:1023–1028PubMed Imai K, Slupphaug G, Lee WI et al (2003) Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4:1023–1028PubMed
25.
go back to reference Peron S, Metin A, Gardes P et al (2008) Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. J Exp Med 205:2465–2472PubMedCentralPubMed Peron S, Metin A, Gardes P et al (2008) Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. J Exp Med 205:2465–2472PubMedCentralPubMed
26.
go back to reference Noordzij JG, Wulffraat NM, Haraldsson A et al (2009) Ataxia-telangiectasia patients presenting with hyper-IgM syndrome. Arch Dis Child 94:448–449PubMed Noordzij JG, Wulffraat NM, Haraldsson A et al (2009) Ataxia-telangiectasia patients presenting with hyper-IgM syndrome. Arch Dis Child 94:448–449PubMed
27.
go back to reference Piatosa B, van der Burg M, Siewiera K et al (2012) The defect in humoral immunity in patients with Nijmegen breakage syndrome is explained by defects in peripheral B lymphocyte maturation. Cytometry A : J Int Soc Analytical Cytology 81:835–842 Piatosa B, van der Burg M, Siewiera K et al (2012) The defect in humoral immunity in patients with Nijmegen breakage syndrome is explained by defects in peripheral B lymphocyte maturation. Cytometry A : J Int Soc Analytical Cytology 81:835–842
28.
go back to reference Castigli E, Alt F, Davidson L et al (1994) CD40 deficient mice generated by RAG-2 deficient blastocyst complementation. Proc Natl Acad Sci U S A 91:12135–12139PubMedCentralPubMed Castigli E, Alt F, Davidson L et al (1994) CD40 deficient mice generated by RAG-2 deficient blastocyst complementation. Proc Natl Acad Sci U S A 91:12135–12139PubMedCentralPubMed
29.
go back to reference Kawabe T, Naka T, Yoshida K et al (1994) The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1:167–178PubMed Kawabe T, Naka T, Yoshida K et al (1994) The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1:167–178PubMed
30.
go back to reference Renshaw BR, Fanslow WCr, Armitage RJ et al (1994) Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 180:1889–1900PubMed Renshaw BR, Fanslow WCr, Armitage RJ et al (1994) Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 180:1889–1900PubMed
31.
go back to reference Xu J, Foy TM, Laman JD et al (1994) Mice deficient for the CD40 ligand. Immunity 1:423–431PubMed Xu J, Foy TM, Laman JD et al (1994) Mice deficient for the CD40 ligand. Immunity 1:423–431PubMed
32.
go back to reference Lee WI, Torgerson TR, Schumacher MJ, Yel L, Zhu Q, Ochs HD (2005) Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood 105:1881–1890PubMed Lee WI, Torgerson TR, Schumacher MJ, Yel L, Zhu Q, Ochs HD (2005) Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood 105:1881–1890PubMed
33.
go back to reference Winkelstein JA, Marino MC, Ochs H et al (2003) The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine 82:373–384PubMed Winkelstein JA, Marino MC, Ochs H et al (2003) The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine 82:373–384PubMed
34.
go back to reference Seyama K, Nonoyama S, Gangsaas I et al (1998) Mutations of the CD40 ligand gene and its effect on CD40 ligand expression in patients with X-linked hyper IgM syndrome [see comments]. Blood 92:2421–2434PubMed Seyama K, Nonoyama S, Gangsaas I et al (1998) Mutations of the CD40 ligand gene and its effect on CD40 ligand expression in patients with X-linked hyper IgM syndrome [see comments]. Blood 92:2421–2434PubMed
35.
go back to reference Callard RE, Smith SH, Herbert J et al (1994) CD40 ligand (CD40L) expression and B cell function in agammaglobulinemia with normal or elevated levels of IgM (HIM). Comparison of X-linked, autosomal recessive, and non-X-linked forms of the disease, and obligate carriers. J Immunol 153:3295–3306PubMed Callard RE, Smith SH, Herbert J et al (1994) CD40 ligand (CD40L) expression and B cell function in agammaglobulinemia with normal or elevated levels of IgM (HIM). Comparison of X-linked, autosomal recessive, and non-X-linked forms of the disease, and obligate carriers. J Immunol 153:3295–3306PubMed
36.
