Skip to main content
Top
Published in: Cardiovascular Toxicology 5/2019

01-10-2019 | Type 2 Diabetes

High Intensity Interval Training Ameliorates Mitochondrial Dysfunction in the Left Ventricle of Mice with Type 2 Diabetes

Authors: Fredrik H. Bækkerud, Simona Salerno, Paola Ceriotti, Cecilie Morland, Jon Storm-Mathisen, Linda H. Bergersen, Morten A. Høydal, Daniele Catalucci, Tomas O. Stølen

Published in: Cardiovascular Toxicology | Issue 5/2019

Login to get access

Abstract

Both human and animal studies have shown mitochondrial and contractile dysfunction in hearts of type 2 diabetes mellitus (T2DM). Exercise training has shown positive effects on cardiac function, but its effect on the mitochondria have been insufficiently explored. The aim of this study was to assess the effect of exercise training on mitochondrial function in T2DM hearts. We divided T2DM mice (db/db) into a sedentary and an interval training group at 8 weeks of age and used heterozygote db/+ as controls. After 8 weeks of training, we evaluated mitochondrial structure and function, as well as the levels of mRNA and proteins involved in key metabolic processes from the left ventricle. db/db animals showed decreased oxidative phosphorylation capacity and fragmented mitochondria. Mitochondrial respiration showed a blunted response to Ca2+ along with reduced protein levels of the mitochondrial calcium uniporter. Exercise training ameliorated the reduced oxidative phosphorylation in complex (C) I + II, CII and CIV, but not CI or Ca2+ response. Mitochondrial fragmentation was partially restored. mRNA levels of isocitrate, succinate and oxoglutarate dehydrogenase were increased in db/db mice and normalized by exercise training. Exercise training induced an upregulation of two transcripts of peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α1 and PGC1α4) previously linked to endurance training adaptations and strength training adaptations, respectively. The T2DM heart showed mitochondrial dysfunction at multiple levels and exercise training ameliorated some, but not all mitochondrial dysfunctions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Collaborators GBDCoD. (2017). Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390(10100), 1151–1210.CrossRef Collaborators GBDCoD. (2017). Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390(10100), 1151–1210.CrossRef
2.
go back to reference Emerging Risk Factors Collaboration. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. The Lancet, 375(9733), 2215–2222.CrossRef Emerging Risk Factors Collaboration. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. The Lancet, 375(9733), 2215–2222.CrossRef
3.
go back to reference Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K., & Laakso, M. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine, 339(4), 229–234.CrossRefPubMed Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K., & Laakso, M. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine, 339(4), 229–234.CrossRefPubMed
4.
go back to reference Donahoe, S. M., Stewart, G. C., McCabe, C. H., Mohanavelu, S., Murphy, S. A., Cannon, C. P., et al. (2007). Diabetes and mortality following acute coronary syndromes. JAMA, 298(7), 765–775.CrossRefPubMed Donahoe, S. M., Stewart, G. C., McCabe, C. H., Mohanavelu, S., Murphy, S. A., Cannon, C. P., et al. (2007). Diabetes and mortality following acute coronary syndromes. JAMA, 298(7), 765–775.CrossRefPubMed
5.
go back to reference Jaffe, A. S., Spadaro, J. J., Schechtman, K., Roberts, R., Geltman, E. M., & Sobel, B. E. (1984). Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. American Heart Journal, 108(1), 31–37.CrossRefPubMed Jaffe, A. S., Spadaro, J. J., Schechtman, K., Roberts, R., Geltman, E. M., & Sobel, B. E. (1984). Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. American Heart Journal, 108(1), 31–37.CrossRefPubMed
6.
