Skip to main content
Top
Published in: Cardiovascular Toxicology 5/2019

01-10-2019 | Hypertension

Carbon Monoxide Attenuates High Salt-Induced Hypertension While Reducing Pro-inflammatory Cytokines and Oxidative Stress in the Paraventricular Nucleus

Authors: Dong-Dong Zhang, Yan-Feng Liang, Jie Qi, Kai B. Kang, Xiao-Jing Yu, Hong-Li Gao, Kai-Li Liu, Yan-Mei Chen, Xiao-Lian Shi, Guo-Rui Xin, Li-Yan Fu, Yu-Ming Kang, Wei Cui

Published in: Cardiovascular Toxicology | Issue 5/2019

Login to get access

Abstract

Carbon monoxide (CO) presents anti-inflammatory and antioxidant activities as a new gaseous neuromessenger produced by heme oxygenase-1 (HO-1) in the body. High salt-induced hypertension is relevant to the levels of pro-inflammatory cytokines (PICs) and oxidative stress in the hypothalamic paraventricular nucleus (PVN). We explored whether CO in PVN can attenuate high salt-induced hypertension by regulating PICs or oxidative stress. Male Dahl Salt-Sensitive rats were fed high-salt (8% NaCl) or normal-salt (0.3% NaCl) diet for 4 weeks. CORM-2, ZnPP IX, or vehicle was microinjected into bilateral PVN for 6 weeks. High-salt diet increased the levels of MAP, plasma norepinephrine (NE), reactive oxygen species (ROS), and the expressions of COX2, IL-1β, IL-6, NOX2, and NOX4 significantly in PVN (p < 0.05), but decreased the expressions of HO-1 and Cu/Zn-SOD in PVN (p < 0.05). Salt increased sympathetic activity as measured by circulating norepinephrine, and increased the ratio of basal RSNA to max RSNA, in part by decreasing max RSNA. PVN microinjection of CORM-2 decreased the levels of MAP, NE, RSNA, ROS and the expressions of COX2, IL-1β, IL-6, NOX2, NOX4 significantly in PVN of hypertensive rat (p < 0.05), but increased the expressions of HO-1 and Cu/Zn-SOD significantly (p < 0.05), which were all opposite to the effects of ZnPP IX microinjected in PVN (p < 0.05). We concluded that exogenous or endogenous CO attenuates high salt-induced hypertension by regulating PICs and oxidative stress in PVN.
Appendix
Available only for authorised users
Literature
1.
go back to reference Frohlich, E. D., & Varagic, J. (2005). Sodium directly impairs target organ function in hypertension. Curr Opin Cardiol, 20, 424–429.CrossRefPubMed Frohlich, E. D., & Varagic, J. (2005). Sodium directly impairs target organ function in hypertension. Curr Opin Cardiol, 20, 424–429.CrossRefPubMed
3.
go back to reference Yu, X. J., Suo, Y. P., Qi, J., Yang, Q., Li, H. H., Zhang, D. M., et al. (2013). Interaction between AT1 receptor and NF-kappaB in hypothalamic paraventricular nucleus contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure. Cardiovasc Toxicol, 13, 381–390.CrossRefPubMed Yu, X. J., Suo, Y. P., Qi, J., Yang, Q., Li, H. H., Zhang, D. M., et al. (2013). Interaction between AT1 receptor and NF-kappaB in hypothalamic paraventricular nucleus contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure. Cardiovasc Toxicol, 13, 381–390.CrossRefPubMed
4.
go back to reference Su, Q., Qin, D. N., Wang, F. X., Ren, J., Li, H. B., Zhang, M., et al. (2014). Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system and proinflammatory cytokines in hypertension. Toxicol Appl Pharmacol, 276, 115–120.CrossRefPubMed Su, Q., Qin, D. N., Wang, F. X., Ren, J., Li, H. B., Zhang, M., et al. (2014). Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system and proinflammatory cytokines in hypertension. Toxicol Appl Pharmacol, 276, 115–120.CrossRefPubMed
5.
