Skip to main content
Top
Published in: Cardiovascular Toxicology 2/2021

01-02-2021 | Myocardial Infarction

Modulation of the Expression of Long Non-Coding RNAs H19, GAS5, and MIAT by Endurance Exercise in the Hearts of Rats with Myocardial Infarction

Authors: Saeideh Jafarinejad Farsangi, Farzaneh Rostamzadeh, Mozhgan Sheikholeslami, Elham Jafari, Mohammadreza Karimzadeh

Published in: Cardiovascular Toxicology | Issue 2/2021

Login to get access

Abstract

Long non-coding RNAs (lncRNAs) have a critical role in the regulation of cardiovascular function. Dysregulation of lncRNAs is implicated in the progression of cardiovascular diseases including myocardial infarction (MI). Regarding the beneficial effects of exercise (Ex) on the improvement of MI, this study aimed to investigate the effects of post-MI Ex on the expression of MI-associated lncRNAs: H19, myocardial infarction association transcript (MIAT), and growth arrest specific 5 (GAS5). MI was induced by left anterior descending (LAD) coronary artery ligation in male Wistar rats. One week later, rats were exercised under a moderate-intensity protocol for 4 weeks. In the end, hemodynamic parameters and cardiac function indices were measured. Assessment of fibrotic areas and apoptosis was performed by Masson's trichrome staining and immunohistochemistry, respectively. Expression of genes was evaluated by real-time PCR. Ex significantly reduced the fibrotic areas (P < 0.05) and apoptosis and increased contractility indices (P < 0.01), and cardiac function (P < 0.05) in MI groups. The reduced expression of H19 (P < 0.01) in MI rats returned to normal levels by Ex. Ex significantly (P < 0.001) reduced the expression of MIAT and increased the expression of GAS5 (P < 0.01), which had changed in the hearts of rats with MI. The present study indicated the beneficial effect of Ex on the improvement of cardiac function and reduction of fibrosis in infarcted heart possibly through regulation of the expression of lncRNAs: H19, GAS5, and MIAT.
Literature
1.
go back to reference Pinaire, J., Aze, J., Bringay, S., Cayla, G., & Landais, P. (2019). Hospital burden of coronary artery disease: Trends of myocardial infarction and/or percutaneous coronary interventions in France 2009–2014. PLoS One, 14(5), e0215649.CrossRef Pinaire, J., Aze, J., Bringay, S., Cayla, G., & Landais, P. (2019). Hospital burden of coronary artery disease: Trends of myocardial infarction and/or percutaneous coronary interventions in France 2009–2014. PLoS One, 14(5), e0215649.CrossRef
2.
go back to reference Vainio, L. E., Szabó, Z., Lin, R., Ulvila, J., Yrjölä, R., Alakoski, T., et al. (2019). Connective tissue growth factor inhibition enhances cardiac repair and limits fibrosis after myocardial infarction. JACC Basic to Translational Science, 4(1), 83–94.CrossRef Vainio, L. E., Szabó, Z., Lin, R., Ulvila, J., Yrjölä, R., Alakoski, T., et al. (2019). Connective tissue growth factor inhibition enhances cardiac repair and limits fibrosis after myocardial infarction. JACC Basic to Translational Science, 4(1), 83–94.CrossRef
3.
go back to reference Xia, P., Liu, Y., & Cheng, Z. (2016). Signaling pathways in cardiac myocyte apoptosis. BioMed Research International, 2016, 9583268.PubMedPubMedCentral Xia, P., Liu, Y., & Cheng, Z. (2016). Signaling pathways in cardiac myocyte apoptosis. BioMed Research International, 2016, 9583268.PubMedPubMedCentral
4.
go back to reference Rippe, J. M. (2019). Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease. American Journal of Lifestyle Medicine, 13(2), 204–212.CrossRef Rippe, J. M. (2019). Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease. American Journal of Lifestyle Medicine, 13(2), 204–212.CrossRef
5.
go back to reference Sharma, S., Merghani, A., & Mont, L. (2015). Exercise and the heart: the good, the bad, and the ugly. European Heart Journal, 36(23), 1445–1453.CrossRef Sharma, S., Merghani, A., & Mont, L. (2015). Exercise and the heart: the good, the bad, and the ugly. European Heart Journal, 36(23), 1445–1453.CrossRef
