Skip to main content
Top
Published in: Current Rheumatology Reports 3/2013

01-03-2013 | CRYSTAL ARTHRITIS (MH PILLINGER, SECTION EDITOR)

Cholesterol Crystals and Inflammation

Authors: Alena Grebe, Eicke Latz

Published in: Current Rheumatology Reports | Issue 3/2013

Login to get access

Abstract

Chronic vascular inflammation is regarded as a crucial aspect of cardiovascular disease. However, the elicitors of this inflammatory response in the vessel wall are currently not well understood. Excessive amounts of cholesterol, an abundant and fundamental lipid molecule in mammalian cells, can initiate the development and progression of atherosclerosis. Accumulation of cholesterol in early atherosclerotic lesions results in the formation of macrophage foam cells, and crystalline cholesterol is found as a characteristic of advanced atherosclerotic plaques. Cholesterol crystals can activate the NLRP3 inflammasome, a multimolecular signaling complex of the innate immune system, resulting in caspase-1 mediated activation and secretion of proinflammatory interleukin-1 family cytokines. Furthermore, crystalline cholesterol is believed to induce plaque rupture by physical disruption of the fibrous cap covering atherosclerotic lesions. Here we review the effect of cholesterol deposition and crystallization on inflammatory responses in cardiovascular diseases.
Literature
1.
2.
go back to reference Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826–37.PubMedCrossRef Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826–37.PubMedCrossRef
3.
go back to reference Stutz A, Golenbock DT, Latz E. Inflammasomes: too big to miss. J Clin Invest. 2009;119(12):3502–11.PubMedCrossRef Stutz A, Golenbock DT, Latz E. Inflammasomes: too big to miss. J Clin Invest. 2009;119(12):3502–11.PubMedCrossRef
4.
go back to reference Dostert C et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–7.PubMedCrossRef Dostert C et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–7.PubMedCrossRef
5.
go back to reference Hornung V et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–56.PubMedCrossRef Hornung V et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–56.PubMedCrossRef
6.
go back to reference •• Duewell P et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61. Demonstration that cholesterol crystals can activate the NLRP3 inflammasome and contribute to development of atherosclerosis in a murine model.PubMedCrossRef •• Duewell P et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61. Demonstration that cholesterol crystals can activate the NLRP3 inflammasome and contribute to development of atherosclerosis in a murine model.PubMedCrossRef
7.
go back to reference • Rajamaki K et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One. 2010;5(7):e11765. This paper reports results revealing that human immune cells can be activated by cholesterol crystals to secrete IL-1β cytokines.PubMedCrossRef • Rajamaki K et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One. 2010;5(7):e11765. This paper reports results revealing that human immune cells can be activated by cholesterol crystals to secrete IL-1β cytokines.PubMedCrossRef
8.
go back to reference Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434–51.PubMedCrossRef Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434–51.PubMedCrossRef
9.
go back to reference Chang TY et al. Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol. 2006;22:129–57.PubMedCrossRef Chang TY et al. Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol. 2006;22:129–57.PubMedCrossRef
10.
go back to reference Small DM. George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arteriosclerosis. 1988;8(2):103–29.PubMedCrossRef Small DM. George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arteriosclerosis. 1988;8(2):103–29.PubMedCrossRef
11.
go back to reference Tangirala RK et al. Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J Lipid Res. 1994;35(1):93–104.PubMed Tangirala RK et al. Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J Lipid Res. 1994;35(1):93–104.PubMed
12.
go back to reference Kellner-Weibel G et al. Crystallization of free cholesterol in model macrophage foam cells. Arterioscler Thromb Vasc Biol. 1999;19(8):1891–8.PubMedCrossRef Kellner-Weibel G et al. Crystallization of free cholesterol in model macrophage foam cells. Arterioscler Thromb Vasc Biol. 1999;19(8):1891–8.PubMedCrossRef
13.
go back to reference Adams CW, Abdulla YH. The action of human high density lipoprotein on cholesterol crystals. Part 1. Light-microscopic observations. Atherosclerosis. 1978;31(4):465–71.PubMedCrossRef Adams CW, Abdulla YH. The action of human high density lipoprotein on cholesterol crystals. Part 1. Light-microscopic observations. Atherosclerosis. 1978;31(4):465–71.PubMedCrossRef
14.
go back to reference Abdulla YH, Adams CW. The action of human high density lipoprotein on cholesterol crystals. Part 2. Biochemical observations. Atherosclerosis. 1978;31(4):473–80.PubMedCrossRef Abdulla YH, Adams CW. The action of human high density lipoprotein on cholesterol crystals. Part 2. Biochemical observations. Atherosclerosis. 1978;31(4):473–80.PubMedCrossRef
15.
go back to reference Krut LH. Clearance of subcutaneous implants of cholesterol in the rat promoted by oxidation products of cholesterol. A postulated role for oxysterols in preventing atherosclerosis. Atherosclerosis. 1982;43(1):105–18.PubMedCrossRef Krut LH. Clearance of subcutaneous implants of cholesterol in the rat promoted by oxidation products of cholesterol. A postulated role for oxysterols in preventing atherosclerosis. Atherosclerosis. 1982;43(1):105–18.PubMedCrossRef
16.
17.