go back to reference Belke, D. D., Larsen, T. S., Gibbs, E. M., & Severson, D. L. (2000). Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. American Journal of Physiology Endocrinology and Metabolism, 279(5), E1104–E1113.CrossRefPubMed Belke, D. D., Larsen, T. S., Gibbs, E. M., & Severson, D. L. (2000). Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. American Journal of Physiology Endocrinology and Metabolism, 279(5), E1104–E1113.CrossRefPubMed
7.
go back to reference Dabkowski, E. R., Baseler, W. A., Williamson, C. L., Powell, M., Razunguzwa, T. T., Frisbee, J. C., et al. (2010). Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. American Journal of Physiology-Heart and Circulatory Physiology, 299(2), H529–H540.CrossRefPubMedPubMedCentral Dabkowski, E. R., Baseler, W. A., Williamson, C. L., Powell, M., Razunguzwa, T. T., Frisbee, J. C., et al. (2010). Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. American Journal of Physiology-Heart and Circulatory Physiology, 299(2), H529–H540.CrossRefPubMedPubMedCentral
8.
go back to reference Boudina, S., Sena, S., Theobald, H., Sheng, X., Wright, J. J., Hu, X. X., et al. (2007). Mitochondrial energetics in the heart in obesity-related diabetes: Direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes, 56(10), 2457–2466.CrossRefPubMed Boudina, S., Sena, S., Theobald, H., Sheng, X., Wright, J. J., Hu, X. X., et al. (2007). Mitochondrial energetics in the heart in obesity-related diabetes: Direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes, 56(10), 2457–2466.CrossRefPubMed
9.
go back to reference Glancy, B., Willis, W. T., Chess, D. J., & Balaban, R. S. (2013). Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry, 52(16), 2793–2809.CrossRefPubMedPubMedCentral Glancy, B., Willis, W. T., Chess, D. J., & Balaban, R. S. (2013). Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry, 52(16), 2793–2809.CrossRefPubMedPubMedCentral
10.
go back to reference Denton, R. M. (2009). Regulation of mitochondrial dehydrogenases by calcium ions. Biochimica et Biophysica Acta (BBA)Bioenergetics, 1787(11), 1309–1316.CrossRef Denton, R. M. (2009). Regulation of mitochondrial dehydrogenases by calcium ions. Biochimica et Biophysica Acta (BBA)Bioenergetics, 1787(11), 1309–1316.CrossRef
11.
go back to reference Kwong, J. Q., Lu, X., Correll, R. N., Schwanekamp, J. A., Vagnozzi, R. J., Sargent, M. A., et al. (2015). The Mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Reports, 12(1), 15–22.CrossRefPubMedPubMedCentral Kwong, J. Q., Lu, X., Correll, R. N., Schwanekamp, J. A., Vagnozzi, R. J., Sargent, M. A., et al. (2015). The Mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Reports, 12(1), 15–22.CrossRefPubMedPubMedCentral
12.
go back to reference Rasmussen, T. P., Wu, Y., Joiner, M. L., Koval, O. M., Wilson, N. R., Luczak, E. D., et al. (2015). Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 9129–9134.CrossRefPubMedPubMedCentral Rasmussen, T. P., Wu, Y., Joiner, M. L., Koval, O. M., Wilson, N. R., Luczak, E. D., et al. (2015). Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 9129–9134.CrossRefPubMedPubMedCentral
13.
go back to reference Diaz-Juarez, J., Suarez, J., Cividini, F., Scott, B. T., Diemer, T., Dai, A., et al. (2016). Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia. American Journal of Physiology Cell Physiology, 311(6), C1005–C10c13.CrossRefPubMedPubMedCentral Diaz-Juarez, J., Suarez, J., Cividini, F., Scott, B. T., Diemer, T., Dai, A., et al. (2016). Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia. American Journal of Physiology Cell Physiology, 311(6), C1005–C10c13.CrossRefPubMedPubMedCentral
14.
go back to reference Suarez, J., Cividini, F., Scott, B. T., Lehmann, K., Diaz-Juarez, J., Diemer, T., et al. (2018). Restoring mitochondrial calcium uniporter expression in diabetic mouse heart improves mitochondrial calcium handling and cardiac function. Journal of Biological Chemistry, 293(21), 8182–8195.CrossRefPubMed Suarez, J., Cividini, F., Scott, B. T., Lehmann, K., Diaz-Juarez, J., Diemer, T., et al. (2018). Restoring mitochondrial calcium uniporter expression in diabetic mouse heart improves mitochondrial calcium handling and cardiac function. Journal of Biological Chemistry, 293(21), 8182–8195.CrossRefPubMed
