Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 2/2014

01-04-2014

New Genetic Discoveries and Primary Immune Deficiencies

Author: Vivian Hernandez-Trujillo

Published in: Clinical Reviews in Allergy & Immunology | Issue 2/2014

Login to get access

Abstract

The field of immunology has undergone recent discoveries of genetic causes for many primary immunodeficiency diseases (PIDD). The ever-expanding knowledge has led to increased understanding behind the pathophysiology of these diseases. Since these diseases are rare, the patients are frequently misdiagnosed early in the presentation of their illnesses. The identification of new genes has increased our opportunities for recognizing and making the diagnosis in patients with PIDD before they succumb to infections that may result secondary to their PIDD. Some mutations lead to a variety of presentations of severe combined immunodeficiency (SCID). The myriad and ever-growing genetic mutations which lead to SCID phenotypes have been identified in recent years. Other mutations associated with some genetic syndromes have associated immunodeficiency and are important for making the diagnosis of primary immunodeficiency in patients with some syndromes, who may otherwise be missed within the larger context of their syndromes. A variety of mutations also lead to increased susceptibility to infections due to particular organisms. These patterns of infections due to specific organisms are important keys in properly identifying the part of the immune system which is affected in these patients. This review will discuss recent genetic discoveries that enhance our understanding of these complex diseases.
Literature
1.
go back to reference Al-Herz W, Bousfiha A, Casanova JL et al (2011) Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Front Immun 2:1–26CrossRef Al-Herz W, Bousfiha A, Casanova JL et al (2011) Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Front Immun 2:1–26CrossRef
3.
go back to reference De Saint BG, Geissmann F, Flori E et al (2004) Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3. J Clin Invest 114:1512–1517CrossRef De Saint BG, Geissmann F, Flori E et al (2004) Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3. J Clin Invest 114:1512–1517CrossRef
4.
go back to reference Dadi HK, Simon AJ, Roifman CM (2003) Effect of CD3 delta deficiency on maturation of alpha/beta and gamma/delta T cell lineages in severe combined immunodeficiency. N Engl J Med 349:1821–1828PubMedCrossRef Dadi HK, Simon AJ, Roifman CM (2003) Effect of CD3 delta deficiency on maturation of alpha/beta and gamma/delta T cell lineages in severe combined immunodeficiency. N Engl J Med 349:1821–1828PubMedCrossRef
5.
go back to reference Gil J, Busto EM, Garcillan B et al (2011) A leaky mutation in CD3D differentially affects αβ and γδ T cells and leads to a Tαβ-Tγδ + B + NK + human SCID. J Clin Invest 121:3872–3876PubMedCentralPubMedCrossRef Gil J, Busto EM, Garcillan B et al (2011) A leaky mutation in CD3D differentially affects αβ and γδ T cells and leads to a Tαβ-Tγδ + B + NK + human SCID. J Clin Invest 121:3872–3876PubMedCentralPubMedCrossRef
6.
go back to reference Siegers GM, Swamy M, Fernandez-Malave E et al (2007 Oct 29) Different composition of the human and the mouse gamma delta T cell receptor explains different phenotypes of CD3 gamma and CD3 delta immunodeficiencies. J Exp Med 204(11):2537–2544 Siegers GM, Swamy M, Fernandez-Malave E et al (2007 Oct 29) Different composition of the human and the mouse gamma delta T cell receptor explains different phenotypes of CD3 gamma and CD3 delta immunodeficiencies. J Exp Med 204(11):2537–2544
7.
go back to reference Rieux-Laucat F, Hivroz C, Lim A et al (2006) Inherited and somatic CD3 zeta mutations in a patient with T-cell deficiency. N Engl J Med 354:1913–1921PubMedCrossRef Rieux-Laucat F, Hivroz C, Lim A et al (2006) Inherited and somatic CD3 zeta mutations in a patient with T-cell deficiency. N Engl J Med 354:1913–1921PubMedCrossRef
8.