6.
go back to reference Dibben, G. O., Dalal, H. M., Taylor, R. S., Doherty, P., Tang, L. H., & Hillsdon, M. (2018). Cardiac rehabilitation and physical activity: systematic review and meta-analysis. Heart (British Cardiac Society), 104(17), 1394–1402. Dibben, G. O., Dalal, H. M., Taylor, R. S., Doherty, P., Tang, L. H., & Hillsdon, M. (2018). Cardiac rehabilitation and physical activity: systematic review and meta-analysis. Heart (British Cardiac Society), 104(17), 1394–1402.
7.
go back to reference Anderson, L., Thompson, D. R., Oldridge, N., Zwisler, A. D., Rees, K., Martin, N., et al. (2016). Exercise-based cardiac rehabilitation for coronary heart disease. The Cochrane Database of Systematic Reviews., 2016(1), Cd001800.PubMedCentral Anderson, L., Thompson, D. R., Oldridge, N., Zwisler, A. D., Rees, K., Martin, N., et al. (2016). Exercise-based cardiac rehabilitation for coronary heart disease. The Cochrane Database of Systematic Reviews., 2016(1), Cd001800.PubMedCentral
8.
go back to reference Fernandes, J. C. R., Acuna, S. M., Aoki, J. I., Floeter-Winter, L. M., & Muxel, S. M. (2019). Long non-coding RNAs in the regulation of gene expression: physiology and disease. Non-coding RNA, 5(1), 17.CrossRef Fernandes, J. C. R., Acuna, S. M., Aoki, J. I., Floeter-Winter, L. M., & Muxel, S. M. (2019). Long non-coding RNAs in the regulation of gene expression: physiology and disease. Non-coding RNA, 5(1), 17.CrossRef
9.
go back to reference Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X., et al. (2013). LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic acids research, 41(Database issue), D983–6.PubMed Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X., et al. (2013). LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic acids research, 41(Database issue), D983–6.PubMed
10.
go back to reference Jarroux, J., Morillon, A., & Pinskaya, M. (2017). History, discovery, and classification of lncRNAs. Advances in Experimental Medicine and Biology, 1008, 1–46.CrossRef Jarroux, J., Morillon, A., & Pinskaya, M. (2017). History, discovery, and classification of lncRNAs. Advances in Experimental Medicine and Biology, 1008, 1–46.CrossRef
11.
go back to reference Kim, D. K., Zhang, L., Dzau, V. J., & Pratt, R. E. (1994). H19, a developmentally regulated gene, is reexpressed in rat vascular smooth muscle cells after injury. The Journal of Clinical Investigation, 93(1), 355–360.CrossRef Kim, D. K., Zhang, L., Dzau, V. J., & Pratt, R. E. (1994). H19, a developmentally regulated gene, is reexpressed in rat vascular smooth muscle cells after injury. The Journal of Clinical Investigation, 93(1), 355–360.CrossRef
12.
go back to reference Choong, O. K., Chen, C. Y., Zhang, J., Lin, J. H., Lin, P. J., Ruan, S. C., et al. (2019). Hypoxia-induced H19/YB-1 cascade modulates cardiac remodeling after infarction. Theranostics, 9(22), 6550–6567.CrossRef Choong, O. K., Chen, C. Y., Zhang, J., Lin, J. H., Lin, P. J., Ruan, S. C., et al. (2019). Hypoxia-induced H19/YB-1 cascade modulates cardiac remodeling after infarction. Theranostics, 9(22), 6550–6567.CrossRef
13.
go back to reference Lee, J. H., Gao, C., Peng, G., Greer, C., Ren, S., Wang, Y., et al. (2011). Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circulation Research, 109(12), 1332–1341.CrossRef Lee, J. H., Gao, C., Peng, G., Greer, C., Ren, S., Wang, Y., et al. (2011). Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circulation Research, 109(12), 1332–1341.CrossRef
14.
go back to reference Wang, X. M., Li, X. M., Song, N., Zhai, H., Gao, X. M., & Yang, Y. N. (2019). Long non-coding RNAs H19, MALAT1 and MIAT as potential novel biomarkers for diagnosis of acute myocardial infarction. Biomedicine Pharmacotherapy Biomedecine Pharmacotherapie, 118, 109208.CrossRef Wang, X. M., Li, X. M., Song, N., Zhai, H., Gao, X. M., & Yang, Y. N. (2019). Long non-coding RNAs H19, MALAT1 and MIAT as potential novel biomarkers for diagnosis of acute myocardial infarction. Biomedicine Pharmacotherapy Biomedecine Pharmacotherapie, 118, 109208.CrossRef
