Skip to main content
Top
Published in: Cardiovascular Toxicology 2/2021

01-02-2021

Bradykinin-Potentiating Activity of a Gamma-Irradiated Bioactive Fraction Isolated from Scorpion (Leiurus quinquestriatus) Venom in Rats with Doxorubicin-Induced Acute Cardiotoxicity: Favorable Modulation of Oxidative Stress and Inflammatory, Fibrogenic and Apoptotic Pathways

Authors: Lamiaa A. Ahmed, Fatma Y. Abdou, Abir A. El Fiky, Esmat A. Shaaban, Afaf A. Ain-Shoka

Published in: Cardiovascular Toxicology | Issue 2/2021

Login to get access

Abstract

Although doxorubicin (Dox) is a backbone of chemotherapy, the search for an effective and safe therapy to revoke Dox-induced acute cardiotoxicity remains a critical matter in cardiology and oncology. The current study was the first to explore the probable protective effects of native and gamma-irradiated fractions with bradykinin-potentiating activity (BPA) isolated from scorpion (Leiurus quinquestriatus) venom against Dox-induced acute cardiotoxicity in rats. Native or irradiated fractions (1 μg/g) were administered intraperitoneally (i.p.) twice per week for 3 weeks, and Dox (15 mg/kg, i.p.) was administered on day 21 at 1 h after the last native or irradiated fraction treatment. Electrocardiographic (ECG) aberrations were ameliorated in the Dox-treated rats pretreated with the native fraction, and the irradiated fraction provided greater amelioration of ECG changes than that of the native fraction. The group pretreated with native protein with BPA also exhibited significant improvements in the levels of oxidative stress-related, inflammatory, angiogenic, fibrogenic, and apoptotic markers compared with those of the Dox group. Notably, the irradiated fraction restored these biomarkers to their normal levels. Additionally, the irradiated fraction ameliorated Dox-induced histological changes and alleviated the severity of cardiac injury to a greater extent than that of the native fraction. In conclusion, the gamma-irradiated detoxified fraction of scorpion venom elicited a better cardioprotective effect than that of the native fraction against Dox-induced acute cardiotoxicity in rats.
Literature
1.
go back to reference Pennington, M. W., Czerwinski, A., & Norton, R. S. (2018). Peptide therapeutics from venom: Current status and potential. Bioorganic & Medicinal Chemistry, 26, 2738–2758. Pennington, M. W., Czerwinski, A., & Norton, R. S. (2018). Peptide therapeutics from venom: Current status and potential. Bioorganic & Medicinal Chemistry, 26, 2738–2758.
2.
go back to reference Ferreira, S. H. A. (1965). A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. British Journal of Pharmacology and Chemotherapy, 24(1), 163–169.PubMedPubMedCentral Ferreira, S. H. A. (1965). A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. British Journal of Pharmacology and Chemotherapy, 24(1), 163–169.PubMedPubMedCentral
3.
go back to reference Cushman, D. W., & Ondetti, M. A. (1991). History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension, 17(4), 589–592.PubMed Cushman, D. W., & Ondetti, M. A. (1991). History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension, 17(4), 589–592.PubMed
4.
go back to reference Fernandez, J. H., Neshich, G., & Camargo, A. C. (2004). Using bradykinin-potentiating peptide structures to develop new antihypertensive drugs. Genetics and Molecular Research, 3(4), 554–563.PubMed Fernandez, J. H., Neshich, G., & Camargo, A. C. (2004). Using bradykinin-potentiating peptide structures to develop new antihypertensive drugs. Genetics and Molecular Research, 3(4), 554–563.PubMed
5.
go back to reference Dendorfer, A., Wolfrum, S., & Dominiak, P. (1999). Pharmacology and cardiovascular implications of the kinin-kallikrein system. Japanese Journal of Pharmacology., 79(4), 403–426.PubMed Dendorfer, A., Wolfrum, S., & Dominiak, P. (1999). Pharmacology and cardiovascular implications of the kinin-kallikrein system. Japanese Journal of Pharmacology., 79(4), 403–426.PubMed
6.
go back to reference Sciani, J. M., & Pimenta, D. C. (2017). The modular nature of bradykinin potentiating peptides isolated from snake venoms. Journal of Venomous Animals and Toxins including Tropical Diseases, 23, 45. Sciani, J. M., & Pimenta, D. C. (2017). The modular nature of bradykinin potentiating peptides isolated from snake venoms. Journal of Venomous Animals and Toxins including Tropical Diseases, 23, 45.
7.
go back to reference Verano-Braga, T., Rocha-Resende, C., Silva, D. M., Ianzer, D., Martin-Eauclaire, M. F., Bougis, P. E., et al. (2008). Tityus serrulatus hypotensins: A new family of peptides from scorpion venom. Biochemical and Biophysical Research Communications, 371(3), 515–520.PubMed Verano-Braga, T., Rocha-Resende, C., Silva, D. M., Ianzer, D., Martin-Eauclaire, M. F., Bougis, P. E., et al. (2008). Tityus serrulatus hypotensins: A new family of peptides from scorpion venom. Biochemical and Biophysical Research Communications, 371(3), 515–520.PubMed
8.
go back to reference Conceição, K., Konno, K., de Melo, R. L., Antoniazzi, M. M., Jared, C., Sciani, J. M., et al. (2007). Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis. Peptides, 28(3), 515–523.PubMed Conceição, K., Konno, K., de Melo, R. L., Antoniazzi, M. M., Jared, C., Sciani, J. M., et al. (2007). Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis. Peptides, 28(3), 515–523.PubMed
9.
go back to reference Chi, C. W., Wang, S. Z., Lg, X., Wang, M. Y., Lo, S. S., & Huang, W. D. (1985). Structure-function studies on the bradykinin potentiating peptide from Chinese snake venom (Agkistrodon halys Pallas). Peptides, 6(3), 339–342.PubMed Chi, C. W., Wang, S. Z., Lg, X., Wang, M. Y., Lo, S. S., & Huang, W. D. (1985). Structure-function studies on the bradykinin potentiating peptide from Chinese snake venom (Agkistrodon halys Pallas). Peptides, 6(3), 339–342.PubMed
10.