15.
go back to reference Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., & Atwood, J. E. (2002). Exercise capacity and mortality among men referred for exercise testing. The New England Journal of Medicine, 346(11), 793–801.CrossRefPubMed Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., & Atwood, J. E. (2002). Exercise capacity and mortality among men referred for exercise testing. The New England Journal of Medicine, 346(11), 793–801.CrossRefPubMed
16.
go back to reference Wisloff, U., Nilsen, T. I., Droyvold, W. B., Morkved, S., Slordahl, S. A., & Vatten, L. J. (2006) A single weekly bout of exercise may reduce cardiovascular mortality: how little pain for cardiac gain? ‘The HUNT study, Norway’. European Journal of Cardiovascular Prevention and Rehabilitation: Official Journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology, 13(5):798–804.CrossRef Wisloff, U., Nilsen, T. I., Droyvold, W. B., Morkved, S., Slordahl, S. A., & Vatten, L. J. (2006) A single weekly bout of exercise may reduce cardiovascular mortality: how little pain for cardiac gain? ‘The HUNT study, Norway’. European Journal of Cardiovascular Prevention and Rehabilitation: Official Journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology, 13(5):798–804.CrossRef
17.
go back to reference Manson, J. E., Greenland, P., LaCroix, A. Z., Stefanick, M. L., Mouton, C. P., Oberman, A., et al. (2002). Walking compared with vigorous exercise for the prevention of cardiovascular events in women. The New England Journal of Medicine, 347(10), 716–725.CrossRefPubMed Manson, J. E., Greenland, P., LaCroix, A. Z., Stefanick, M. L., Mouton, C. P., Oberman, A., et al. (2002). Walking compared with vigorous exercise for the prevention of cardiovascular events in women. The New England Journal of Medicine, 347(10), 716–725.CrossRefPubMed
18.
go back to reference Swank, A. M., Horton, J., Fleg, J. L., Fonarow, G. C., Keteyian, S., Goldberg, L., et al. (2012). Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: Results from heart failure and a controlled trial to investigate outcomes of exercise training. Circulation Heart Failure, 5(5), 579–585.CrossRefPubMedPubMedCentral Swank, A. M., Horton, J., Fleg, J. L., Fonarow, G. C., Keteyian, S., Goldberg, L., et al. (2012). Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: Results from heart failure and a controlled trial to investigate outcomes of exercise training. Circulation Heart Failure, 5(5), 579–585.CrossRefPubMedPubMedCentral
19.
go back to reference Tjonna, A. E., Lee, S. J., Rognmo, O., Stolen, T. O., Bye, A., Haram, P. M., et al. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation, 118(4), 346–354.CrossRefPubMedPubMedCentral Tjonna, A. E., Lee, S. J., Rognmo, O., Stolen, T. O., Bye, A., Haram, P. M., et al. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation, 118(4), 346–354.CrossRefPubMedPubMedCentral
20.
go back to reference Wisloff, U., Stoylen, A., Loennechen, J. P., Bruvold, M., Rognmo, O., Haram, P. M., et al. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circulation, 115(24), 3086–3094.CrossRefPubMed Wisloff, U., Stoylen, A., Loennechen, J. P., Bruvold, M., Rognmo, O., Haram, P. M., et al. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circulation, 115(24), 3086–3094.CrossRefPubMed
21.
go back to reference Hollekim-Strand, S. M., Bjorgaas, M. R., Albrektsen, G., Tjonna, A. E., Wisloff, U., & Ingul, C. B. (2014). High-intensity interval exercise effectively improves cardiac function in patients with type 2 diabetes mellitus and diastolic dysfunction: A randomized controlled trial. Journal of the American College of Cardiology, 64(16), 1758–1760.CrossRefPubMed Hollekim-Strand, S. M., Bjorgaas, M. R., Albrektsen, G., Tjonna, A. E., Wisloff, U., & Ingul, C. B. (2014). High-intensity interval exercise effectively improves cardiac function in patients with type 2 diabetes mellitus and diastolic dysfunction: A randomized controlled trial. Journal of the American College of Cardiology, 64(16), 1758–1760.CrossRefPubMed