go back to reference Roberts JL, Lauritsen JP, Cooney M et al (2007) T-B + NK + severe combined immunodeficiency caused by complete deficiency of the CD3 zeta subunit of the T-cell antigen receptor complex. Blood 109(8):3198–3206PubMedCentralPubMedCrossRef Roberts JL, Lauritsen JP, Cooney M et al (2007) T-B + NK + severe combined immunodeficiency caused by complete deficiency of the CD3 zeta subunit of the T-cell antigen receptor complex. Blood 109(8):3198–3206PubMedCentralPubMedCrossRef
9.
go back to reference Kalman L, Lindegren ML, Kobrynski L et al (2004) Mutations in genes required for T-cell development: IL7R, CD45, IL2RG, JAK3, RAG1, RAG2, ARTEMIS and ADA and severe combined immunodeficiency: HuGE review. Genet Med 6:16–26PubMedCrossRef Kalman L, Lindegren ML, Kobrynski L et al (2004) Mutations in genes required for T-cell development: IL7R, CD45, IL2RG, JAK3, RAG1, RAG2, ARTEMIS and ADA and severe combined immunodeficiency: HuGE review. Genet Med 6:16–26PubMedCrossRef
10.
go back to reference Tchilian EZ, Wallace DL, Wells RS et al (2001) A deletion in the gene encoding the CD45 antigen in a patient with SCID. J Immunol 166:1308–1313PubMed Tchilian EZ, Wallace DL, Wells RS et al (2001) A deletion in the gene encoding the CD45 antigen in a patient with SCID. J Immunol 166:1308–1313PubMed
11.
go back to reference Kung C, Pingel JT, Heikinheimo M et al (2000) Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat Med 6:343–345PubMedCrossRef Kung C, Pingel JT, Heikinheimo M et al (2000) Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat Med 6:343–345PubMedCrossRef
12.
go back to reference Roberts JL, Buckley RH, Luo B et al (2012) CD45-deficient severe combined immunodeficiency caused by uniparental disomy. Proc Natl Acad Sci USA 109:10456–10461PubMedCentralPubMedCrossRef Roberts JL, Buckley RH, Luo B et al (2012) CD45-deficient severe combined immunodeficiency caused by uniparental disomy. Proc Natl Acad Sci USA 109:10456–10461PubMedCentralPubMedCrossRef
13.
go back to reference Shiow LR, Roadcap DW, Paris K et al (2008) The actin regulator coronin-1A is mutated in a thymic egress deficient mouse strain and in a T-B + NK + SCID patient. Nat Immunol 9:1307–1315PubMedCentralPubMedCrossRef Shiow LR, Roadcap DW, Paris K et al (2008) The actin regulator coronin-1A is mutated in a thymic egress deficient mouse strain and in a T-B + NK + SCID patient. Nat Immunol 9:1307–1315PubMedCentralPubMedCrossRef
14.
go back to reference Goldman FD, Ballas ZK, Schutte BC et al (1998) Defective expression of p56lck in an infant with severe combined immunodeficiency. J Clin Invest 102:421–429PubMedCentralPubMedCrossRef Goldman FD, Ballas ZK, Schutte BC et al (1998) Defective expression of p56lck in an infant with severe combined immunodeficiency. J Clin Invest 102:421–429PubMedCentralPubMedCrossRef
15.
go back to reference Hauck F, Randriamampita C, Martin E et al (2012) Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol 130:1144–1152PubMedCrossRef Hauck F, Randriamampita C, Martin E et al (2012) Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol 130:1144–1152PubMedCrossRef
16.
go back to reference Hubert P, Bergeron F, Ferreira V et al (2000) Defective p56Lck activity in T cells from an adult patient with idiopathic CD4+ lymphocytopenia. Int Immunol 12:449–457PubMedCrossRef Hubert P, Bergeron F, Ferreira V et al (2000) Defective p56Lck activity in T cells from an adult patient with idiopathic CD4+ lymphocytopenia. Int Immunol 12:449–457PubMedCrossRef
17.