go back to reference Cardinale, J. P., Sriramula, S., Mariappan, N., Agarwal, D., & Francis, J. (2012). Angiotensin II-induced hypertension is modulated by nuclear factor-kappaBin the paraventricular nucleus. Hypertension, 59, 113–121.CrossRefPubMed Cardinale, J. P., Sriramula, S., Mariappan, N., Agarwal, D., & Francis, J. (2012). Angiotensin II-induced hypertension is modulated by nuclear factor-kappaBin the paraventricular nucleus. Hypertension, 59, 113–121.CrossRefPubMed
6.
go back to reference Kang, Y. M., Zhang, D. M., Yu, X. J., Yang, Q., Qi, J., Su, Q., et al. (2014). Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines. Toxicol Appl Pharmacol, 274, 436–444.CrossRefPubMed Kang, Y. M., Zhang, D. M., Yu, X. J., Yang, Q., Qi, J., Su, Q., et al. (2014). Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines. Toxicol Appl Pharmacol, 274, 436–444.CrossRefPubMed
7.
go back to reference Swanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, 31, 410–417.CrossRefPubMed Swanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, 31, 410–417.CrossRefPubMed
8.
go back to reference Levitt, D. G., & Levitt, M. D. (2015). Carbon monoxide: a critical quantitative analysis and review of the extent and limitations of its second messenger function. Clin Pharmacol, 7, 37–56.PubMedPubMedCentral Levitt, D. G., & Levitt, M. D. (2015). Carbon monoxide: a critical quantitative analysis and review of the extent and limitations of its second messenger function. Clin Pharmacol, 7, 37–56.PubMedPubMedCentral
9.
go back to reference Maines, M. D. (1997). The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol, 37, 517–554.CrossRefPubMed Maines, M. D. (1997). The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol, 37, 517–554.CrossRefPubMed
10.
go back to reference Ewing, J. F., & Maines, M. D. (1992). In situ hybridization and immunohistochemical localization of heme oxygenase-2 mRNA and protein in normal rat brain: differential distribution of isozyme 1 and 2. Mol Cell Neurosci, 3, 559–570.CrossRefPubMed Ewing, J. F., & Maines, M. D. (1992). In situ hybridization and immunohistochemical localization of heme oxygenase-2 mRNA and protein in normal rat brain: differential distribution of isozyme 1 and 2. Mol Cell Neurosci, 3, 559–570.CrossRefPubMed
11.
go back to reference Vincent, S. R., Das, S., & Maines, M. D. (1994). Brain heme oxygenase isoenzymes and nitric oxide synthase are co-localized in select neurons. Neuroscience, 63, 223–231.CrossRefPubMed Vincent, S. R., Das, S., & Maines, M. D. (1994). Brain heme oxygenase isoenzymes and nitric oxide synthase are co-localized in select neurons. Neuroscience, 63, 223–231.CrossRefPubMed
12.
go back to reference Leffler, C. W., Parfenova, H., & Jaggar, J. H. (2011). Carbon monoxide as an endogenous vascular modulator. Am J Physiol Heart Circ Physiol, 301, H1–H11.CrossRefPubMedPubMedCentral Leffler, C. W., Parfenova, H., & Jaggar, J. H. (2011). Carbon monoxide as an endogenous vascular modulator. Am J Physiol Heart Circ Physiol, 301, H1–H11.CrossRefPubMedPubMedCentral
13.
go back to reference Granger, J. P. (2006). An emerging role for inflammatory cytokines in hypertension. Am J Physiol Heart Circ Physiol, 290, H923–H924.CrossRefPubMed Granger, J. P. (2006). An emerging role for inflammatory cytokines in hypertension. Am J Physiol Heart Circ Physiol, 290, H923–H924.CrossRefPubMed
14.
go back to reference Guzik, T. J., & Touyz, R. M. (2017). Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension, 70, 660–667.CrossRefPubMed Guzik, T. J., & Touyz, R. M. (2017). Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension, 70, 660–667.CrossRefPubMed
15.