go back to reference Hollenbaugh D, Wu LH, Ochs HD et al (1994) The random inactivation of the X chromosome carrying the defective gene responsible for X-linked hyper IgM syndrome (X-HIM) in female carriers of HIGM1 [see comments]. J Clin Invest 94:616–622PubMedCentralPubMed Hollenbaugh D, Wu LH, Ochs HD et al (1994) The random inactivation of the X chromosome carrying the defective gene responsible for X-linked hyper IgM syndrome (X-HIM) in female carriers of HIGM1 [see comments]. J Clin Invest 94:616–622PubMedCentralPubMed
37.
go back to reference de Saint Basile G, Tabone MD, Durandy A, Phan F, Fischer A, Le Deist F (1999) CD40 ligand expression deficiency in a female carrier of the X-linked hyper-IgM syndrome as a result of X chromosome lyonization. Eur J Immunol 29:367–373PubMed de Saint Basile G, Tabone MD, Durandy A, Phan F, Fischer A, Le Deist F (1999) CD40 ligand expression deficiency in a female carrier of the X-linked hyper-IgM syndrome as a result of X chromosome lyonization. Eur J Immunol 29:367–373PubMed
38.
go back to reference Lougaris V, Badolato R, Ferrari S, Plebani A (2005) Hyper immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and immunological features. Immunol Rev 203:48–66PubMed Lougaris V, Badolato R, Ferrari S, Plebani A (2005) Hyper immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and immunological features. Immunol Rev 203:48–66PubMed
39.
go back to reference Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme [see comments]. Cell 102:553–563PubMed Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme [see comments]. Cell 102:553–563PubMed
40.
go back to reference Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW (2003) Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422:726–730PubMed Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW (2003) Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422:726–730PubMed
41.
go back to reference Notarangelo LD, Lanzi G, Toniati P, Giliani S (2007) Immunodeficiencies due to defects of class-switch recombination. Immunol Res 38:68–77PubMed Notarangelo LD, Lanzi G, Toniati P, Giliani S (2007) Immunodeficiencies due to defects of class-switch recombination. Immunol Res 38:68–77PubMed
42.
go back to reference Imai K, Zhu Y, Revy P et al (2005) Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin Immunol 115:277–285PubMed Imai K, Zhu Y, Revy P et al (2005) Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin Immunol 115:277–285PubMed
43.
go back to reference Gologan A, Sepulveda AR (2005) Microsatellite instability and DNA mismatch repair deficiency testing in hereditary and sporadic gastrointestinal cancers. Clin Lab Med 25:179–196PubMed Gologan A, Sepulveda AR (2005) Microsatellite instability and DNA mismatch repair deficiency testing in hereditary and sporadic gastrointestinal cancers. Clin Lab Med 25:179–196PubMed
44.
go back to reference Pan-Hammarstrom Q, Dai S, Zhao Y et al (2003) ATM is not required in somatic hypermutation of VH, but is involved in the introduction of mutations in the switch mu region. J Immunol 170:3707–3716PubMed Pan-Hammarstrom Q, Dai S, Zhao Y et al (2003) ATM is not required in somatic hypermutation of VH, but is involved in the introduction of mutations in the switch mu region. J Immunol 170:3707–3716PubMed
45.
go back to reference Zonana J, Elder ME, Schneider LC et al (2000) A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 67:1555–1562PubMedCentralPubMed Zonana J, Elder ME, Schneider LC et al (2000) A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 67:1555–1562PubMedCentralPubMed
46.
go back to reference Doffinger R, Smahi A, Bessia C et al (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285PubMed Doffinger R, Smahi A, Bessia C et al (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285PubMed
47.
go back to reference Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W (2001) Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2:223–228PubMed Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W (2001) Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2:223–228PubMed
48.
go back to reference Courtois G, Smahi A, Reichenbach J et al (2003) A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 112:1108–1115PubMedCentralPubMed Courtois G, Smahi A, Reichenbach J et al (2003) A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 112:1108–1115PubMedCentralPubMed
49.