15.
go back to reference Ishii, N., Ozaki, K., Sato, H., Mizuno, H., Saito, S., Takahashi, A., et al. (2006). Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. Journal of Human Genetics, 51(12), 1087–1099.CrossRef Ishii, N., Ozaki, K., Sato, H., Mizuno, H., Saito, S., Takahashi, A., et al. (2006). Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. Journal of Human Genetics, 51(12), 1087–1099.CrossRef
16.
go back to reference Chen, L., Zhang, D., Yu, L., & Dong, H. (2019). Targeting MIAT reduces apoptosis of cardiomyocytes after ischemia/reperfusion injury. Bioengineered, 10(1), 121–132.CrossRef Chen, L., Zhang, D., Yu, L., & Dong, H. (2019). Targeting MIAT reduces apoptosis of cardiomyocytes after ischemia/reperfusion injury. Bioengineered, 10(1), 121–132.CrossRef
17.
go back to reference Wen, Q., Liu, Y., Lyu, H., Xu, X., Wu, Q., Liu, N., et al. (2017). Long noncoding RNA GAS5, which acts as a tumor suppressor via microRNA 21, regulates cisplatin resistance expression in cervical cancer. International Journal of Gynecological Cancer : Official Journal of the International Gynecological Cancer Society, 27(6), 1096–1108.CrossRef Wen, Q., Liu, Y., Lyu, H., Xu, X., Wu, Q., Liu, N., et al. (2017). Long noncoding RNA GAS5, which acts as a tumor suppressor via microRNA 21, regulates cisplatin resistance expression in cervical cancer. International Journal of Gynecological Cancer : Official Journal of the International Gynecological Cancer Society, 27(6), 1096–1108.CrossRef
18.
go back to reference Ji, J., Dai, X., Yeung, S. J., & He, X. (2019). The role of long non-coding RNA GAS5 in cancers. Cancer Management and Research, 11, 2729–2737.CrossRef Ji, J., Dai, X., Yeung, S. J., & He, X. (2019). The role of long non-coding RNA GAS5 in cancers. Cancer Management and Research, 11, 2729–2737.CrossRef
19.
go back to reference Zhang, J. C., Xia, L., Jiang, Y., Wu, D. Q., Liu, S. C., Zhou, X. N., et al. (2019). Effect of lncRNA GAS5 on rats with acute myocardial infarction through regulating miR-21. European Review for Medical and Pharmacological Sciences, 23(19), 8573–8579.PubMed Zhang, J. C., Xia, L., Jiang, Y., Wu, D. Q., Liu, S. C., Zhou, X. N., et al. (2019). Effect of lncRNA GAS5 on rats with acute myocardial infarction through regulating miR-21. European Review for Medical and Pharmacological Sciences, 23(19), 8573–8579.PubMed
20.
go back to reference Hochman, J. S., & Bulkley, B. H. (1982). Expansion of acute myocardial infarction: an experimental study. Circulation, 65(7), 1446–1450.CrossRef Hochman, J. S., & Bulkley, B. H. (1982). Expansion of acute myocardial infarction: an experimental study. Circulation, 65(7), 1446–1450.CrossRef
21.
go back to reference Cai, M. X., Shi, X. C., Chen, T., Tan, Z. N., Lin, Q. Q., Du, S. J., et al. (2016). Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sciences, 149, 1–9.CrossRef Cai, M. X., Shi, X. C., Chen, T., Tan, Z. N., Lin, Q. Q., Du, S. J., et al. (2016). Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sciences, 149, 1–9.CrossRef
22.
go back to reference Rostamzadeh, F., Najafipour, H., Yeganeh-Hajahmadi, M., Esmaeili-Mahani, S., Joukar, S., & Iranpour, M. (2017). Heterodimerization of apelin and opioid receptors and cardiac inotropic and lusitropic effects of apelin in 2K1C hypertension: role of pERK1/2 and PKC. Life Sciences, 191, 24–33.CrossRef Rostamzadeh, F., Najafipour, H., Yeganeh-Hajahmadi, M., Esmaeili-Mahani, S., Joukar, S., & Iranpour, M. (2017). Heterodimerization of apelin and opioid receptors and cardiac inotropic and lusitropic effects of apelin in 2K1C hypertension: role of pERK1/2 and PKC. Life Sciences, 191, 24–33.CrossRef
23.
go back to reference Velkov, Z., Lolov, R., Lolov, V., Nicolov, N., & Todorova, M. (1986). Effect of captopril on some ventricular contractility indices in spontaneously hypertensive rats (SHR). The Japanese Journal of Physiology, 36(4), 815–820.CrossRef Velkov, Z., Lolov, R., Lolov, V., Nicolov, N., & Todorova, M. (1986). Effect of captopril on some ventricular contractility indices in spontaneously hypertensive rats (SHR). The Japanese Journal of Physiology, 36(4), 815–820.CrossRef