go back to reference Naregal, G. V., Devaranavadagi, B. B., Patil, S. G., & Aski, B. S. (2017). Elevation of oxidative stress and decline in endogenous antioxidant defense in elderly individuals with hypertension. J Clin Diagn Res, 11, BC09–BC12.PubMedPubMedCentral Naregal, G. V., Devaranavadagi, B. B., Patil, S. G., & Aski, B. S. (2017). Elevation of oxidative stress and decline in endogenous antioxidant defense in elderly individuals with hypertension. J Clin Diagn Res, 11, BC09–BC12.PubMedPubMedCentral
16.
go back to reference Harayama, S., Kok, M., & Neidle, E. L. (1992). Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol, 46, 565–601.CrossRefPubMed Harayama, S., Kok, M., & Neidle, E. L. (1992). Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol, 46, 565–601.CrossRefPubMed
17.
go back to reference Bai, J., Yu, X. J., Liu, K. L., Wang, F. F., Jing, G. X., Li, H. B., et al. (2017). Central administration of tert-butylhydroquinone attenuates hypertension via regulating Nrf2 signaling in the hypothalamic paraventricular nucleus of hypertensive rats. Toxicol Appl Pharmacol, 333, 100–109.CrossRefPubMed Bai, J., Yu, X. J., Liu, K. L., Wang, F. F., Jing, G. X., Li, H. B., et al. (2017). Central administration of tert-butylhydroquinone attenuates hypertension via regulating Nrf2 signaling in the hypothalamic paraventricular nucleus of hypertensive rats. Toxicol Appl Pharmacol, 333, 100–109.CrossRefPubMed
18.
go back to reference Liang, Y. F., Zhang, D. D., Yu, X. J., Gao, H. L., Liu, K. L., Qi, J., et al. (2017). Hydrogen sulfide in paraventricular nucleus attenuates blood pressure by regulating oxidative stress and inflammatory cytokines in high salt-induced hypertension. Toxicol Lett, 270, 62–71.CrossRefPubMed Liang, Y. F., Zhang, D. D., Yu, X. J., Gao, H. L., Liu, K. L., Qi, J., et al. (2017). Hydrogen sulfide in paraventricular nucleus attenuates blood pressure by regulating oxidative stress and inflammatory cytokines in high salt-induced hypertension. Toxicol Lett, 270, 62–71.CrossRefPubMed
19.
go back to reference Gorojod, R. M., Alaimo, A., Porte Alcon, S., Martinez, J. H., Cortina, M. E., Vazquez, E. S., et al. (2018). Heme oxygenase-1 protects astroglia against manganese-induced oxidative injury by regulating mitochondrial quality control. Toxicol Lett, 295, 357–368.CrossRefPubMed Gorojod, R. M., Alaimo, A., Porte Alcon, S., Martinez, J. H., Cortina, M. E., Vazquez, E. S., et al. (2018). Heme oxygenase-1 protects astroglia against manganese-induced oxidative injury by regulating mitochondrial quality control. Toxicol Lett, 295, 357–368.CrossRefPubMed
20.
go back to reference Berne, J. P., Lauzier, B., Rochette, L., & Vergely, C. (2012). Carbon monoxide protects against ischemia-reperfusion injury in vitro via antioxidant properties. Cell Physiol Biochem, 29, 475–484.CrossRefPubMed Berne, J. P., Lauzier, B., Rochette, L., & Vergely, C. (2012). Carbon monoxide protects against ischemia-reperfusion injury in vitro via antioxidant properties. Cell Physiol Biochem, 29, 475–484.CrossRefPubMed
21.
go back to reference Parfenova, H., Leffler, C. W., Basuroy, S., Liu, J., & Fedinec, A. L. (2012). Antioxidant roles of heme oxygenase, carbon monoxide, and bilirubin in cerebral circulation during seizures. J Cereb Blood Flow Metab, 32, 1024–1034.CrossRefPubMedPubMedCentral Parfenova, H., Leffler, C. W., Basuroy, S., Liu, J., & Fedinec, A. L. (2012). Antioxidant roles of heme oxygenase, carbon monoxide, and bilirubin in cerebral circulation during seizures. J Cereb Blood Flow Metab, 32, 1024–1034.CrossRefPubMedPubMedCentral
22.