22.
go back to reference Stølen, T. O., Høydal, M. A., Kemi, O. J., Catalucci, D., Ceci, M., Aasum, E., et al. (2009). Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release Synchronicity in a Mouse Model of Diabetic cardiomyopathy. Circulation Research, 105(6), 527–536.CrossRefPubMed Stølen, T. O., Høydal, M. A., Kemi, O. J., Catalucci, D., Ceci, M., Aasum, E., et al. (2009). Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release Synchronicity in a Mouse Model of Diabetic cardiomyopathy. Circulation Research, 105(6), 527–536.CrossRefPubMed
23.
go back to reference Shao, C. H., Wehrens, X. H., Wyatt, T. A., Parbhu, S., Rozanski, G. J., Patel, K. P., et al. (2009). Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation. Journal of Applied Physiology, 106(4), 1280–1292.CrossRefPubMedPubMedCentral Shao, C. H., Wehrens, X. H., Wyatt, T. A., Parbhu, S., Rozanski, G. J., Patel, K. P., et al. (2009). Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation. Journal of Applied Physiology, 106(4), 1280–1292.CrossRefPubMedPubMedCentral
24.
go back to reference Wang, H., Bei, Y., Lu, Y., Sun, W., Liu, Q., Wang, Y., et al. (2015). Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1alpha and Akt activation. Cellular Physiology and Biochemistry, 35(6), 2159–2168.CrossRefPubMed Wang, H., Bei, Y., Lu, Y., Sun, W., Liu, Q., Wang, Y., et al. (2015). Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1alpha and Akt activation. Cellular Physiology and Biochemistry, 35(6), 2159–2168.CrossRefPubMed
25.
go back to reference Coleman, D. L., & Hummel, K. P. (1967). Studies with the mutation, diabetes, in the mouse. Diabetologia, 3(2), 238–248.CrossRefPubMed Coleman, D. L., & Hummel, K. P. (1967). Studies with the mutation, diabetes, in the mouse. Diabetologia, 3(2), 238–248.CrossRefPubMed
26.
go back to reference Kemi, O. J., Loennechen, J. P., Wisløff, U., & Ellingsen, Ø (2002). Intensity-controlled treadmill running in mice: Cardiac and skeletal muscle hypertrophy. Journal of Applied Physiology, 93(4), 1301–1309.CrossRefPubMed Kemi, O. J., Loennechen, J. P., Wisløff, U., & Ellingsen, Ø (2002). Intensity-controlled treadmill running in mice: Cardiac and skeletal muscle hypertrophy. Journal of Applied Physiology, 93(4), 1301–1309.CrossRefPubMed
27.
go back to reference Ruas, J. L., White, J. P., Rao, R. R., Kleiner, S., Brannan, K. T., Harrison, B. C., et al. (2012). A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 151(6), 1319–1331.CrossRefPubMedPubMedCentral Ruas, J. L., White, J. P., Rao, R. R., Kleiner, S., Brannan, K. T., Harrison, B. C., et al. (2012). A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 151(6), 1319–1331.CrossRefPubMedPubMedCentral
28.
go back to reference Veeranki, S., Givvimani, S., Kundu, S., Metreveli, N., Pushpakumar, S., & Tyagi, S. C. (2016). Moderate intensity exercise prevents diabetic cardiomyopathy associated contractile dysfunction through restoration of mitochondrial function and connexin 43 levels in db/db mice. Journal of Molecular and Cellular Cardiology, 92, 163–173.CrossRefPubMedPubMedCentral Veeranki, S., Givvimani, S., Kundu, S., Metreveli, N., Pushpakumar, S., & Tyagi, S. C. (2016). Moderate intensity exercise prevents diabetic cardiomyopathy associated contractile dysfunction through restoration of mitochondrial function and connexin 43 levels in db/db mice. Journal of Molecular and Cellular Cardiology, 92, 163–173.CrossRefPubMedPubMedCentral
29.
go back to reference Hinkle, P. C., Kumar, M. A., Resetar, A., & Harris, D. L. (1991). Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry, 30(14), 3576–3582.CrossRefPubMed Hinkle, P. C., Kumar, M. A., Resetar, A., & Harris, D. L. (1991). Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry, 30(14), 3576–3582.CrossRefPubMed
30.