go back to reference Pignata C, Fiore M, Guzzetta V et al (1996) Congenital alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs. Am J Med Genet 65:167–170PubMedCrossRef Pignata C, Fiore M, Guzzetta V et al (1996) Congenital alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs. Am J Med Genet 65:167–170PubMedCrossRef
18.
go back to reference Adriani M, Martinez-Mir A, Fusco F et al (2004) Ancestral founder mutation of the nude (FOXN1) gene in congenital severe combined immunodeficiency associated with alopecia in southern Italy population. Ann Hum Genet 68:265–268PubMedCrossRef Adriani M, Martinez-Mir A, Fusco F et al (2004) Ancestral founder mutation of the nude (FOXN1) gene in congenital severe combined immunodeficiency associated with alopecia in southern Italy population. Ann Hum Genet 68:265–268PubMedCrossRef
19.
go back to reference Amorosi S, D’Armiento M, Calcagno G et al (2008) FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus. Clin Genet 73:380–384PubMedCrossRef Amorosi S, D’Armiento M, Calcagno G et al (2008) FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus. Clin Genet 73:380–384PubMedCrossRef
20.
go back to reference van der Burg M, Ijspeert H, Verkaik N et al (2009) A DNA-PKcs mutation in a radiosensitive T-B-SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin Invest 119:91–98PubMedCentralPubMed van der Burg M, Ijspeert H, Verkaik N et al (2009) A DNA-PKcs mutation in a radiosensitive T-B-SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin Invest 119:91–98PubMedCentralPubMed
21.
go back to reference van der Burg M, van Dongen JJ, van Gent DC (2009) DNA-PKcs deficiency in human: long predicted, finally found. Curr Opin Allergy Clin Immunol 9:503–509PubMedCrossRef van der Burg M, van Dongen JJ, van Gent DC (2009) DNA-PKcs deficiency in human: long predicted, finally found. Curr Opin Allergy Clin Immunol 9:503–509PubMedCrossRef
22.
go back to reference Dvorak CC, Cowan MJ (2010) Radiosensitive severe combined immunodeficiency disease. Immunol Allergy Clin N Am 30:125–141CrossRef Dvorak CC, Cowan MJ (2010) Radiosensitive severe combined immunodeficiency disease. Immunol Allergy Clin N Am 30:125–141CrossRef
23.
go back to reference Van der Burg M, van Veelen LR, Verkalk NS et al (2006) A new type of radiosensitive T−B−NK+ severe combined immunodeficiency caused by a LIG4 mutation. J Clin Invest 116:137–145PubMedCentralPubMedCrossRef Van der Burg M, van Veelen LR, Verkalk NS et al (2006) A new type of radiosensitive T−B−NK+ severe combined immunodeficiency caused by a LIG4 mutation. J Clin Invest 116:137–145PubMedCentralPubMedCrossRef
24.
go back to reference Enders A, Fisch P, Schwarz K et al (2006) A severe form of human combined immunodeficiency due to mutations in DNA ligase IV. J Immunol 176:5060–5068PubMed Enders A, Fisch P, Schwarz K et al (2006) A severe form of human combined immunodeficiency due to mutations in DNA ligase IV. J Immunol 176:5060–5068PubMed
25.
go back to reference Buck D, Malivert E, de Chasseval R, et al. (2006) Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124:287–299. Buck D, Malivert E, de Chasseval R, et al. (2006) Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124:287–299.