go back to reference McDonald DR, Mooster JL, Reddy M, Bawle E, Secord E, Geha RS (2007) Heterozygous N-terminal deletion of IkappaBalpha results in functional nuclear factor kappaB haploinsufficiency, ectodermal dysplasia, and immune deficiency. J Allergy Clin Immunol 120:900–907PubMed McDonald DR, Mooster JL, Reddy M, Bawle E, Secord E, Geha RS (2007) Heterozygous N-terminal deletion of IkappaBalpha results in functional nuclear factor kappaB haploinsufficiency, ectodermal dysplasia, and immune deficiency. J Allergy Clin Immunol 120:900–907PubMed
50.
go back to reference Lopez-Granados E, Keenan JE, Kinney MC et al (2008) A novel mutation in NFKBIA/IKBA results in a degradation-resistant N-truncated protein and is associated with ectodermal dysplasia with immunodeficiency. Hum Mutat 29:861–868PubMedCentralPubMed Lopez-Granados E, Keenan JE, Kinney MC et al (2008) A novel mutation in NFKBIA/IKBA results in a degradation-resistant N-truncated protein and is associated with ectodermal dysplasia with immunodeficiency. Hum Mutat 29:861–868PubMedCentralPubMed
51.
go back to reference Pai SY, Levy O, Jabara HH et al (2008) Allogeneic transplantation successfully corrects immune defects, but not susceptibility to colitis, in a patient with nuclear factor-kappaB essential modulator deficiency. J Allergy Clin Immunol 122:1113–1118, e1111PubMed Pai SY, Levy O, Jabara HH et al (2008) Allogeneic transplantation successfully corrects immune defects, but not susceptibility to colitis, in a patient with nuclear factor-kappaB essential modulator deficiency. J Allergy Clin Immunol 122:1113–1118, e1111PubMed
52.
go back to reference Fuleihan RL (2001) The hyper IgM syndrome. Curr Allergy Asthma Rep 1:445–450PubMed Fuleihan RL (2001) The hyper IgM syndrome. Curr Allergy Asthma Rep 1:445–450PubMed
53.
go back to reference Quartier P, Bustamante J, Sanal O et al (2004) Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to activation-induced cytidine deaminase deficiency. Clin Immunol 110:22–29PubMed Quartier P, Bustamante J, Sanal O et al (2004) Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to activation-induced cytidine deaminase deficiency. Clin Immunol 110:22–29PubMed
54.
go back to reference Levy J, Espanol-Boern T, Thomas C et al (1997) Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr 131:47–54PubMed Levy J, Espanol-Boern T, Thomas C et al (1997) Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr 131:47–54PubMed
55.
go back to reference Blaeser F, Kelly M, Siegrist K et al (2005) Critical function of the CD40 pathway in parvovirus B19 infection revealed by a hypomorphic CD40 ligand mutation. Clin Immunol 117:231–237PubMed Blaeser F, Kelly M, Siegrist K et al (2005) Critical function of the CD40 pathway in parvovirus B19 infection revealed by a hypomorphic CD40 ligand mutation. Clin Immunol 117:231–237PubMed
56.
go back to reference Seyama K, Kobayashi R, Hasle H et al (1998) Parvovirus B19-induced anemia as the presenting manifestation of X-linked hyper-IgM syndrome. J Infect Dis 178:318–324PubMed Seyama K, Kobayashi R, Hasle H et al (1998) Parvovirus B19-induced anemia as the presenting manifestation of X-linked hyper-IgM syndrome. J Infect Dis 178:318–324PubMed
57.
go back to reference Erdos M, Garami M, Rakoczi E et al (2008) Neuroendocrine carcinoma associated with X-linked hyper-immunoglobulin M syndrome: report of four cases and review of the literature. Clin Immunol 129:455–461PubMed Erdos M, Garami M, Rakoczi E et al (2008) Neuroendocrine carcinoma associated with X-linked hyper-immunoglobulin M syndrome: report of four cases and review of the literature. Clin Immunol 129:455–461PubMed
58.
go back to reference Malhotra RK, Li W (2008) Poorly differentiated gastroenteropancreatic neuroendocrine carcinoma associated with X-linked hyperimmunoglobulin M syndrome. Arch Pathol Lab Med 132:847–850PubMed Malhotra RK, Li W (2008) Poorly differentiated gastroenteropancreatic neuroendocrine carcinoma associated with X-linked hyperimmunoglobulin M syndrome. Arch Pathol Lab Med 132:847–850PubMed
59.