go back to reference Lian, S., Xia, Y., Ung, T. T., Khoi, P. N., Yoon, H. J., Kim, N. H., et al. (2016). Carbon monoxide releasing molecule-2 ameliorates IL-1beta-induced IL-8 in human gastric cancer cells. Toxicology, 361–362, 24–38.CrossRefPubMed Lian, S., Xia, Y., Ung, T. T., Khoi, P. N., Yoon, H. J., Kim, N. H., et al. (2016). Carbon monoxide releasing molecule-2 ameliorates IL-1beta-induced IL-8 in human gastric cancer cells. Toxicology, 361–362, 24–38.CrossRefPubMed
23.
go back to reference Bauer, B., Goderz, A. L., Braumuller, H., Neudorfl, J. M., Rocken, M., Wieder, T., et al. (2017). Methyl fumarate-derived iron carbonyl complexes (FumET-CORMs) as powerful anti-inflammatory agents. ChemMedChem, 12, 1927–1930.CrossRefPubMed Bauer, B., Goderz, A. L., Braumuller, H., Neudorfl, J. M., Rocken, M., Wieder, T., et al. (2017). Methyl fumarate-derived iron carbonyl complexes (FumET-CORMs) as powerful anti-inflammatory agents. ChemMedChem, 12, 1927–1930.CrossRefPubMed
24.
go back to reference Choi, S., Kim, J., Kim, J. H., Lee, D. K., Park, W., Park, M., et al. (2017). Carbon monoxide prevents TNF-alpha-induced eNOS downregulation by inhibiting NF-kappaB-responsive miR-155-5p biogenesis. Exp Mol Med, 49, e403.CrossRefPubMedPubMedCentral Choi, S., Kim, J., Kim, J. H., Lee, D. K., Park, W., Park, M., et al. (2017). Carbon monoxide prevents TNF-alpha-induced eNOS downregulation by inhibiting NF-kappaB-responsive miR-155-5p biogenesis. Exp Mol Med, 49, e403.CrossRefPubMedPubMedCentral
25.
go back to reference Lin, C. C., Yang, C. C., Hsiao, L. D., Chen, S. Y., & Yang, C. M. (2017). Heme oxygenase-1 induction by carbon monoxide releasing molecule-3 suppresses interleukin-1 beta-mediated neuroinflammation. Front Mol Neurosci, 10, 387.CrossRefPubMedPubMedCentral Lin, C. C., Yang, C. C., Hsiao, L. D., Chen, S. Y., & Yang, C. M. (2017). Heme oxygenase-1 induction by carbon monoxide releasing molecule-3 suppresses interleukin-1 beta-mediated neuroinflammation. Front Mol Neurosci, 10, 387.CrossRefPubMedPubMedCentral
26.
go back to reference Sun, Q., Wu, Y., Zhao, F., & Wang, J. (2017). Maresin 1 ameliorates lung ischemia/reperfusion injury by suppressing oxidative stress via activation of the Nrf-2-mediated HO-1 signaling pathway. Oxid Med Cell Longev, 2017, 9634803.PubMedPubMedCentral Sun, Q., Wu, Y., Zhao, F., & Wang, J. (2017). Maresin 1 ameliorates lung ischemia/reperfusion injury by suppressing oxidative stress via activation of the Nrf-2-mediated HO-1 signaling pathway. Oxid Med Cell Longev, 2017, 9634803.PubMedPubMedCentral
27.
go back to reference Stocker, R., McDonagh, A. F., Glazer, A. N., & Ames, B. N. (1990). Antioxidant activities of bile pigments: biliverdin and bilirubin. Methods Enzymol, 186, 301–309.CrossRefPubMed Stocker, R., McDonagh, A. F., Glazer, A. N., & Ames, B. N. (1990). Antioxidant activities of bile pigments: biliverdin and bilirubin. Methods Enzymol, 186, 301–309.CrossRefPubMed
28.