go back to reference Cintra, A. C., Vieira, C. A., & Giglio, J. R. (1990). Primary structure and biological activity of bradykinin potentiating peptides from Bothrops insularis snake venom. Journal of Protein Chemistry., 9(2), 221–227.PubMed Cintra, A. C., Vieira, C. A., & Giglio, J. R. (1990). Primary structure and biological activity of bradykinin potentiating peptides from Bothrops insularis snake venom. Journal of Protein Chemistry., 9(2), 221–227.PubMed
11.
go back to reference Gomes, C. L., Konno, K., Conceicao, I. M., Ianzer, D., Yamanouye, N., Prezoto, B. C., et al. (2007). Identification of novel bradykinin-potentiating peptides (BPPs) in the venom gland of a rattlesnake allowed the evaluation of the structure-function relationship of BPPs. Biochemical Pharmacology., 74(9), 1350–1360.PubMed Gomes, C. L., Konno, K., Conceicao, I. M., Ianzer, D., Yamanouye, N., Prezoto, B. C., et al. (2007). Identification of novel bradykinin-potentiating peptides (BPPs) in the venom gland of a rattlesnake allowed the evaluation of the structure-function relationship of BPPs. Biochemical Pharmacology., 74(9), 1350–1360.PubMed
12.
go back to reference Zeng, X. C., Corzo, G., & Hahin, R. (2005). Scorpion venom peptides without disulfide bridges. IUBMB Life, 1, 13–21. Zeng, X. C., Corzo, G., & Hahin, R. (2005). Scorpion venom peptides without disulfide bridges. IUBMB Life, 1, 13–21.
13.
go back to reference Zhijian, C., Feng, L., Yingliang, W., Xin, M., & Wenxin, L. (2006). Genetic mechanisms of scorpion venom peptide diversification. Toxicon, 47, 348–355.PubMed Zhijian, C., Feng, L., Yingliang, W., Xin, M., & Wenxin, L. (2006). Genetic mechanisms of scorpion venom peptide diversification. Toxicon, 47, 348–355.PubMed
14.
go back to reference Camargo, A. C., Ianzer, D., Guerreiro, J. R., & Serrano, S. M. (2012). Bradykinin-potentiating peptides: Beyond captopril. Toxicon, 59, 516–523.PubMed Camargo, A. C., Ianzer, D., Guerreiro, J. R., & Serrano, S. M. (2012). Bradykinin-potentiating peptides: Beyond captopril. Toxicon, 59, 516–523.PubMed
15.
go back to reference Ortiz, E., Gurrola, G. B., Schwartz, E. F., & Possani, L. D. (2015). Scorpion venom com-ponents as potential candidates for drug development. Toxicon, 93, 125–135.PubMed Ortiz, E., Gurrola, G. B., Schwartz, E. F., & Possani, L. D. (2015). Scorpion venom com-ponents as potential candidates for drug development. Toxicon, 93, 125–135.PubMed
16.
go back to reference Amra, E. A., Lashein, F. M., Seleem, A. A., & Badr, A. H. (2018). Counter effect of bee venom and its extracted bradykinin-potentiating factor on acrylamide and chips administration induced complications in the liver and kidney of male mice. The Journal of Basic and Applied Zoology., 79, 34. Amra, E. A., Lashein, F. M., Seleem, A. A., & Badr, A. H. (2018). Counter effect of bee venom and its extracted bradykinin-potentiating factor on acrylamide and chips administration induced complications in the liver and kidney of male mice. The Journal of Basic and Applied Zoology., 79, 34.
17.
go back to reference Lipps, B. V. (1998). Biological and immunological properties of nerve growth factor from snake venom. Journal of Natural Toxins., 7, 121–130.PubMed Lipps, B. V. (1998). Biological and immunological properties of nerve growth factor from snake venom. Journal of Natural Toxins., 7, 121–130.PubMed
18.
go back to reference Guo, L. Y., Zhu, J. F., & Wu, X. F. (1999). Cloning of a cDNA encoding a nerve growth factor precursor from the Agkistrodon halys Pallas. Toxicon, 37, 465–470.PubMed Guo, L. Y., Zhu, J. F., & Wu, X. F. (1999). Cloning of a cDNA encoding a nerve growth factor precursor from the Agkistrodon halys Pallas. Toxicon, 37, 465–470.PubMed
19.
go back to reference Nassar, A. Y., Abu Sinna, G., & Abd-El-Rahim, S. A. (1990). Effect of a bradykinin potentiating fraction isolated from venom of the Egyptian scorpion, Buthus occitanus on the ovaries and endometrium of mice. Toxicon, 28(5), 525–534.PubMed Nassar, A. Y., Abu Sinna, G., & Abd-El-Rahim, S. A. (1990). Effect of a bradykinin potentiating fraction isolated from venom of the Egyptian scorpion, Buthus occitanus on the ovaries and endometrium of mice. Toxicon, 28(5), 525–534.PubMed
20.
go back to reference Bekheet, S. H. M., Awadallaa, E. A., Salman, M. M. A., & Hassan, M. K. (2011). Bradykinin potentiating factor isolated from Buthus occitanus venom has a protective effect against cadmium-induced rat liver and kidney damage. Journal of Tissue and Cell., 43, 337–343.PubMed Bekheet, S. H. M., Awadallaa, E. A., Salman, M. M. A., & Hassan, M. K. (2011). Bradykinin potentiating factor isolated from Buthus occitanus venom has a protective effect against cadmium-induced rat liver and kidney damage. Journal of Tissue and Cell., 43, 337–343.PubMed
21.
go back to reference El-Saadani, M. A. (2004). A scorpion venom peptide fraction induced prostaglandin biosynthesis in guinea pig kidneys: Incorporation of 14C-linoleic acid. Journal of Biochemistry., 135, 109–116.PubMed El-Saadani, M. A. (2004). A scorpion venom peptide fraction induced prostaglandin biosynthesis in guinea pig kidneys: Incorporation of 14C-linoleic acid. Journal of Biochemistry., 135, 109–116.PubMed
22.
go back to reference Meki, A. M. A., & Omar, H. M. A. (1997). Bradykinin potentiating fraction isolated from the venom of Egyptian scorpion Buthus occitanus induced prostaglandin biosynthesis in female guinea pigs. Comparative Biochemistry & Physiology., 116(3), 183–189. Meki, A. M. A., & Omar, H. M. A. (1997). Bradykinin potentiating fraction isolated from the venom of Egyptian scorpion Buthus occitanus induced prostaglandin biosynthesis in female guinea pigs. Comparative Biochemistry & Physiology., 116(3), 183–189.