go back to reference Zirkin HJ, Levy J, Katchko L (1996) Small cell undifferentiated carcinoma of the colon associated with hepatocellular carcinoma in an immunodeficient patient. Hum Pathol 27:992–996PubMed Zirkin HJ, Levy J, Katchko L (1996) Small cell undifferentiated carcinoma of the colon associated with hepatocellular carcinoma in an immunodeficient patient. Hum Pathol 27:992–996PubMed
60.
go back to reference Nonoyama S, Hollenbaugh D, Aruffo A, Ledbetter JA, Ochs HD (1993) B cell activation via CD40 is required for specific antibody production by antigen-stimulated human B cells. J Exp Med 178:1097–1102PubMed Nonoyama S, Hollenbaugh D, Aruffo A, Ledbetter JA, Ochs HD (1993) B cell activation via CD40 is required for specific antibody production by antigen-stimulated human B cells. J Exp Med 178:1097–1102PubMed
61.
go back to reference Agematsu K, Nagumo H, Shinozaki K et al (1998) Absence of IgD-CD27(+) memory B cell population in X-linked hyper-IgM syndrome. J Clin Invest 102:853–860PubMedCentralPubMed Agematsu K, Nagumo H, Shinozaki K et al (1998) Absence of IgD-CD27(+) memory B cell population in X-linked hyper-IgM syndrome. J Clin Invest 102:853–860PubMedCentralPubMed
62.
go back to reference Ameratunga R, Lederman HM, Sullivan KE et al (1997) Defective antigen-induced lymphocyte proliferation in the X-linked hyper-IgM syndrome. J Pediatr 131:147–150PubMed Ameratunga R, Lederman HM, Sullivan KE et al (1997) Defective antigen-induced lymphocyte proliferation in the X-linked hyper-IgM syndrome. J Pediatr 131:147–150PubMed
63.
go back to reference Inwald DP, Peters MJ, Walshe D, Jones A, Davies EG, Klein NJ (2000) Absence of platelet CD40L identifies patients with X-linked hyper IgM syndrome. Clin Exp Immunol 120:499–502PubMedCentralPubMed Inwald DP, Peters MJ, Walshe D, Jones A, Davies EG, Klein NJ (2000) Absence of platelet CD40L identifies patients with X-linked hyper IgM syndrome. Clin Exp Immunol 120:499–502PubMedCentralPubMed
64.
go back to reference Farrington M, Grosmaire LS, Nonoyama S et al (1994) CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. Proc Natl Acad Sci U S A 91:1099–1103PubMedCentralPubMed Farrington M, Grosmaire LS, Nonoyama S et al (1994) CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. Proc Natl Acad Sci U S A 91:1099–1103PubMedCentralPubMed
65.
go back to reference Conley ME, Notarangelo LD, Etzioni A (1999) Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol 93:190–197PubMed Conley ME, Notarangelo LD, Etzioni A (1999) Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol 93:190–197PubMed
66.
go back to reference Facchetti F, Appiani C, Salvi L, Levy J, Notarangelo LD (1995) Immunohistologic analysis of ineffective CD40-CD40 ligand interaction in lymphoid tissues from patients with X-linked immunodeficiency with hyper-IgM. Abortive germinal center cell reaction and severe depletion of follicular dendritic cells. J Immunol 154:6624–6633PubMed Facchetti F, Appiani C, Salvi L, Levy J, Notarangelo LD (1995) Immunohistologic analysis of ineffective CD40-CD40 ligand interaction in lymphoid tissues from patients with X-linked immunodeficiency with hyper-IgM. Abortive germinal center cell reaction and severe depletion of follicular dendritic cells. J Immunol 154:6624–6633PubMed
67.
go back to reference Nowak-Wegrzyn A, Crawford TO, Winkelstein JA, Carson KA, Lederman HM (2004) Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr 144:505–511PubMed Nowak-Wegrzyn A, Crawford TO, Winkelstein JA, Carson KA, Lederman HM (2004) Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr 144:505–511PubMed
68.