24.
go back to reference Weiss, J. L., Frederiksen, J. W., & Weisfeldt, M. L. (1976). Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. The Journal of Clinical Investigation, 58(3), 751–760.CrossRef Weiss, J. L., Frederiksen, J. W., & Weisfeldt, M. L. (1976). Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. The Journal of Clinical Investigation, 58(3), 751–760.CrossRef
25.
go back to reference Tanriverdi, L. H., Parlakpinar, H., Ozhan, O., Ermis, N., Polat, A., Vardi, N., et al. (2017). Inhibition of NADPH oxidase by apocynin promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress in rats. Free Radical Research, 51(9–10), 772–786.CrossRef Tanriverdi, L. H., Parlakpinar, H., Ozhan, O., Ermis, N., Polat, A., Vardi, N., et al. (2017). Inhibition of NADPH oxidase by apocynin promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress in rats. Free Radical Research, 51(9–10), 772–786.CrossRef
26.
go back to reference Han, C. L., Ge, M., Liu, Y. P., Zhao, X. M., Wang, K. L., Chen, N., et al. (2018). Long non-coding RNA H19 contributes to apoptosis of hippocampal neurons by inhibiting let-7b in a rat model of temporal lobe epilepsy. Cell Death & Disease, 9(6), 617.CrossRef Han, C. L., Ge, M., Liu, Y. P., Zhao, X. M., Wang, K. L., Chen, N., et al. (2018). Long non-coding RNA H19 contributes to apoptosis of hippocampal neurons by inhibiting let-7b in a rat model of temporal lobe epilepsy. Cell Death & Disease, 9(6), 617.CrossRef
27.
go back to reference Zhou, X., Zhang, W., Jin, M., Chen, J., Xu, W., & Kong, X. (2017). lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. Cell Death & Disease, 8(7), e2929.CrossRef Zhou, X., Zhang, W., Jin, M., Chen, J., Xu, W., & Kong, X. (2017). lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. Cell Death & Disease, 8(7), e2929.CrossRef
28.
go back to reference Wu, N., Zhang, X., Bao, Y., Yu, H., Jia, D., & Ma, C. (2019). Down-regulation of GAS5 ameliorates myocardial ischaemia/reperfusion injury via the miR-335/ROCK1/AKT/GSK-3β axis. Journal of Cellular and Molecular Medicine, 23(12), 8420–8431.CrossRef Wu, N., Zhang, X., Bao, Y., Yu, H., Jia, D., & Ma, C. (2019). Down-regulation of GAS5 ameliorates myocardial ischaemia/reperfusion injury via the miR-335/ROCK1/AKT/GSK-3β axis. Journal of Cellular and Molecular Medicine, 23(12), 8420–8431.CrossRef
29.
go back to reference Sawicki KT, Chang HC, Shapiro JS, Bayeva M, De Jesus A, Finck BN, et al. (2018). Hepatic tristetraprolin promotes insulin resistance through RNA destabilization of FGF21. JCI insight, 3(13), e95948.CrossRef Sawicki KT, Chang HC, Shapiro JS, Bayeva M, De Jesus A, Finck BN, et al. (2018). Hepatic tristetraprolin promotes insulin resistance through RNA destabilization of FGF21. JCI insight, 3(13), e95948.CrossRef
30.
go back to reference Garza, M. A., Wason, E. A., & Zhang, J. Q. (2015). Cardiac remodeling and physical training post myocardial infarction. World Journal of Cardiology, 7(2), 52–64.CrossRef Garza, M. A., Wason, E. A., & Zhang, J. Q. (2015). Cardiac remodeling and physical training post myocardial infarction. World Journal of Cardiology, 7(2), 52–64.CrossRef
31.
go back to reference Chen C, Tang Y, Sun H, Lin X, Jiang B. (2019). The roles of long noncoding RNAs (lncRNAs) in myocardial pathophysiology. Bioscience Reports, 39(11), BSR20190966.CrossRef Chen C, Tang Y, Sun H, Lin X, Jiang B. (2019). The roles of long noncoding RNAs (lncRNAs) in myocardial pathophysiology. Bioscience Reports, 39(11), BSR20190966.CrossRef
32.
go back to reference Qu, X., Du, Y., Shu, Y., Gao, M., Sun, F., Luo, S., et al. (2017). MIAT Is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Scientific Reports, 7, 42657.CrossRef Qu, X., Du, Y., Shu, Y., Gao, M., Sun, F., Luo, S., et al. (2017). MIAT Is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Scientific Reports, 7, 42657.CrossRef