23.
go back to reference Nassar, A. Y., Abu-Sinna, G., Abdel Rahim, S., Soliman, M., & El-Saadani, M. (1992). Bradykinin potentiating fraction isolated from venom of Buthus occitanus promotes spermatogenesis in premature mice. Rec Advantage Toxinology and Research, 2, 119–135. Nassar, A. Y., Abu-Sinna, G., Abdel Rahim, S., Soliman, M., & El-Saadani, M. (1992). Bradykinin potentiating fraction isolated from venom of Buthus occitanus promotes spermatogenesis in premature mice. Rec Advantage Toxinology and Research, 2, 119–135.
24.
go back to reference Takemura, G., & Fujiwara, H. (2007). Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Progress in Cardiovascular Diseases, 49, 330–352.PubMed Takemura, G., & Fujiwara, H. (2007). Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Progress in Cardiovascular Diseases, 49, 330–352.PubMed
25.
go back to reference Sant, M., Allemani, C., & Santaquilani, M. (2009). Survival of cancer patients diagnosed in 1995–1999. Results and commentary. European Journal of Cancer., 45(6), 931–991.PubMed Sant, M., Allemani, C., & Santaquilani, M. (2009). Survival of cancer patients diagnosed in 1995–1999. Results and commentary. European Journal of Cancer., 45(6), 931–991.PubMed
26.
go back to reference Chang, W. T., Li, J., Haung, H. H., Liu, H., & Han, M. (2011). Baicalein protects against doxorubicin-induced cardiotoxicity by attenuation of mitochondrial oxidant injury and JNK activation. Journal of Cellular and Biochemistry, 112, 2873–2881. Chang, W. T., Li, J., Haung, H. H., Liu, H., & Han, M. (2011). Baicalein protects against doxorubicin-induced cardiotoxicity by attenuation of mitochondrial oxidant injury and JNK activation. Journal of Cellular and Biochemistry, 112, 2873–2881.
27.
go back to reference Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.PubMed Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.PubMed
28.
go back to reference Sawyer, D. B., Peng, X., Chen, B., Pentassuglia, L., & Lim, C. C. (2010). Mechanisms of anthracycline cardiac injury: Can we identify strategies for cardioprotection? Progress in Cardiovascular Diseases, 53, 105–113.PubMedPubMedCentral Sawyer, D. B., Peng, X., Chen, B., Pentassuglia, L., & Lim, C. C. (2010). Mechanisms of anthracycline cardiac injury: Can we identify strategies for cardioprotection? Progress in Cardiovascular Diseases, 53, 105–113.PubMedPubMedCentral
29.
go back to reference Scott, J. M., Khakoo, A., Mackey, J. R., Haykowsky, M. J., & Douglas, P. S. (2011). Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: Current evidence and underlying mechanisms. Circulation, 124, 642–650.PubMedPubMedCentral Scott, J. M., Khakoo, A., Mackey, J. R., Haykowsky, M. J., & Douglas, P. S. (2011). Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: Current evidence and underlying mechanisms. Circulation, 124, 642–650.PubMedPubMedCentral
30.
go back to reference Kalyanaraman, B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biology, 29, 101394.PubMed Kalyanaraman, B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biology, 29, 101394.PubMed
31.
go back to reference Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer, 97, 2869–2879.PubMed Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer, 97, 2869–2879.PubMed
32.
go back to reference Nebigil, C. G., & Désaubry, L. (2018). Updates in anthracycline-mediated cardiotoxicity. Frontiers in Pharmacology, 9, 1262.PubMedPubMedCentral Nebigil, C. G., & Désaubry, L. (2018). Updates in anthracycline-mediated cardiotoxicity. Frontiers in Pharmacology, 9, 1262.PubMedPubMedCentral
33.
go back to reference Danz, E. D., Skramsted, J., Henry, N., Bennett, J. A., & Keller, R. S. (2009). Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radical Biology and Medicine., 46, 1589–1597.PubMed Danz, E. D., Skramsted, J., Henry, N., Bennett, J. A., & Keller, R. S. (2009). Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radical Biology and Medicine., 46, 1589–1597.PubMed
34.
go back to reference Chang, H. M., Moudgil, R., Scarabelli, T., Okwuosa, T. M., & Yeh, E. T. H. (2017). Cardiovascular complications of cancer therapy: Best practices in diagnosis, prevention, and management: Part 1. Journal of American College of Cardiology., 70(20), 2536–2551. Chang, H. M., Moudgil, R., Scarabelli, T., Okwuosa, T. M., & Yeh, E. T. H. (2017). Cardiovascular complications of cancer therapy: Best practices in diagnosis, prevention, and management: Part 1. Journal of American College of Cardiology., 70(20), 2536–2551.
35.
go back to reference El-Demerdash, E., Ali, A. A., Sayed-Ahmed, M. M., & Osman, A. M. (2003). New aspects in probucol cardioprotection against doxorubicin-induced cardiotoxicity. Cancer Chemotherapy and Pharmacology., 52(5), 411–416.PubMed El-Demerdash, E., Ali, A. A., Sayed-Ahmed, M. M., & Osman, A. M. (2003). New aspects in probucol cardioprotection against doxorubicin-induced cardiotoxicity. Cancer Chemotherapy and Pharmacology., 52(5), 411–416.PubMed
36.
go back to reference Silva dos Santos, D., & Goldenberg, R. C. (2018). Doxorubicin-induced cardiotoxicity: From mechanisms to development of efficient therapy. In Cardiotoxicity. Intechopen. Silva dos Santos, D., & Goldenberg, R. C. (2018). Doxorubicin-induced cardiotoxicity: From mechanisms to development of efficient therapy. In Cardiotoxicity. Intechopen.