go back to reference Chou J, Hanna-Wakim R, Tirosh I et al (2012) A novel homozygous mutation in recombination activating gene 2 in 2 relatives with different clinical phenotypes: Omenn syndrome and hyper-IgM syndrome. J Allergy Clin Immunol 130:1414–1416PubMedCentralPubMed Chou J, Hanna-Wakim R, Tirosh I et al (2012) A novel homozygous mutation in recombination activating gene 2 in 2 relatives with different clinical phenotypes: Omenn syndrome and hyper-IgM syndrome. J Allergy Clin Immunol 130:1414–1416PubMedCentralPubMed
69.
go back to reference Fuleihan RL (1998) The X-linked hyperimmunoglobulin M syndrome. Semin Hematol 35:321–331PubMed Fuleihan RL (1998) The X-linked hyperimmunoglobulin M syndrome. Semin Hematol 35:321–331PubMed
70.
go back to reference Van Hoeyveld E, Zhang PX, De Boeck K, Fuleihan R, Bossuyt X (2007) Hyper-immunoglobulin M syndrome caused by a mutation in the promotor for CD40L. Immunology 120:497–501PubMedCentralPubMed Van Hoeyveld E, Zhang PX, De Boeck K, Fuleihan R, Bossuyt X (2007) Hyper-immunoglobulin M syndrome caused by a mutation in the promotor for CD40L. Immunology 120:497–501PubMedCentralPubMed
71.
go back to reference Revy P, Geissmann F, Debre M, Fischer A, Durandy A (1998) Normal CD40-mediated activation of monocytes and dendritic cells from patients with hyper-IgM syndrome due to a CD40 pathway defect in B cells. Eur J Immunol 28:3648–3654PubMed Revy P, Geissmann F, Debre M, Fischer A, Durandy A (1998) Normal CD40-mediated activation of monocytes and dendritic cells from patients with hyper-IgM syndrome due to a CD40 pathway defect in B cells. Eur J Immunol 28:3648–3654PubMed
72.
go back to reference Arpin C, Déchanet J, Van Kooten C et al (1995) Generation of memory B cells and plasma cells in vitro. Science 268:720–722PubMed Arpin C, Déchanet J, Van Kooten C et al (1995) Generation of memory B cells and plasma cells in vitro. Science 268:720–722PubMed
73.
go back to reference Jain A, Atkinson TP, Lipsky PE, Slater JE, Nelson DL, Strober W (1999) Defects of T-cell effector function and post-thymic maturation in X-linked hyper-IgM syndrome. J Clin Invest 103:1151–1158PubMedCentralPubMed Jain A, Atkinson TP, Lipsky PE, Slater JE, Nelson DL, Strober W (1999) Defects of T-cell effector function and post-thymic maturation in X-linked hyper-IgM syndrome. J Clin Invest 103:1151–1158PubMedCentralPubMed
74.
go back to reference Subauste CS, Wessendarp M, Sorensen RU, Leiva LE (1999) CD40-CD40 ligand interaction is central to cell-mediated immunity against Toxoplasma gondii: patients with hyper IgM syndrome have a defective type 1 immune response that can be restored by soluble CD40 ligand trimer. J Immunol 162:6690–6700PubMed Subauste CS, Wessendarp M, Sorensen RU, Leiva LE (1999) CD40-CD40 ligand interaction is central to cell-mediated immunity against Toxoplasma gondii: patients with hyper IgM syndrome have a defective type 1 immune response that can be restored by soluble CD40 ligand trimer. J Immunol 162:6690–6700PubMed
75.
go back to reference Grewal IS, Flavell RA (1996) The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev 153:85–106PubMed Grewal IS, Flavell RA (1996) The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev 153:85–106PubMed
76.
go back to reference Mackey MF, Barth RJ Jr, Noelle RJ (1998) The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells. J Leukoc Biol 63:418–428PubMed Mackey MF, Barth RJ Jr, Noelle RJ (1998) The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells. J Leukoc Biol 63:418–428PubMed
77.
go back to reference Shu U, Kiniwa M, Wu CY et al (1995) Activated T cells induce interleukin-12 production by monocytes via CD40-CD40 ligand interaction. Eur J Immunol 25:1125–1128PubMed Shu U, Kiniwa M, Wu CY et al (1995) Activated T cells induce interleukin-12 production by monocytes via CD40-CD40 ligand interaction. Eur J Immunol 25:1125–1128PubMed
78.