go back to reference Chen, W., Maghzal, G. J., Ayer, A., Suarna, C., Dunn, L. L., & Stocker, R. (2018). Absence of the biliverdin reductase-a gene is associated with increased endogenous oxidative stress. Free Radic Biol Med, 115, 156–165.CrossRefPubMed Chen, W., Maghzal, G. J., Ayer, A., Suarna, C., Dunn, L. L., & Stocker, R. (2018). Absence of the biliverdin reductase-a gene is associated with increased endogenous oxidative stress. Free Radic Biol Med, 115, 156–165.CrossRefPubMed
29.
go back to reference Nassar, N. N., Li, G., Strat, A. L., & Abdel-Rahman, A. A. (2011). Enhanced hemeoxygenase activity in the rostral ventrolateral medulla mediates exaggerated hemin-evoked hypotension in the spontaneously hypertensive rat. J Pharmacol Exp Ther, 339, 267–274.CrossRefPubMedPubMedCentral Nassar, N. N., Li, G., Strat, A. L., & Abdel-Rahman, A. A. (2011). Enhanced hemeoxygenase activity in the rostral ventrolateral medulla mediates exaggerated hemin-evoked hypotension in the spontaneously hypertensive rat. J Pharmacol Exp Ther, 339, 267–274.CrossRefPubMedPubMedCentral
30.
go back to reference Fouda, M. A., El-Gowelli, H. M., El-Gowilly, S. M., Rashed, L., & El-Mas, M. M. (2014). Impairment of nitric oxide synthase but not heme oxygenase accounts for baroreflex dysfunction caused by chronic nicotine in female rats. PLoS ONE, 9, e98681.CrossRefPubMedPubMedCentral Fouda, M. A., El-Gowelli, H. M., El-Gowilly, S. M., Rashed, L., & El-Mas, M. M. (2014). Impairment of nitric oxide synthase but not heme oxygenase accounts for baroreflex dysfunction caused by chronic nicotine in female rats. PLoS ONE, 9, e98681.CrossRefPubMedPubMedCentral
31.
go back to reference Qi, J., Zhang, D. M., Suo, Y. P., Song, X. A., Yu, X. J., Elks, C., et al. (2013). Renin-angiotensin system modulates neurotransmitters in the paraventricular nucleus and contributes to angiotensin II-induced hypertensive response. Cardiovasc Toxicol, 13, 48–54.CrossRefPubMed Qi, J., Zhang, D. M., Suo, Y. P., Song, X. A., Yu, X. J., Elks, C., et al. (2013). Renin-angiotensin system modulates neurotransmitters in the paraventricular nucleus and contributes to angiotensin II-induced hypertensive response. Cardiovasc Toxicol, 13, 48–54.CrossRefPubMed
32.
go back to reference Li, H. B., Qin, D. N., Ma, L., Miao, Y. W., Zhang, D. M., Lu, Y., et al. (2014). Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicol Appl Pharmacol, 279, 141–149.CrossRefPubMed Li, H. B., Qin, D. N., Ma, L., Miao, Y. W., Zhang, D. M., Lu, Y., et al. (2014). Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicol Appl Pharmacol, 279, 141–149.CrossRefPubMed
33.
go back to reference Zhang, M., Qin, D. N., Suo, Y. P., Su, Q., Li, H. B., Miao, Y. W., et al. (2015). Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates neurohormonal excitation in high salt-induced hypertension. Toxicol Lett, 235, 206–215.CrossRefPubMed Zhang, M., Qin, D. N., Suo, Y. P., Su, Q., Li, H. B., Miao, Y. W., et al. (2015). Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates neurohormonal excitation in high salt-induced hypertension. Toxicol Lett, 235, 206–215.CrossRefPubMed
34.