37.
go back to reference Bosch, X., Rovira, M., Sitges, M., Domènech, A., Ortiz-Pérez, J. T., de Caralt, T. M., et al. (2013). Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: The overcome trial (prevention of left ventricular dysfunction with Enalapril and carvedilol in patients submitted to intensive Chemotherapy for the treatment of Malignant hemopathies). Journal of American College of Cardiology., 61, 2355–2362. Bosch, X., Rovira, M., Sitges, M., Domènech, A., Ortiz-Pérez, J. T., de Caralt, T. M., et al. (2013). Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: The overcome trial (prevention of left ventricular dysfunction with Enalapril and carvedilol in patients submitted to intensive Chemotherapy for the treatment of Malignant hemopathies). Journal of American College of Cardiology., 61, 2355–2362.
38.
go back to reference Ibrahim, M. A., Ashour, O. M., Ibrahim, Y. F., El-Bitar, H. I., Gomaa, W., & Abdel-Rahim, S. R. (2009). Angiotensin-converting enzyme inhibition and angiotensin AT(1)-receptor antagonism equally improve doxorubicin-induced cardiotoxicity and nephrotoxicity. Pharmacological Research., 60, 373–381.PubMed Ibrahim, M. A., Ashour, O. M., Ibrahim, Y. F., El-Bitar, H. I., Gomaa, W., & Abdel-Rahim, S. R. (2009). Angiotensin-converting enzyme inhibition and angiotensin AT(1)-receptor antagonism equally improve doxorubicin-induced cardiotoxicity and nephrotoxicity. Pharmacological Research., 60, 373–381.PubMed
39.
go back to reference Blaes, A. H., Gaillard, P., Peterson, B. A., Yee, D., & Virnig, B. (2010). Angiotensin converting enzyme inhibitors may be protective against cardiac complications following anthracycline chemotherapy. Breast Cancer Research Treatment., 122, 585–590.PubMed Blaes, A. H., Gaillard, P., Peterson, B. A., Yee, D., & Virnig, B. (2010). Angiotensin converting enzyme inhibitors may be protective against cardiac complications following anthracycline chemotherapy. Breast Cancer Research Treatment., 122, 585–590.PubMed
40.
go back to reference Morris, S. D., & Yellon, D. M. (1997). Angiotensin-converting enzyme inhibitors potentiate preconditioning through Bradykinin B2 Receptor activation in human heart. JACC., 29(7), 1599–1606.PubMed Morris, S. D., & Yellon, D. M. (1997). Angiotensin-converting enzyme inhibitors potentiate preconditioning through Bradykinin B2 Receptor activation in human heart. JACC., 29(7), 1599–1606.PubMed
41.
go back to reference Caproni, P., Baptista, J. A., de Almeida, T. L., Passos, L. A. C., & Nascimento, N. (2009). Study of irradiated bothropstoxin-1 with 60Co gamma rays: Immune system behavior. Journal of Venomous Animals and Toxins including Tropical Diseases., 15(2), 216–225. Caproni, P., Baptista, J. A., de Almeida, T. L., Passos, L. A. C., & Nascimento, N. (2009). Study of irradiated bothropstoxin-1 with 60Co gamma rays: Immune system behavior. Journal of Venomous Animals and Toxins including Tropical Diseases., 15(2), 216–225.
42.
go back to reference Oliveira, K. C., Spencer, P. J., Ferreira, R. S., & Nascimento, N. (2015). New insights into the structural characteristics of irradiated crotamine. Journal of Venomous Animals and Toxins including Tropical Diseases., 21, 14. Oliveira, K. C., Spencer, P. J., Ferreira, R. S., & Nascimento, N. (2015). New insights into the structural characteristics of irradiated crotamine. Journal of Venomous Animals and Toxins including Tropical Diseases., 21, 14.
43.
go back to reference Nascimento, N., Seebart, C. S., Francis, B., Rogero, J. R., & Kaiser, I. I. (1996). Influence of ionizing radiation on crotoxin: Biochemical and immunological aspects. Toxicon, 34(1), 123–131.PubMed Nascimento, N., Seebart, C. S., Francis, B., Rogero, J. R., & Kaiser, I. I. (1996). Influence of ionizing radiation on crotoxin: Biochemical and immunological aspects. Toxicon, 34(1), 123–131.PubMed
44.
go back to reference Clissa, B. P., Nascimento, N. D., & Rogero, J. R. (1999). Toxicity and immunogenicity of Crotalus durissus terrificus venom treated with different doses of gamma rays. Toxicon, 37, 1131–1141.PubMed Clissa, B. P., Nascimento, N. D., & Rogero, J. R. (1999). Toxicity and immunogenicity of Crotalus durissus terrificus venom treated with different doses of gamma rays. Toxicon, 37, 1131–1141.PubMed
45.
go back to reference Baptista, N. B., Saidemberg, D. M., de Souza, B. M., Cesar-Tognoli, L. M., Ferreira, V. M., Mendes, M. A., et al. (2010). Pro-tonectin (1–6): A novel chemotactic peptide from the venom of the social was Agelaia pallipes pallipes. Toxicon, 56, 880–889. Baptista, N. B., Saidemberg, D. M., de Souza, B. M., Cesar-Tognoli, L. M., Ferreira, V. M., Mendes, M. A., et al. (2010). Pro-tonectin (1–6): A novel chemotactic peptide from the venom of the social was Agelaia pallipes pallipes. Toxicon, 56, 880–889.
46.
go back to reference Yaqoob, R., Tahir, H. M., Arshad, M., Naseem, S., & Ahsan, M. M. (2016). Optimization of the conditions for maximum recovery of venom from scorpions by electrical stimulation. Pakistan Journal of Zoology., 48, 265–269. Yaqoob, R., Tahir, H. M., Arshad, M., Naseem, S., & Ahsan, M. M. (2016). Optimization of the conditions for maximum recovery of venom from scorpions by electrical stimulation. Pakistan Journal of Zoology., 48, 265–269.