go back to reference Urban JF Jr, Fayer R, Chen SJ, Gause WC, Gately MK, Finkelman FD (1996) IL-12 protects immunocompetent and immunodeficient neonatal mice against infection with Cryptosporidium parvum. J Immunol 156:263–268PubMed Urban JF Jr, Fayer R, Chen SJ, Gause WC, Gately MK, Finkelman FD (1996) IL-12 protects immunocompetent and immunodeficient neonatal mice against infection with Cryptosporidium parvum. J Immunol 156:263–268PubMed
79.
go back to reference Wang WC, Cordoba J, Infante AJ, Conley ME (1994) Successful treatment of neutropenia in the hyper-immunoglobulin M syndrome with granulocyte colony-stimulating factor. Am J Pediatr Hematol Oncol 16:160–163PubMed Wang WC, Cordoba J, Infante AJ, Conley ME (1994) Successful treatment of neutropenia in the hyper-immunoglobulin M syndrome with granulocyte colony-stimulating factor. Am J Pediatr Hematol Oncol 16:160–163PubMed
80.
go back to reference Foy TM, Page DM, Waldschmidt TJ et al (1995) An essential role for gp39, the ligand for CD40, in thymic selection. J Exp Med 182:1377–1388PubMed Foy TM, Page DM, Waldschmidt TJ et al (1995) An essential role for gp39, the ligand for CD40, in thymic selection. J Exp Med 182:1377–1388PubMed
81.
go back to reference Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328PubMed Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328PubMed
82.
go back to reference Herve M, Isnardi I, Ng YS et al (2007) CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance. J Exp Med 204:1583–1593PubMedCentralPubMed Herve M, Isnardi I, Ng YS et al (2007) CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance. J Exp Med 204:1583–1593PubMedCentralPubMed
83.
go back to reference Meyers G, Ng YS, Bannock JM et al (2011) Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proc Natl Acad Sci U S A 108:11554–11559PubMedCentralPubMed Meyers G, Ng YS, Bannock JM et al (2011) Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proc Natl Acad Sci U S A 108:11554–11559PubMedCentralPubMed
84.
go back to reference Sousa MM, Krokan HE, Slupphaug G (2007) DNA-uracil and human pathology. Mol Aspects Med 28:276–306PubMed Sousa MM, Krokan HE, Slupphaug G (2007) DNA-uracil and human pathology. Mol Aspects Med 28:276–306PubMed
85.
go back to reference Nilsen H, Stamp G, Andersen S et al (2003) Gene-targeted mice lacking the Ung uracil-DNA glycosylase develop B-cell lymphomas. Oncogene 22:5381–5386PubMed Nilsen H, Stamp G, Andersen S et al (2003) Gene-targeted mice lacking the Ung uracil-DNA glycosylase develop B-cell lymphomas. Oncogene 22:5381–5386PubMed
86.
go back to reference Thomas C, de Saint Basile G, Le Deist F et al (1995) Brief report: correction of X-linked hyper-IgM syndrome by allogeneic bone marrow transplantation. N Engl J Med 333:426–429PubMed Thomas C, de Saint Basile G, Le Deist F et al (1995) Brief report: correction of X-linked hyper-IgM syndrome by allogeneic bone marrow transplantation. N Engl J Med 333:426–429PubMed
87.
go back to reference Al-Dhekri H, Al-Sum Z, Al-Saud B et al (2012) Successful outcome in two patients with CD40 deficiency treated with allogeneic HCST. Clin Immunol 143:96–98PubMed Al-Dhekri H, Al-Sum Z, Al-Saud B et al (2012) Successful outcome in two patients with CD40 deficiency treated with allogeneic HCST. Clin Immunol 143:96–98PubMed
88.
go back to reference Kutukculer N, Aksoylar S, Kansoy S, Cetingul N, Notarangelo LD (2003) Outcome of hematopoietic stem cell transplantation in hyper-IgM syndrome caused by CD40 deficiency. J Pediatr 143:141–142PubMed Kutukculer N, Aksoylar S, Kansoy S, Cetingul N, Notarangelo LD (2003) Outcome of hematopoietic stem cell transplantation in hyper-IgM syndrome caused by CD40 deficiency. J Pediatr 143:141–142PubMed
89.