go back to reference Kang, Y. M., Gao, F., Li, H. H., Cardinale, J. P., Elks, C., Zang, W. J., et al. (2011). NF-kappaB in the paraventricular nucleus modulates neurotransmitters and contributes to sympathoexcitation in heart failure. Basic Res Cardiol, 106, 1087–1097.CrossRefPubMedPubMedCentral Kang, Y. M., Gao, F., Li, H. H., Cardinale, J. P., Elks, C., Zang, W. J., et al. (2011). NF-kappaB in the paraventricular nucleus modulates neurotransmitters and contributes to sympathoexcitation in heart failure. Basic Res Cardiol, 106, 1087–1097.CrossRefPubMedPubMedCentral
35.
go back to reference Kagota, S., Tamashiro, A., Yamaguchi, Y., Nakamura, K., & Kunitomo, M. (2002). High salt intake impairs vascular nitric oxide/cyclic guanosine monophosphate system in spontaneously hypertensive rats. J Pharmacol Exp Ther, 302, 344–351.CrossRefPubMed Kagota, S., Tamashiro, A., Yamaguchi, Y., Nakamura, K., & Kunitomo, M. (2002). High salt intake impairs vascular nitric oxide/cyclic guanosine monophosphate system in spontaneously hypertensive rats. J Pharmacol Exp Ther, 302, 344–351.CrossRefPubMed
36.
go back to reference Johnson, R. A., Colombari, E., Colombari, D. S., Lavesa, M., Talman, W. T., & Nasjletti, A. (1997). Role of endogenous carbon monoxide in central regulation of arterial pressure. Hypertension, 30, 962–967.CrossRefPubMed Johnson, R. A., Colombari, E., Colombari, D. S., Lavesa, M., Talman, W. T., & Nasjletti, A. (1997). Role of endogenous carbon monoxide in central regulation of arterial pressure. Hypertension, 30, 962–967.CrossRefPubMed
37.
go back to reference Lo, W. C., Jan, C. R., Chiang, H. T., & Tseng, C. J. (2000). Modulatory effects of carbon monoxide on baroreflex activation in nucleus tractus solitarii of rats. Hypertension, 35, 1253–1257.CrossRefPubMed Lo, W. C., Jan, C. R., Chiang, H. T., & Tseng, C. J. (2000). Modulatory effects of carbon monoxide on baroreflex activation in nucleus tractus solitarii of rats. Hypertension, 35, 1253–1257.CrossRefPubMed
38.
go back to reference Lo, W. C., Chan, J. Y., Tung, C. S., & Tseng, C. J. (2002). Carbon monoxide and metabotropic glutamate receptors in rat nucleus tractus solitarii: participation in cardiovascular effect. Eur J Pharmacol, 454, 39–45.CrossRefPubMed Lo, W. C., Chan, J. Y., Tung, C. S., & Tseng, C. J. (2002). Carbon monoxide and metabotropic glutamate receptors in rat nucleus tractus solitarii: participation in cardiovascular effect. Eur J Pharmacol, 454, 39–45.CrossRefPubMed
39.
go back to reference Lin, C. H., Lo, W. C., Hsiao, M., & Tseng, C. J. (2003). Interaction of carbon monoxide and adenosine in the nucleus tractus solitarii of rats. Hypertension, 42, 380–385.CrossRefPubMed Lin, C. H., Lo, W. C., Hsiao, M., & Tseng, C. J. (2003). Interaction of carbon monoxide and adenosine in the nucleus tractus solitarii of rats. Hypertension, 42, 380–385.CrossRefPubMed
40.
go back to reference Johnson, R. A., Lavesa, M., DeSeyn, K., Scholer, M. J., & Nasjletti, A. (1996). Heme oxygenase substrates acutely lower blood pressure in hypertensive rats. Am J Physiol, 271, H1132–H1138.PubMed Johnson, R. A., Lavesa, M., DeSeyn, K., Scholer, M. J., & Nasjletti, A. (1996). Heme oxygenase substrates acutely lower blood pressure in hypertensive rats. Am J Physiol, 271, H1132–H1138.PubMed
41.