26.
go back to reference Turul T, Tezcan I, Sanal O (2011) Cernunnos deficiency: a case report. J Investig Allergol Clin Immunol 21:313–316PubMed Turul T, Tezcan I, Sanal O (2011) Cernunnos deficiency: a case report. J Investig Allergol Clin Immunol 21:313–316PubMed
27.
go back to reference Pannicke U, Honig M, Hess I et al (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41:101–105PubMedCrossRef Pannicke U, Honig M, Hess I et al (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41:101–105PubMedCrossRef
28.
go back to reference Turul T, Tezcan I, Artac H et al (2009) Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency. Eur J Pediatr 168:87–93PubMedCrossRef Turul T, Tezcan I, Artac H et al (2009) Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency. Eur J Pediatr 168:87–93PubMedCrossRef
29.
go back to reference Ouederni M, Vincent QB, Frange P et al (2011) Major histocompatability complex class II expression deficiency caused by a RFXANK founder mutation: a survey of 35 patients. Blood 118:5108–5118PubMedCrossRef Ouederni M, Vincent QB, Frange P et al (2011) Major histocompatability complex class II expression deficiency caused by a RFXANK founder mutation: a survey of 35 patients. Blood 118:5108–5118PubMedCrossRef
31.
go back to reference Schuetz C, Huck K, Gudowius S et al (2008) An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med 358:2030–2038PubMedCrossRef Schuetz C, Huck K, Gudowius S et al (2008) An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med 358:2030–2038PubMedCrossRef
32.
go back to reference Heimall J, Keller M, Saltman R et al (2012) Diagnosis of 22q11.2 deletion syndrome and artemis deficiency in two children with T−B−NK+ immunodeficiency. J Clin Immunol 32:1141–1144PubMedCrossRef Heimall J, Keller M, Saltman R et al (2012) Diagnosis of 22q11.2 deletion syndrome and artemis deficiency in two children with T−B−NK+ immunodeficiency. J Clin Immunol 32:1141–1144PubMedCrossRef
33.
go back to reference Stepensky P, Weintraub M, Yanir A et al (2011) IL2-inducible T-cell kinase deficiency: clinical presentation and therapeutic approach. Haematologica 96:472–476PubMedCentralPubMedCrossRef Stepensky P, Weintraub M, Yanir A et al (2011) IL2-inducible T-cell kinase deficiency: clinical presentation and therapeutic approach. Haematologica 96:472–476PubMedCentralPubMedCrossRef
34.
go back to reference Huck K, Feyen O, Niehues T et al (2009) Girls homozygous for an IL-2 inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest 119:1350–1358PubMedCentralPubMedCrossRef Huck K, Feyen O, Niehues T et al (2009) Girls homozygous for an IL-2 inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest 119:1350–1358PubMedCentralPubMedCrossRef
35.
go back to reference Li FY, Chaigne-Delalande B, Kanellopoulou C et al (2012) Signaling role for Mg2+ revealed by immunodeficiency due to loss of Mag T1. Nature 475:471–476CrossRef Li FY, Chaigne-Delalande B, Kanellopoulou C et al (2012) Signaling role for Mg2+ revealed by immunodeficiency due to loss of Mag T1. Nature 475:471–476CrossRef
36.
go back to reference Hale JE, Bonilla FA, Pai SY et al (2010) Identification of an infant with severe combined immunodeficiency by newborn screening. J Allergy Clin Immunol 126:1073–1074PubMedCrossRef Hale JE, Bonilla FA, Pai SY et al (2010) Identification of an infant with severe combined immunodeficiency by newborn screening. J Allergy Clin Immunol 126:1073–1074PubMedCrossRef
37.
go back to reference Verbsky J, Thakar M, Routes J (2012) The Wisconsin approach to newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol 129:622–627PubMedCrossRef Verbsky J, Thakar M, Routes J (2012) The Wisconsin approach to newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol 129:622–627PubMedCrossRef
38.
go back to reference Puck JM (2011) The case for newborn screening for severe combined immunodeficiency and related disorders. Ann NY Acad Sci 124:108–117CrossRef Puck JM (2011) The case for newborn screening for severe combined immunodeficiency and related disorders. Ann NY Acad Sci 124:108–117CrossRef
39.