47.
go back to reference Meier, J., & Theakston, R. D. C. (1986). Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Toxicon, 24, 345–401. Meier, J., & Theakston, R. D. C. (1986). Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Toxicon, 24, 345–401.
48.
go back to reference Casare, M. S., Baptista, J. A., Spencer, P. J., & Nascimento, N. (2004). Effects of 60Co radiation on the molecular strucure of crotamine. Radiation Physics and Chemistry, 71, 417–418. Casare, M. S., Baptista, J. A., Spencer, P. J., & Nascimento, N. (2004). Effects of 60Co radiation on the molecular strucure of crotamine. Radiation Physics and Chemistry, 71, 417–418.
49.
go back to reference Zordoky, B. N. M., Mohamed, A. A., Aboutabl, M. E., & El-Kadi, A. O. S. (2011). Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicology and Applied Pharmacology., 242, 38–46. Zordoky, B. N. M., Mohamed, A. A., Aboutabl, M. E., & El-Kadi, A. O. S. (2011). Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicology and Applied Pharmacology., 242, 38–46.
50.
go back to reference Ashry, O., Moustafa, M., Baset, A. A. E., Abu Sinna, G. E., & Farouk, H. (2012). Outcome of venom bradykinin potentiating factor on rennin-angiotensin system in irradiated rats. International Journal of Radiation Biology, 88(11), 840–845.PubMed Ashry, O., Moustafa, M., Baset, A. A. E., Abu Sinna, G. E., & Farouk, H. (2012). Outcome of venom bradykinin potentiating factor on rennin-angiotensin system in irradiated rats. International Journal of Radiation Biology, 88(11), 840–845.PubMed
51.
go back to reference Pacher, P., Liaudet, L., Bai, P., Mabley, J. G., Kaminski, P. M., Virág, L., et al. (2003). Potent Metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation, 107(6), 896–904.PubMed Pacher, P., Liaudet, L., Bai, P., Mabley, J. G., Kaminski, P. M., Virág, L., et al. (2003). Potent Metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation, 107(6), 896–904.PubMed
52.
go back to reference Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.PubMed Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.PubMed
53.
go back to reference Ahmed, L. A., Shehata, N. I., Abdelkader, N. F., & Khattab, M. M. (2014). Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice. PLoS ONE, 9, e108889.PubMedPubMedCentral Ahmed, L. A., Shehata, N. I., Abdelkader, N. F., & Khattab, M. M. (2014). Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice. PLoS ONE, 9, e108889.PubMedPubMedCentral
54.
go back to reference Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC (T)) method. Methods, 25, 402–408. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC (T)) method. Methods, 25, 402–408.
55.
go back to reference Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.PubMedPubMedCentral Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.PubMedPubMedCentral
56.
go back to reference Bancroft, J. H. D., Stevens, A., & Turner, D. R. (1990). Theory and practice of histological techniques. In Bancroft, J. D., Stevens, A., & Turner, D. R. (Eds.). 3th ed. (p. 726) London, Melbourne and New York: Churchill Livingstone Edinburg. Bancroft, J. H. D., Stevens, A., & Turner, D. R. (1990). Theory and practice of histological techniques. In Bancroft, J. D., Stevens, A., & Turner, D. R. (Eds.). 3th ed. (p. 726) London, Melbourne and New York: Churchill Livingstone Edinburg.
57.
go back to reference Acikel, M., Buyukokuroglu, M. E., Erdogan, F., Aksoy, H., Bozkurt, E., & Senocak, H. (2005). Protective effects of dantrolene against myocardial injury induced by isoproterenol in rats: Biochemical and histological findings. International Journal of Cardiology., 98(3), 389–394.PubMed Acikel, M., Buyukokuroglu, M. E., Erdogan, F., Aksoy, H., Bozkurt, E., & Senocak, H. (2005). Protective effects of dantrolene against myocardial injury induced by isoproterenol in rats: Biochemical and histological findings. International Journal of Cardiology., 98(3), 389–394.PubMed
58.
go back to reference Ammar, E. M., Said, S. A., Suddek, G. M., & El Damarawy, S. L. (2011). Amelioration of doxorubicin-induced cardiotoxicity by deferiprone in rats. Canadian Journal of Physiology and Pharmacology, 89, 269–276. Ammar, E. M., Said, S. A., Suddek, G. M., & El Damarawy, S. L. (2011). Amelioration of doxorubicin-induced cardiotoxicity by deferiprone in rats. Canadian Journal of Physiology and Pharmacology, 89, 269–276.
59.
go back to reference Koti, B. C., Nagathan, S., Vishwanathswamy, A., Gadad, P. C., & Thippeswamy, A. (2013). Cardioprotective effect of vedic guard against doxorubicin-induced cardiotoxicity in rats: A biochemical, electrocardiographic and histopathological study. Pharmacognosy Magazine, 9(34), 176–181.PubMedPubMedCentral Koti, B. C., Nagathan, S., Vishwanathswamy, A., Gadad, P. C., & Thippeswamy, A. (2013). Cardioprotective effect of vedic guard against doxorubicin-induced cardiotoxicity in rats: A biochemical, electrocardiographic and histopathological study. Pharmacognosy Magazine, 9(34), 176–181.PubMedPubMedCentral
60.
go back to reference Warpe, V. S., Mali, V. R., Arulmozhi, S., Bodhankar, S. L., & Mahadik, K. R. (2015). Cardioprotective effect of ellagic acid on doxorubicin induced cardiotoxicity in Wistar rats. Journal of Acute Medicine., 5, 1–8. Warpe, V. S., Mali, V. R., Arulmozhi, S., Bodhankar, S. L., & Mahadik, K. R. (2015). Cardioprotective effect of ellagic acid on doxorubicin induced cardiotoxicity in Wistar rats. Journal of Acute Medicine., 5, 1–8.