go back to reference Mazzolari E, Lanzi G, Forino C et al (2007) First report of successful stem cell transplantation in a child with CD40 deficiency. Bone Marrow Transplant 40:279–281PubMed Mazzolari E, Lanzi G, Forino C et al (2007) First report of successful stem cell transplantation in a child with CD40 deficiency. Bone Marrow Transplant 40:279–281PubMed
90.
go back to reference Scholl PR, O'Gorman MR, Pachman LM, Haut P, Kletzel M (1998) Correction of neutropenia and hypogammaglobulinemia in X-linked hyper-IgM syndrome by allogeneic bone marrow transplantation. Bone Marrow Transplant 22:1215–1218PubMed Scholl PR, O'Gorman MR, Pachman LM, Haut P, Kletzel M (1998) Correction of neutropenia and hypogammaglobulinemia in X-linked hyper-IgM syndrome by allogeneic bone marrow transplantation. Bone Marrow Transplant 22:1215–1218PubMed
91.
go back to reference Jacobsohn DA, Emerick KM, Scholl P et al (2004) Nonmyeloablative hematopoietic stem cell transplant for X-linked hyper-immunoglobulin m syndrome with cholangiopathy. Pediatrics 113:e122–e127PubMed Jacobsohn DA, Emerick KM, Scholl P et al (2004) Nonmyeloablative hematopoietic stem cell transplant for X-linked hyper-immunoglobulin m syndrome with cholangiopathy. Pediatrics 113:e122–e127PubMed
92.
go back to reference Hadzic N, Pagliuca A, Rela M et al (2000) Correction of the hyper-IgM syndrome after liver and bone marrow transplantation. N Engl J Med 342:320–324PubMed Hadzic N, Pagliuca A, Rela M et al (2000) Correction of the hyper-IgM syndrome after liver and bone marrow transplantation. N Engl J Med 342:320–324PubMed
93.
go back to reference Gennery AR, Khawaja K, Veys P et al (2004) Treatment of CD40 ligand deficiency by hematopoietic stem cell transplantation: a survey of the European experience, 1993–2002. Blood 103:1152–1157PubMed Gennery AR, Khawaja K, Veys P et al (2004) Treatment of CD40 ligand deficiency by hematopoietic stem cell transplantation: a survey of the European experience, 1993–2002. Blood 103:1152–1157PubMed
94.
go back to reference Jain A, Kovacs JA, Nelson DL et al (2011) Partial immune reconstitution of X-linked hyper IgM syndrome with recombinant CD40 ligand. Blood 118:3811–3817PubMedCentralPubMed Jain A, Kovacs JA, Nelson DL et al (2011) Partial immune reconstitution of X-linked hyper IgM syndrome with recombinant CD40 ligand. Blood 118:3811–3817PubMedCentralPubMed
95.
go back to reference Fan X, Upadhyaya B, Wu L et al (2012) CD40 agonist antibody mediated improvement of chronic Cryptosporidium infection in patients with X-linked hyper IgM syndrome. Clin Immunol 143:152–161PubMedCentralPubMed Fan X, Upadhyaya B, Wu L et al (2012) CD40 agonist antibody mediated improvement of chronic Cryptosporidium infection in patients with X-linked hyper IgM syndrome. Clin Immunol 143:152–161PubMedCentralPubMed
96.
go back to reference DiSanto JP, Markiewicz S, Gauchat JF, Bonnefoy JY, Fischer A, de Saint Basile G (1994) Brief report: prenatal diagnosis of X-linked hyper-IgM syndrome. N Engl J Med 330:969–973PubMed DiSanto JP, Markiewicz S, Gauchat JF, Bonnefoy JY, Fischer A, de Saint Basile G (1994) Brief report: prenatal diagnosis of X-linked hyper-IgM syndrome. N Engl J Med 330:969–973PubMed
97.
go back to reference Candotti F, Shaw KL, Muul L et al (2012) Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 120:3635–3646PubMedCentralPubMed Candotti F, Shaw KL, Muul L et al (2012) Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 120:3635–3646PubMedCentralPubMed
98.