33.
go back to reference Zhou, M., Zou, Y. G., Xue, Y. Z., Wang, X. H., Gao, H., Dong, H. W., et al. (2018). Long non-coding RNA H19 protects acute myocardial infarction through activating autophagy in mice. European Review for Medical and Pharmacological Sciences, 22(17), 5647–5651.PubMed Zhou, M., Zou, Y. G., Xue, Y. Z., Wang, X. H., Gao, H., Dong, H. W., et al. (2018). Long non-coding RNA H19 protects acute myocardial infarction through activating autophagy in mice. European Review for Medical and Pharmacological Sciences, 22(17), 5647–5651.PubMed
34.
go back to reference Liu, L., An, X., Li, Z., Song, Y., Li, L., Zuo, S., et al. (2016). The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovascular Research, 111(1), 56–65.CrossRef Liu, L., An, X., Li, Z., Song, Y., Li, L., Zuo, S., et al. (2016). The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovascular Research, 111(1), 56–65.CrossRef
35.
go back to reference Zhang, Y., Hou, Y. M., Gao, F., Xiao, J. W., Li, C. C., & Tang, Y. (2019). lncRNA GAS5 regulates myocardial infarction by targeting the miR-525-5p/CALM2 axis. Journal of Cellular Biochemistry, 120(11), 18678–18688.CrossRef Zhang, Y., Hou, Y. M., Gao, F., Xiao, J. W., Li, C. C., & Tang, Y. (2019). lncRNA GAS5 regulates myocardial infarction by targeting the miR-525-5p/CALM2 axis. Journal of Cellular Biochemistry, 120(11), 18678–18688.CrossRef
36.
go back to reference Hao, S., Liu, X., Sui, X., Pei, Y., Liang, Z., & Zhou, N. (2018). Long non-coding RNA GAS5 reduces cardiomyocyte apoptosis induced by MI through sema3a. International Journal of Biological Macromolecules, 120(Pt A), 371–377. Hao, S., Liu, X., Sui, X., Pei, Y., Liang, Z., & Zhou, N. (2018). Long non-coding RNA GAS5 reduces cardiomyocyte apoptosis induced by MI through sema3a. International Journal of Biological Macromolecules, 120(Pt A), 371–377.
37.
go back to reference Freedman, J. E., & Miano, J. M. (2017). Challenges and opportunities in linking long noncoding RNAs to cardiovascular, lung, and blood diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(1), 21–25.CrossRef Freedman, J. E., & Miano, J. M. (2017). Challenges and opportunities in linking long noncoding RNAs to cardiovascular, lung, and blood diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(1), 21–25.CrossRef
38.
go back to reference Nielsen, M., Tehler, D., Vang, S., Sudzina, F., Hedegaard, J., Nordentoft, I., et al. (2013). Identification of expressed and conserved human noncoding RNAs. RNA (New York, NY), 20(2), 236–251.CrossRef Nielsen, M., Tehler, D., Vang, S., Sudzina, F., Hedegaard, J., Nordentoft, I., et al. (2013). Identification of expressed and conserved human noncoding RNAs. RNA (New York, NY), 20(2), 236–251.CrossRef
39.
go back to reference Brannan, C. I., Dees, E., Ingram, R. S., & Tilghman, S. M. (1990). The product of the H19 gene may function as an RNA. Molecular and Cellular Biology, 10, 28–36.CrossRef Brannan, C. I., Dees, E., Ingram, R. S., & Tilghman, S. M. (1990). The product of the H19 gene may function as an RNA. Molecular and Cellular Biology, 10, 28–36.CrossRef
40.
go back to reference Li, D., & Yang, M. (2017). Identification and characterization of conserved lncRNAs in human and rat brain. BMC Bioinformatics, 18(14), 31–38. Li, D., & Yang, M. (2017). Identification and characterization of conserved lncRNAs in human and rat brain. BMC Bioinformatics, 18(14), 31–38.
Metadata
Title
Modulation of the Expression of Long Non-Coding RNAs H19, GAS5, and MIAT by Endurance Exercise in the Hearts of Rats with Myocardial Infarction
Authors
Saeideh Jafarinejad Farsangi
Farzaneh Rostamzadeh
Mozhgan Sheikholeslami
Elham Jafari
Mohammadreza Karimzadeh
Publication date
01-02-2021
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 2/2021
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-020-09607-0

Other articles of this Issue 2/2021

Cardiovascular Toxicology 2/2021 Go to the issue