61.
go back to reference Emeka, P. M., & Al-Ahmed, A. (2017). Effect of metformin on ECG, HR and BP of rats administered with cardiotoxic agent doxorubicin. International Journal of Basic & Clinical Pharmacology., 6(5), 1054–1059. Emeka, P. M., & Al-Ahmed, A. (2017). Effect of metformin on ECG, HR and BP of rats administered with cardiotoxic agent doxorubicin. International Journal of Basic & Clinical Pharmacology., 6(5), 1054–1059.
62.
go back to reference Sun, X. P., Wan, L., Yang, Q. J., Huo, Y., Han, Y. L., & Arch, C. G. (2017). Scutellarin protects against doxorubicin-induced acute cardiotoxicity and regulates its accumulation in the heart. Pharmaceutical Research., 40, 875–883. Sun, X. P., Wan, L., Yang, Q. J., Huo, Y., Han, Y. L., & Arch, C. G. (2017). Scutellarin protects against doxorubicin-induced acute cardiotoxicity and regulates its accumulation in the heart. Pharmaceutical Research., 40, 875–883.
63.
go back to reference Shaker, R. A., Abboud, S. H., Assad, H. C., & Hadi, N. (2018). Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacology and Toxicology., 19, 3.PubMed Shaker, R. A., Abboud, S. H., Assad, H. C., & Hadi, N. (2018). Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacology and Toxicology., 19, 3.PubMed
64.
go back to reference Henri, C., Heinonen, T., & Tardif, J. C. (2016). The role of biomarkers in decreasing risk of cardiac toxicity after cancer therapy. Biomarkers in Cancer., 8(S2), 39–45.PubMedPubMedCentral Henri, C., Heinonen, T., & Tardif, J. C. (2016). The role of biomarkers in decreasing risk of cardiac toxicity after cancer therapy. Biomarkers in Cancer., 8(S2), 39–45.PubMedPubMedCentral
65.
go back to reference Rao, V. A. (2013). Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxidants & Redox Signaling., 18(8), 930–955. Rao, V. A. (2013). Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxidants & Redox Signaling., 18(8), 930–955.
66.
go back to reference Abu Gazia, M., & Abu El-Magd, M. (2018). Ameliorative effect of cardamom aqueous extract on doxorubicin-induced cardiotoxicity in rats. Cells Tissues Organs., 206(1–2), 62–72.PubMed Abu Gazia, M., & Abu El-Magd, M. (2018). Ameliorative effect of cardamom aqueous extract on doxorubicin-induced cardiotoxicity in rats. Cells Tissues Organs., 206(1–2), 62–72.PubMed
67.
go back to reference Ciaccio, M., Valenza, M., Tesoriere, L., Bongiorno, A., Albiero, R., & Livrea, M. A. (1993). Vitamin A inhibits doxorubicin-induced membrane lipid peroxidation in rat tissues in vivo. Archives of Biochemistry and Biophysics., 302, 103–108.PubMed Ciaccio, M., Valenza, M., Tesoriere, L., Bongiorno, A., Albiero, R., & Livrea, M. A. (1993). Vitamin A inhibits doxorubicin-induced membrane lipid peroxidation in rat tissues in vivo. Archives of Biochemistry and Biophysics., 302, 103–108.PubMed
68.
go back to reference Childs, A. C., Phaneuf, S. L., Dirks, A. J., Phillips, T., & Leeuwenbur, C. (2002). Doxorubicin treatment in vivo causes cytochrome c release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Research., 62(16), 4592–4598.PubMed Childs, A. C., Phaneuf, S. L., Dirks, A. J., Phillips, T., & Leeuwenbur, C. (2002). Doxorubicin treatment in vivo causes cytochrome c release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Research., 62(16), 4592–4598.PubMed
69.
go back to reference Mikrut, K., Paluszak, J., Kozlik, J., Sosnowski, P., Krauss, H., & Grześkowiak, E. (2001). The effect of bradykinin on the oxidative state of rats with acute hyperglycaemia. Diabetes Research and Clinical Practice, 51, 79–85.PubMed Mikrut, K., Paluszak, J., Kozlik, J., Sosnowski, P., Krauss, H., & Grześkowiak, E. (2001). The effect of bradykinin on the oxidative state of rats with acute hyperglycaemia. Diabetes Research and Clinical Practice, 51, 79–85.PubMed
70.
go back to reference Sancho-Bru, P., Bataller, R., Fernandez-Varo, G., Moreno, M., Ramalho, L. N., Colmenero, J., et al. (2007). Bradykinin attenuates hepatocellular damage and fibrosis in rats with chronic liver injury. Gastroenterology, 133(6), 2019–2028.PubMed Sancho-Bru, P., Bataller, R., Fernandez-Varo, G., Moreno, M., Ramalho, L. N., Colmenero, J., et al. (2007). Bradykinin attenuates hepatocellular damage and fibrosis in rats with chronic liver injury. Gastroenterology, 133(6), 2019–2028.PubMed
71.
go back to reference Oeseburg, H., Iusuf, D., Harst, P., Gilst, W. H., Henning, R. H., & Roks, A. J. (2009). Bradykinin protects against oxidative stress–induced endothelial cell senescence. Hypertension, 53, 417–422.PubMed Oeseburg, H., Iusuf, D., Harst, P., Gilst, W. H., Henning, R. H., & Roks, A. J. (2009). Bradykinin protects against oxidative stress–induced endothelial cell senescence. Hypertension, 53, 417–422.PubMed
72.
go back to reference Cappetta, D., De Angelis, A., Sapio, L., Prezioso, L., Illiano, M., & Quaini, F., et al. (2017). Oxidative stress and cellular response to doxorubicin: A common factor in the complex milieu of anthracycline cardiotoxicity. Oxidative Medicine and Cellular Longevity. 15210202017. Cappetta, D., De Angelis, A., Sapio, L., Prezioso, L., Illiano, M., & Quaini, F., et al. (2017). Oxidative stress and cellular response to doxorubicin: A common factor in the complex milieu of anthracycline cardiotoxicity. Oxidative Medicine and Cellular Longevity. 15210202017.