go back to reference Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G et al (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672PubMed Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G et al (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672PubMed
99.
go back to reference Gaspar HB, Bjorkegren E, Parsley K et al (2006) Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther : J Am Soc Gene Ther 14:505–513 Gaspar HB, Bjorkegren E, Parsley K et al (2006) Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther : J Am Soc Gene Ther 14:505–513
100.
go back to reference Montiel-Equihua CA, Thrasher AJ, Gaspar HB (2012) Gene therapy for severe combined immunodeficiency due to adenosine deaminase deficiency. Curr Gene Ther 12:57–65PubMed Montiel-Equihua CA, Thrasher AJ, Gaspar HB (2012) Gene therapy for severe combined immunodeficiency due to adenosine deaminase deficiency. Curr Gene Ther 12:57–65PubMed
101.
go back to reference Hacein-Bey-Abina S, Garrigue A, Wang GP et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142PubMedCentralPubMed Hacein-Bey-Abina S, Garrigue A, Wang GP et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142PubMedCentralPubMed
102.
go back to reference Howe SJ, Mansour MR, Schwarzwaelder K et al (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118:3143–3150PubMedCentralPubMed Howe SJ, Mansour MR, Schwarzwaelder K et al (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118:3143–3150PubMedCentralPubMed
103.
go back to reference Brown MP, Topham DJ, Sangster MY et al (1998) Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nat Med 4:1253–1260PubMed Brown MP, Topham DJ, Sangster MY et al (1998) Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nat Med 4:1253–1260PubMed
104.
go back to reference Datta SK, Kalled SL (1997) CD40-CD40 ligand interaction in autoimmune disease. Arthritis Rheum 40:1735–1745PubMed Datta SK, Kalled SL (1997) CD40-CD40 ligand interaction in autoimmune disease. Arthritis Rheum 40:1735–1745PubMed
105.
go back to reference Garber E, Su L, Ehrenfels B, Karpusas M, Hsu YM (1999) CD154 variants associated with hyper-IgM syndrome can form oligomers and trigger CD40-mediated signals. J Biol Chem 274:33545–33550PubMed Garber E, Su L, Ehrenfels B, Karpusas M, Hsu YM (1999) CD154 variants associated with hyper-IgM syndrome can form oligomers and trigger CD40-mediated signals. J Biol Chem 274:33545–33550PubMed
106.
go back to reference Seyama K, Osborne WR, Ochs HD (1999) CD40 ligand mutants responsible for X-linked hyper-IgM syndrome associate with wild type CD40 ligand. J Biol Chem 274:11310–11320PubMed Seyama K, Osborne WR, Ochs HD (1999) CD40 ligand mutants responsible for X-linked hyper-IgM syndrome associate with wild type CD40 ligand. J Biol Chem 274:11310–11320PubMed
107.
go back to reference Zhu X, Chung I, O'Gorman MR, Scholl PR (2001) Coexpression of normal and mutated CD40 ligand with deletion of a putative RNA lariat branchpoint sequence in X-linked hyper-IgM syndrome. Clin Immunol 99:334–339PubMed Zhu X, Chung I, O'Gorman MR, Scholl PR (2001) Coexpression of normal and mutated CD40 ligand with deletion of a putative RNA lariat branchpoint sequence in X-linked hyper-IgM syndrome. Clin Immunol 99:334–339PubMed
108.
go back to reference Tahara M, Pergolizzi RG, Kobayashi H et al (2004) Trans-splicing repair of CD40 ligand deficiency results in naturally regulated correction of a mouse model of hyper-IgM X-linked immunodeficiency. Nat Med 10:835–841PubMed Tahara M, Pergolizzi RG, Kobayashi H et al (2004) Trans-splicing repair of CD40 ligand deficiency results in naturally regulated correction of a mouse model of hyper-IgM X-linked immunodeficiency. Nat Med 10:835–841PubMed
Metadata
Title
The Hyper IgM Syndromes
Authors
Nashmia Qamar
Ramsay L. Fuleihan
Publication date
01-04-2014
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 2/2014
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-013-8378-7

Other articles of this Issue 2/2014

Clinical Reviews in Allergy & Immunology 2/2014 Go to the issue