go back to reference Johnson, R. A., Lavesa, M., Askari, B., Abraham, N. G., & Nasjletti, A. (1995). A heme oxygenase product, presumably carbon monoxide, mediates a vasodepressor function in rats. Hypertension, 25, 166–169.CrossRefPubMed Johnson, R. A., Lavesa, M., Askari, B., Abraham, N. G., & Nasjletti, A. (1995). A heme oxygenase product, presumably carbon monoxide, mediates a vasodepressor function in rats. Hypertension, 25, 166–169.CrossRefPubMed
42.
go back to reference Bolognesi, M., Sacerdoti, D., Piva, A., Di Pascoli, M., Zampieri, F., Quarta, S., et al. (2007). Carbon monoxide-mediated activation of large-conductance calcium-activated potassium channels contributes to mesenteric vasodilatation in cirrhotic rats. J Pharmacol Exp Ther, 321, 187–194.CrossRefPubMed Bolognesi, M., Sacerdoti, D., Piva, A., Di Pascoli, M., Zampieri, F., Quarta, S., et al. (2007). Carbon monoxide-mediated activation of large-conductance calcium-activated potassium channels contributes to mesenteric vasodilatation in cirrhotic rats. J Pharmacol Exp Ther, 321, 187–194.CrossRefPubMed
43.
go back to reference Wang, M. L., Yu, X. J., Li, X. G., Pang, D. Z., Su, Q., Saahene, R. O., et al. (2018). Blockade of TLR4 within the paraventricular nucleus attenuates blood pressure by regulating ROS and inflammatory cytokines in prehypertensive rats. Am J Hypertens, 31, 1013–1023.CrossRefPubMed Wang, M. L., Yu, X. J., Li, X. G., Pang, D. Z., Su, Q., Saahene, R. O., et al. (2018). Blockade of TLR4 within the paraventricular nucleus attenuates blood pressure by regulating ROS and inflammatory cytokines in prehypertensive rats. Am J Hypertens, 31, 1013–1023.CrossRefPubMed
44.
go back to reference Kang, Y. M., Yang, Q., Yu, X. J., Qi, J., Zhang, Y., Li, H. B., et al. (2014). Hypothalamic paraventricular nucleus activation contributes to neurohumoral excitation in rats with heart failure. Regen Med Res, 2, 2.CrossRefPubMedPubMedCentral Kang, Y. M., Yang, Q., Yu, X. J., Qi, J., Zhang, Y., Li, H. B., et al. (2014). Hypothalamic paraventricular nucleus activation contributes to neurohumoral excitation in rats with heart failure. Regen Med Res, 2, 2.CrossRefPubMedPubMedCentral
45.
go back to reference Shi, P., Diez-Freire, C., Jun, J. Y., Qi, Y., Katovich, M. J., Li, Q., et al. (2010). Brain microglial cytokines in neurogenic hypertension. Hypertension, 56, 297–303.CrossRefPubMedPubMedCentral Shi, P., Diez-Freire, C., Jun, J. Y., Qi, Y., Katovich, M. J., Li, Q., et al. (2010). Brain microglial cytokines in neurogenic hypertension. Hypertension, 56, 297–303.CrossRefPubMedPubMedCentral
46.
go back to reference Sriramula, S., Cardinale, J. P., & Francis, J. (2013). Inhibition of TNF in the brain reverses alterations in RAS components and attenuates angiotensin II-induced hypertension. PLoS ONE, 8, e63847.CrossRefPubMedPubMedCentral Sriramula, S., Cardinale, J. P., & Francis, J. (2013). Inhibition of TNF in the brain reverses alterations in RAS components and attenuates angiotensin II-induced hypertension. PLoS ONE, 8, e63847.CrossRefPubMedPubMedCentral
47.