73.
go back to reference Rocca, C., Pasqua, T., Cerra, M. C., & Angelone, T. (2020). Cardiac damage in anthracyclines therapy: Focus on oxidative stress and inflammation. Antioxidants and Redox Signaling., 32(15), 1081–1097.PubMed Rocca, C., Pasqua, T., Cerra, M. C., & Angelone, T. (2020). Cardiac damage in anthracyclines therapy: Focus on oxidative stress and inflammation. Antioxidants and Redox Signaling., 32(15), 1081–1097.PubMed
74.
go back to reference Yadav, U., & Ramana, K. V. (2013). Regulation of NF-κB- induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxidative Medicine and Cellular Longevity., 690545, 11. Yadav, U., & Ramana, K. V. (2013). Regulation of NF-κB- induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxidative Medicine and Cellular Longevity., 690545, 11.
75.
go back to reference Djavaheri-Mergny, M., Javelaud, D., Wietzerbin, J., & Besançon, F. (2004). NF-kappa B activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNF alpha treated Ewing sarcoma cells. FEBS Letters., 578, 111–115.PubMed Djavaheri-Mergny, M., Javelaud, D., Wietzerbin, J., & Besançon, F. (2004). NF-kappa B activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNF alpha treated Ewing sarcoma cells. FEBS Letters., 578, 111–115.PubMed
76.
go back to reference Lingappan, K. (2018). NF-κB in oxidative stress. Current in Opinion Toxicology., 7, 81–86. Lingappan, K. (2018). NF-κB in oxidative stress. Current in Opinion Toxicology., 7, 81–86.
77.
go back to reference Zhou, S., Palmeira, C. M., & Wallace, K. B. (2001). Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicological Letters., 121, 151–157. Zhou, S., Palmeira, C. M., & Wallace, K. B. (2001). Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicological Letters., 121, 151–157.
78.
go back to reference Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews., 56, 185–229.PubMed Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews., 56, 185–229.PubMed
79.
go back to reference Sun, Z., Yan, B., YanYu, W., Yao, X., Ma, X., Sheng, G., et al. (2016). Vitexin attenuates acute doxorubicin cardiotoxicity in rats via the suppression of oxidative stress, inflammation and apoptosis and the activation of FOXO3a. Experimental and Therapeutic Medicine., 12, 1879–1884.PubMedPubMedCentral Sun, Z., Yan, B., YanYu, W., Yao, X., Ma, X., Sheng, G., et al. (2016). Vitexin attenuates acute doxorubicin cardiotoxicity in rats via the suppression of oxidative stress, inflammation and apoptosis and the activation of FOXO3a. Experimental and Therapeutic Medicine., 12, 1879–1884.PubMedPubMedCentral
80.
go back to reference Abdel-Wahab, B. A., & Metwally, M. E. (2014). Clozapine-induced cardiotoxicity in rats: Involvement of tumor necrosis factor alpha, NF-Kβ and caspase-3. Toxicological Reports, 20(1), 1213–1223. Abdel-Wahab, B. A., & Metwally, M. E. (2014). Clozapine-induced cardiotoxicity in rats: Involvement of tumor necrosis factor alpha, NF-Kβ and caspase-3. Toxicological Reports, 20(1), 1213–1223.
81.
go back to reference Kong, P., Christia, P., & Frangogiannis, N. G. (2014). The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences., 71(4), 549–574.PubMed Kong, P., Christia, P., & Frangogiannis, N. G. (2014). The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences., 71(4), 549–574.PubMed
82.
go back to reference Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research., 74(2), 184–195.PubMed Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research., 74(2), 184–195.PubMed
83.
go back to reference Chen, C. T., Wang, Z. H., Hsu, C. C., Lin, H. H., & Chen, J. H. (2015). In vivo protective effects of diosgenin against doxorubicin-induced cardiotoxicity. Nutrients., 7, 4938–4954.PubMedPubMedCentral Chen, C. T., Wang, Z. H., Hsu, C. C., Lin, H. H., & Chen, J. H. (2015). In vivo protective effects of diosgenin against doxorubicin-induced cardiotoxicity. Nutrients., 7, 4938–4954.PubMedPubMedCentral
84.
go back to reference Beckman, S. A., Chen, W. C., Tang, Y., Proto, J. D., Mlakar, L., Wang, B., et al. (2013). Beneficial effect of mechanical stimulation on the regenerative potential of muscle-derived stem cells is lost by inhibiting vascular endothelial growth factor. Arteriosclerosis, Thrombosis, and Vascular Biology., 33, 2004–2012.PubMedPubMedCentral Beckman, S. A., Chen, W. C., Tang, Y., Proto, J. D., Mlakar, L., Wang, B., et al. (2013). Beneficial effect of mechanical stimulation on the regenerative potential of muscle-derived stem cells is lost by inhibiting vascular endothelial growth factor. Arteriosclerosis, Thrombosis, and Vascular Biology., 33, 2004–2012.PubMedPubMedCentral
85.
go back to reference Attia, G. M., & El mansy RA and Algaidi SA,. (2017). Silymarin decreases the expression of VEGF-A, iNOS and caspase-3 and preserves the ultrastructure of cardiac cells in doxorubicin induced cardiotoxicity in rats: A possible protective role. International Journal of Clinical Medicine., 10(2), 4158–4173. Attia, G. M., & El mansy RA and Algaidi SA,. (2017). Silymarin decreases the expression of VEGF-A, iNOS and caspase-3 and preserves the ultrastructure of cardiac cells in doxorubicin induced cardiotoxicity in rats: A possible protective role. International Journal of Clinical Medicine., 10(2), 4158–4173.
86.
go back to reference Abdel-Raheem, I. T., Taye, A., & Abouzied, M. M. (2013). Cardioprotective effects of nicorandil, a mitochondrial potassium channel opener against doxorubicin-induced cardiotoxicity in rats. Basic & Clinical Pharmacology & Toxicology., 113, 158–166. Abdel-Raheem, I. T., Taye, A., & Abouzied, M. M. (2013). Cardioprotective effects of nicorandil, a mitochondrial potassium channel opener against doxorubicin-induced cardiotoxicity in rats. Basic & Clinical Pharmacology & Toxicology., 113, 158–166.