go back to reference Roifman CM, Somech R, Kavadas F et al (2012) Defining combined immunodeficiency. J Allergy Clin Immunol 130:177–183PubMedCrossRef Roifman CM, Somech R, Kavadas F et al (2012) Defining combined immunodeficiency. J Allergy Clin Immunol 130:177–183PubMedCrossRef
41.
go back to reference Jyonouchi S, McDonald-McGinn DM, Bale S et al (2009) CHARGE (Coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, ear anomalies/deafness) syndrome and chromosome 22q11.2 deletion syndrome. A comparison of immunologic and nonimmunologic phenotypic features. Pediatrics 123:e871–e877PubMedCrossRef Jyonouchi S, McDonald-McGinn DM, Bale S et al (2009) CHARGE (Coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, ear anomalies/deafness) syndrome and chromosome 22q11.2 deletion syndrome. A comparison of immunologic and nonimmunologic phenotypic features. Pediatrics 123:e871–e877PubMedCrossRef
42.
go back to reference Grimbacher B, Holland SM, Gallin JI et al (1999) Hyper-IgE syndrome with recurrent infections—an autosomal dominant multisystem disorder. N Engl J Med 340:692–702PubMedCrossRef Grimbacher B, Holland SM, Gallin JI et al (1999) Hyper-IgE syndrome with recurrent infections—an autosomal dominant multisystem disorder. N Engl J Med 340:692–702PubMedCrossRef
43.
go back to reference Holland SM, DeLeo FR, Elloumi HZ et al (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357:1608–1619PubMedCrossRef Holland SM, DeLeo FR, Elloumi HZ et al (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357:1608–1619PubMedCrossRef
44.
go back to reference Milner JD, Brenchley JM, Laurence A et al (2008) Impaired TH 17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776PubMedCentralPubMedCrossRef Milner JD, Brenchley JM, Laurence A et al (2008) Impaired TH 17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776PubMedCentralPubMedCrossRef
45.
46.
go back to reference Engelhardt KR, McGhee S, Winkler S et al (2009) Large deletions and point mutations involving DOCK8 in the autosomal recessive form of the hyper-IgE Syndrome. J Allergy Clin Immunol 124:1289–1300PubMedCentralPubMedCrossRef Engelhardt KR, McGhee S, Winkler S et al (2009) Large deletions and point mutations involving DOCK8 in the autosomal recessive form of the hyper-IgE Syndrome. J Allergy Clin Immunol 124:1289–1300PubMedCentralPubMedCrossRef
47.
go back to reference Su HC (2012) DOCK8 (dedicator of cytokinesis 8) deficiency. Curr Opin Allergy Clin Immunol 10:515–520CrossRef Su HC (2012) DOCK8 (dedicator of cytokinesis 8) deficiency. Curr Opin Allergy Clin Immunol 10:515–520CrossRef
49.
go back to reference Minegishi Y, Karasuyama H (2009 Feb) Defects in Jak-STAT-mediated cytokine signals cause hyper-IgE syndrome: lessons from a primary immunodeficiency. Int Immunol 21(2):105–112 Minegishi Y, Karasuyama H (2009 Feb) Defects in Jak-STAT-mediated cytokine signals cause hyper-IgE syndrome: lessons from a primary immunodeficiency. Int Immunol 21(2):105–112
50.
go back to reference Woellner C, Schaffer A, Puck JM et al (2007) The hyper IgE syndrome with mutations in TYK2. Immunity 26:535PubMedCrossRef Woellner C, Schaffer A, Puck JM et al (2007) The hyper IgE syndrome with mutations in TYK2. Immunity 26:535PubMedCrossRef
51.
go back to reference Casey JP, Nobbs M, McGettigan P et al (2012) Recessive mutations in MCM4/PRKDC cause a novel syndrome involving a primary immunodeficiency and disorder of DNA repair. J Med Genet 49:242–245PubMedCrossRef Casey JP, Nobbs M, McGettigan P et al (2012) Recessive mutations in MCM4/PRKDC cause a novel syndrome involving a primary immunodeficiency and disorder of DNA repair. J Med Genet 49:242–245PubMedCrossRef
52.