go back to reference Qi, J., Zhao, X. F., Yu, X. J., Yi, Q. Y., Shi, X. L., Tan, H., et al. (2016). Targeting interleukin-1 beta to suppress sympathoexcitation in hypothalamic paraventricular nucleus in Dahl salt-sensitive hypertensive rats. Cardiovasc Toxicol, 16, 298–306.CrossRefPubMed Qi, J., Zhao, X. F., Yu, X. J., Yi, Q. Y., Shi, X. L., Tan, H., et al. (2016). Targeting interleukin-1 beta to suppress sympathoexcitation in hypothalamic paraventricular nucleus in Dahl salt-sensitive hypertensive rats. Cardiovasc Toxicol, 16, 298–306.CrossRefPubMed
48.
go back to reference Ho, Y. H., Lin, Y. T., Wu, C. W., Chao, Y. M., Chang, A. Y., & Chan, J. Y. (2015). Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J Biomed Sci, 22, 46.CrossRefPubMedPubMedCentral Ho, Y. H., Lin, Y. T., Wu, C. W., Chao, Y. M., Chang, A. Y., & Chan, J. Y. (2015). Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J Biomed Sci, 22, 46.CrossRefPubMedPubMedCentral
49.
go back to reference Wei, S. G., Yu, Y., & Felder, R. B. (2018). Blood-borne interleukin-1beta acts on the subfornical organ to upregulate the sympathoexcitatory milieu of the hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol, 314, R447–R458.CrossRefPubMed Wei, S. G., Yu, Y., & Felder, R. B. (2018). Blood-borne interleukin-1beta acts on the subfornical organ to upregulate the sympathoexcitatory milieu of the hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol, 314, R447–R458.CrossRefPubMed
50.
go back to reference Qi, J., Yu, X. J., Shi, X. L., Gao, H. L., Yi, Q. Y., Tan, H., et al. (2016). NF-kappaB blockade in hypothalamic paraventricular nucleus inhibits high-salt-induced hypertension through NLRP3 and Caspase-1. Cardiovasc Toxicol, 16, 345–354.CrossRefPubMed Qi, J., Yu, X. J., Shi, X. L., Gao, H. L., Yi, Q. Y., Tan, H., et al. (2016). NF-kappaB blockade in hypothalamic paraventricular nucleus inhibits high-salt-induced hypertension through NLRP3 and Caspase-1. Cardiovasc Toxicol, 16, 345–354.CrossRefPubMed
51.
go back to reference Kang, Y. M., He, R. L., Yang, L. M., Qin, D. N., Guggilam, A., Elks, C., et al. (2009). Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res, 83, 737–746.CrossRefPubMedPubMedCentral Kang, Y. M., He, R. L., Yang, L. M., Qin, D. N., Guggilam, A., Elks, C., et al. (2009). Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res, 83, 737–746.CrossRefPubMedPubMedCentral
52.
go back to reference Li, H. B., Qin, D. N., Cheng, K., Su, Q., Miao, Y. W., Guo, J., et al. (2015). Central blockade of salusin beta attenuates hypertension and hypothalamic inflammation in spontaneously hypertensive rats. Sci Rep, 5, 11162.CrossRefPubMedPubMedCentral Li, H. B., Qin, D. N., Cheng, K., Su, Q., Miao, Y. W., Guo, J., et al. (2015). Central blockade of salusin beta attenuates hypertension and hypothalamic inflammation in spontaneously hypertensive rats. Sci Rep, 5, 11162.CrossRefPubMedPubMedCentral
Metadata
Title
Carbon Monoxide Attenuates High Salt-Induced Hypertension While Reducing Pro-inflammatory Cytokines and Oxidative Stress in the Paraventricular Nucleus
Authors
Dong-Dong Zhang
Yan-Feng Liang
Jie Qi
Kai B. Kang
Xiao-Jing Yu
Hong-Li Gao
Kai-Li Liu
Yan-Mei Chen
Xiao-Lian Shi
Guo-Rui Xin
Li-Yan Fu
Yu-Ming Kang
Wei Cui
Publication date
01-10-2019
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 5/2019
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09517-w

Other articles of this Issue 5/2019

Cardiovascular Toxicology 5/2019 Go to the issue