87.
go back to reference Laursen, J. B., Somers, M., Kurz, S., McCann, L., Warnholtz, A., & Freeman, B. A. (2001). Endothelial regulation of vasomotion in apoE-deficient mice: Implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation, 103, 1282–1288.PubMed Laursen, J. B., Somers, M., Kurz, S., McCann, L., Warnholtz, A., & Freeman, B. A. (2001). Endothelial regulation of vasomotion in apoE-deficient mice: Implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation, 103, 1282–1288.PubMed
88.
go back to reference Mungrue, I. N., Gros, R., You, X., Pirani, A., Azad, A., & Csont, T. (2002). Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. Journal of Clinical Investigation, 109, 735–743. Mungrue, I. N., Gros, R., You, X., Pirani, A., Azad, A., & Csont, T. (2002). Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. Journal of Clinical Investigation, 109, 735–743.
89.
go back to reference Abbas, N. A. T., & Kabil, S. L. (2017). Pentoxifylline and cilostazol against rat heart injuries induced by doxorubicin. Egyptian Journal of Basic and Clinical Pharmacology., 7(1), 47–56. Abbas, N. A. T., & Kabil, S. L. (2017). Pentoxifylline and cilostazol against rat heart injuries induced by doxorubicin. Egyptian Journal of Basic and Clinical Pharmacology., 7(1), 47–56.
90.
go back to reference Yu, J., Gao, H., Wu, C., Xu, Q. M., Lu, I. D. J. J., & Chen, X. (2018). Diethyl Blechnic, a novel natural product isolated from salvia miltiorrhiza bunge, inhibits doxorubicin-induced apoptosis by inhibiting ROS and activating JNK1/2. International Journal of Molecular Sciences, 19, 1809.PubMedCentral Yu, J., Gao, H., Wu, C., Xu, Q. M., Lu, I. D. J. J., & Chen, X. (2018). Diethyl Blechnic, a novel natural product isolated from salvia miltiorrhiza bunge, inhibits doxorubicin-induced apoptosis by inhibiting ROS and activating JNK1/2. International Journal of Molecular Sciences, 19, 1809.PubMedCentral
91.
go back to reference Mantawy, E. M., Esmat, A., El-Bakly, W. M., Salah ElDin, R. A., & El-Demerdash, E. (2017). Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53 MAPK and AKT pathways. Science Reports, 7, 4795. Mantawy, E. M., Esmat, A., El-Bakly, W. M., Salah ElDin, R. A., & El-Demerdash, E. (2017). Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53 MAPK and AKT pathways. Science Reports, 7, 4795.
92.
go back to reference Salman, M. M., Kotb, A. M., Haridy, M. A., & Hammad, S. (2016). Hepato-and nephroprotective effects of bradykinin potentiating factor from scorpion (Buthusoccitanus) venom on mercuric chloride-treated rats. EXCLI Journal, 15, 807–816.PubMedPubMedCentral Salman, M. M., Kotb, A. M., Haridy, M. A., & Hammad, S. (2016). Hepato-and nephroprotective effects of bradykinin potentiating factor from scorpion (Buthusoccitanus) venom on mercuric chloride-treated rats. EXCLI Journal, 15, 807–816.PubMedPubMedCentral
93.
go back to reference Dong, R., Xu, X., Li, G., Feng, W., Zhao, G., Zhao, J., et al. (2013). Bradykinin inhibits oxidative stress-induced cardiomyocytes senescence via regulating redox state. PLoS ONE, 8(10), e77034.PubMedPubMedCentral Dong, R., Xu, X., Li, G., Feng, W., Zhao, G., Zhao, J., et al. (2013). Bradykinin inhibits oxidative stress-induced cardiomyocytes senescence via regulating redox state. PLoS ONE, 8(10), e77034.PubMedPubMedCentral
94.
go back to reference Ďurackova, Z. (2014). Free radicals and antioxidants for non-experts. In I. Laher (Ed.), Systems biology of free radicals and antioxidants (1st ed., pp. 3–38). Berlin: Springer. Ďurackova, Z. (2014). Free radicals and antioxidants for non-experts. In I. Laher (Ed.), Systems biology of free radicals and antioxidants (1st ed., pp. 3–38). Berlin: Springer.
95.
go back to reference Hagiwara, M., Murakami, H., Ura, N., Agata, J., Yoshida, H., & Higashiura, K. (2004). Renal protective role of bradykinin B1 receptor in stroke-prone spontaneously hypertensive rats. Hypertension and Research., 27, 399–408. Hagiwara, M., Murakami, H., Ura, N., Agata, J., Yoshida, H., & Higashiura, K. (2004). Renal protective role of bradykinin B1 receptor in stroke-prone spontaneously hypertensive rats. Hypertension and Research., 27, 399–408.
96.
go back to reference Yoshihisa, M., Katsuya, H., Junji, N., Tomio, S., & Hideo, K. (2004). Endothelial dysfunction and altered bradykinin response due to oxidative stress induced by serum deprivation in the bovine cerebral artery. European Journal of Pharmacology., 491(1), 53–60. Yoshihisa, M., Katsuya, H., Junji, N., Tomio, S., & Hideo, K. (2004). Endothelial dysfunction and altered bradykinin response due to oxidative stress induced by serum deprivation in the bovine cerebral artery. European Journal of Pharmacology., 491(1), 53–60.
Metadata
Title
Bradykinin-Potentiating Activity of a Gamma-Irradiated Bioactive Fraction Isolated from Scorpion (Leiurus quinquestriatus) Venom in Rats with Doxorubicin-Induced Acute Cardiotoxicity: Favorable Modulation of Oxidative Stress and Inflammatory, Fibrogenic and Apoptotic Pathways
Authors
Lamiaa A. Ahmed
Fatma Y. Abdou
Abir A. El Fiky
Esmat A. Shaaban
Afaf A. Ain-Shoka
Publication date
01-02-2021
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 2/2021
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-020-09602-5

Other articles of this Issue 2/2021

Cardiovascular Toxicology 2/2021 Go to the issue