go back to reference Van Montfrans JM, Hoepelman AI, Otto S et al (2012) CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol 129:787–793PubMedCentralPubMedCrossRef Van Montfrans JM, Hoepelman AI, Otto S et al (2012) CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol 129:787–793PubMedCentralPubMedCrossRef
53.
go back to reference Tassone L, Notorangelo LD, Bonomi V et al (2009) Clinical and genetic diagnosis of warts, hypogammaglobulinemia, infections andmyelokathesis syndrome in 10 patients. J Allergy Clin Immunol 123:1170–1173PubMedCrossRef Tassone L, Notorangelo LD, Bonomi V et al (2009) Clinical and genetic diagnosis of warts, hypogammaglobulinemia, infections andmyelokathesis syndrome in 10 patients. J Allergy Clin Immunol 123:1170–1173PubMedCrossRef
54.
go back to reference Bigley V, Collin M (2011 Aug) Dendritic cell, monocyte, B and NK lymphoid deficiency defines the lost lineages of a new GATA-2 dependent myelodysplastic syndrome. Haematologica 96:1081–1083 Bigley V, Collin M (2011 Aug) Dendritic cell, monocyte, B and NK lymphoid deficiency defines the lost lineages of a new GATA-2 dependent myelodysplastic syndrome. Haematologica 96:1081–1083
56.
go back to reference Van de Veerdonk FL, Plantinga TS, Hoischen A et al (2011) STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 365:54–61PubMedCrossRef Van de Veerdonk FL, Plantinga TS, Hoischen A et al (2011) STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 365:54–61PubMedCrossRef
57.
go back to reference Liu L, Okada S, Kong XF et al (2011) Gain-of-functon human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208:1635–1648PubMedCentralPubMedCrossRef Liu L, Okada S, Kong XF et al (2011) Gain-of-functon human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208:1635–1648PubMedCentralPubMedCrossRef
58.
go back to reference Puel A, Cypowyj S, Buatamante J et al (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332:65–68PubMedCentralPubMedCrossRef Puel A, Cypowyj S, Buatamante J et al (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332:65–68PubMedCentralPubMedCrossRef
59.
go back to reference Puel A, Doffinger R, Natividad A et al (2010) Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 207:291–297PubMedCentralPubMedCrossRef Puel A, Doffinger R, Natividad A et al (2010) Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 207:291–297PubMedCentralPubMedCrossRef
60.
go back to reference Hanna S, Etzioni A (2011) New host defense mechanisms against Candida species clarify the basis of clinical phenotypes. J Allergy Clin Immunol 127:1433–1437PubMedCrossRef Hanna S, Etzioni A (2011) New host defense mechanisms against Candida species clarify the basis of clinical phenotypes. J Allergy Clin Immunol 127:1433–1437PubMedCrossRef
61.
go back to reference Nahsen A, Dadi H, Bates A (2011) The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J Allergy Clin Immunol 127:528–531CrossRef Nahsen A, Dadi H, Bates A (2011) The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J Allergy Clin Immunol 127:528–531CrossRef
62.
go back to reference Casrouge A, Zhang SY, Eidenschenk C et al (2006 Oct) Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314:308–312 Casrouge A, Zhang SY, Eidenschenk C et al (2006 Oct) Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314:308–312
63.
go back to reference Pérez de Diego R, Sancho-Shimizu V et al (2010) Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33:400–411PubMedCrossRef Pérez de Diego R, Sancho-Shimizu V et al (2010) Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33:400–411PubMedCrossRef
64.
Metadata
Title
New Genetic Discoveries and Primary Immune Deficiencies
Author
Vivian Hernandez-Trujillo
Publication date
01-04-2014
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 2/2014
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-013-8380-0

Other articles of this Issue 2/2014

Clinical Reviews in Allergy & Immunology 2/2014 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.