go back to reference Brand, M. D., Harper, M. E., & Taylor, H. C. (1993). Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochemical Journal, 291(Pt 3), 739–748.CrossRefPubMedPubMedCentral Brand, M. D., Harper, M. E., & Taylor, H. C. (1993). Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochemical Journal, 291(Pt 3), 739–748.CrossRefPubMedPubMedCentral
32.
go back to reference Yu, T., Robotham, J. L., & Yoon, Y. (2006). Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2653–2658.CrossRefPubMedPubMedCentral Yu, T., Robotham, J. L., & Yoon, Y. (2006). Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2653–2658.CrossRefPubMedPubMedCentral
33.
go back to reference Devi, T. S., Somayajulu, M., Kowluru, R. A., & Singh, L. P. (2017). TXNIP regulates mitophagy in retinal Muller cells under high-glucose conditions: Implications for diabetic retinopathy. Cell Death & Disease, 8(5), e2777.CrossRef Devi, T. S., Somayajulu, M., Kowluru, R. A., & Singh, L. P. (2017). TXNIP regulates mitophagy in retinal Muller cells under high-glucose conditions: Implications for diabetic retinopathy. Cell Death & Disease, 8(5), e2777.CrossRef
34.
go back to reference Stolen, T. O., Hoydal, M. A., Kemi, O. J., Catalucci, D., Ceci, M., Aasum, E., et al. (2009). Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circulation Research, 105(6), 527–536.CrossRefPubMed Stolen, T. O., Hoydal, M. A., Kemi, O. J., Catalucci, D., Ceci, M., Aasum, E., et al. (2009). Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circulation Research, 105(6), 527–536.CrossRefPubMed
35.
go back to reference Semeniuk, L. M., Kryski, A. J., & Severson, D. L. (2002). Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. American Journal of Physiology Heart and Circulatory Physiology, 283(3), H976–H982.CrossRefPubMed Semeniuk, L. M., Kryski, A. J., & Severson, D. L. (2002). Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. American Journal of Physiology Heart and Circulatory Physiology, 283(3), H976–H982.CrossRefPubMed
36.
go back to reference Venardos, K., De Jong, K. A., Elkamie, M., Connor, T., & McGee, S. L. (2015). The PKD inhibitor CID755673 enhances cardiac function in diabetic db/db mice. PLoS ONE, 10(3), e0120934.CrossRefPubMedPubMedCentral Venardos, K., De Jong, K. A., Elkamie, M., Connor, T., & McGee, S. L. (2015). The PKD inhibitor CID755673 enhances cardiac function in diabetic db/db mice. PLoS ONE, 10(3), e0120934.CrossRefPubMedPubMedCentral
37.
go back to reference Anderson, E. J., Kypson, A. P., Rodriguez, E., Anderson, C. A., Lehr, E. J., & Neufer, P. D. (2009). Substrate-specific derangements in mitochondrial metabolism and redox balance in atrium of type 2 diabetic human heart. Journal of the American College of Cardiology, 54(20), 1891–1898.CrossRefPubMedPubMedCentral Anderson, E. J., Kypson, A. P., Rodriguez, E., Anderson, C. A., Lehr, E. J., & Neufer, P. D. (2009). Substrate-specific derangements in mitochondrial metabolism and redox balance in atrium of type 2 diabetic human heart. Journal of the American College of Cardiology, 54(20), 1891–1898.CrossRefPubMedPubMedCentral
38.
go back to reference Palmieri, V., Bella, J. N., Arnett, D. K., Liu, J. E., Oberman, A., Schuck, M. Y., et al. (2001). Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation, 103(1), 102–107.CrossRefPubMed Palmieri, V., Bella, J. N., Arnett, D. K., Liu, J. E., Oberman, A., Schuck, M. Y., et al. (2001). Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation, 103(1), 102–107.CrossRefPubMed
Metadata
Title
High Intensity Interval Training Ameliorates Mitochondrial Dysfunction in the Left Ventricle of Mice with Type 2 Diabetes
Authors
Fredrik H. Bækkerud
Simona Salerno
Paola Ceriotti
Cecilie Morland
Jon Storm-Mathisen
Linda H. Bergersen
Morten A. Høydal
Daniele Catalucci
Tomas O. Stølen
Publication date
01-10-2019
Publisher
Springer US
Keyword
Type 2 Diabetes
Published in
Cardiovascular Toxicology / Issue 5/2019
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09514-z

Other articles of this Issue 5/2019

Cardiovascular Toxicology 5/2019 Go to the issue