go back to reference Hammerschmidt DE et al. Cholesterol and atheroma lipids activate complement and stimulate granulocytes. A possible mechanism for amplification of ischemic injury in atherosclerotic states. J Lab Clin Med. 1981;98(1):68–77.PubMed Hammerschmidt DE et al. Cholesterol and atheroma lipids activate complement and stimulate granulocytes. A possible mechanism for amplification of ischemic injury in atherosclerotic states. J Lab Clin Med. 1981;98(1):68–77.PubMed
18.
go back to reference Sedaghat A, Grundy SM. Cholesterol crystals and the formation of cholesterol gallstones. N Engl J Med. 1980;302(23):1274–7.PubMedCrossRef Sedaghat A, Grundy SM. Cholesterol crystals and the formation of cholesterol gallstones. N Engl J Med. 1980;302(23):1274–7.PubMedCrossRef
19.
go back to reference Nair PN, Sjogren U, Sundqvist G. Cholesterol crystals as an etiological factor in non-resolving chronic inflammation: an experimental study in guinea pigs. Eur J Oral Sci. 1998;106(2 Pt 1):644–50.PubMedCrossRef Nair PN, Sjogren U, Sundqvist G. Cholesterol crystals as an etiological factor in non-resolving chronic inflammation: an experimental study in guinea pigs. Eur J Oral Sci. 1998;106(2 Pt 1):644–50.PubMedCrossRef
20.
go back to reference Sjogren U et al. Bone-resorbing activity from cholesterol-exposed macrophages due to enhanced expression of interleukin-1alpha. J Dent Res. 2002;81(1):11–6.PubMedCrossRef Sjogren U et al. Bone-resorbing activity from cholesterol-exposed macrophages due to enhanced expression of interleukin-1alpha. J Dent Res. 2002;81(1):11–6.PubMedCrossRef
21.
go back to reference Nissen SE et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med. 2006;354(12):1253–63.PubMedCrossRef Nissen SE et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med. 2006;354(12):1253–63.PubMedCrossRef
22.
go back to reference Meuwese MC et al. ACAT inhibition and progression of carotid atherosclerosis in patients with familial hypercholesterolemia: the CAPTIVATE randomized trial. JAMA. 2009;301(11):1131–9.PubMedCrossRef Meuwese MC et al. ACAT inhibition and progression of carotid atherosclerosis in patients with familial hypercholesterolemia: the CAPTIVATE randomized trial. JAMA. 2009;301(11):1131–9.PubMedCrossRef
23.
go back to reference Accad M et al. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J Clin Invest. 2000;105(6):711–9.PubMedCrossRef Accad M et al. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J Clin Invest. 2000;105(6):711–9.PubMedCrossRef
25.
go back to reference Wright SD et al. Infectious agents are not necessary for murine atherogenesis. J Exp Med. 2000;191(8):1437–42.PubMedCrossRef Wright SD et al. Infectious agents are not necessary for murine atherogenesis. J Exp Med. 2000;191(8):1437–42.PubMedCrossRef
26.
go back to reference Abela GS, Aziz K. Cholesterol crystals cause mechanical damage to biological membranes: a proposed mechanism of plaque rupture and erosion leading to arterial thrombosis. Clin Cardiol. 2005;28(9):413–20.PubMedCrossRef Abela GS, Aziz K. Cholesterol crystals cause mechanical damage to biological membranes: a proposed mechanism of plaque rupture and erosion leading to arterial thrombosis. Clin Cardiol. 2005;28(9):413–20.PubMedCrossRef
27.
go back to reference Abela GS, Aziz K. Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events—a novel insight into plaque rupture by scanning electron microscopy. Scanning. 2006;28(1):1–10.PubMedCrossRef Abela GS, Aziz K. Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events—a novel insight into plaque rupture by scanning electron microscopy. Scanning. 2006;28(1):1–10.PubMedCrossRef
28.
go back to reference Abela GS et al. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am J Cardiol. 2009;103(7):959–68.PubMedCrossRef Abela GS et al. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am J Cardiol. 2009;103(7):959–68.PubMedCrossRef
29.
go back to reference Galea J et al. Interleukin-1 beta in coronary arteries of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 1996;16(8):1000–6.PubMedCrossRef Galea J et al. Interleukin-1 beta in coronary arteries of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 1996;16(8):1000–6.PubMedCrossRef
30.
go back to reference Kirii H et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(4):656–60.PubMedCrossRef Kirii H et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(4):656–60.PubMedCrossRef
31.
go back to reference Menu P et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2011;2:e137.PubMedCrossRef Menu P et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2011;2:e137.PubMedCrossRef
32.
go back to reference Wouters K et al. Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and ldlr mice. Clin Chem Lab Med. 2005;43(5):470–9.PubMedCrossRef Wouters K et al. Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and ldlr mice. Clin Chem Lab Med. 2005;43(5):470–9.PubMedCrossRef
33.
go back to reference • Razani B et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 2012;15(4):534–44. This paper reports results indicating that autophagy regulates NLRP3 inflammasome activation by cholesterol crystals in atherosclerotic plaques.PubMedCrossRef • Razani B et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 2012;15(4):534–44. This paper reports results indicating that autophagy regulates NLRP3 inflammasome activation by cholesterol crystals in atherosclerotic plaques.PubMedCrossRef
34.
go back to reference Abela GS. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J Clin Lipidol. 2010;4(3):156–64.PubMedCrossRef Abela GS. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J Clin Lipidol. 2010;4(3):156–64.PubMedCrossRef
35.
go back to reference Gordon T et al. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977;62(5):707–14.PubMedCrossRef Gordon T et al. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977;62(5):707–14.PubMedCrossRef
36.
go back to reference Redondo S et al. Emerging therapeutic strategies to enhance HDL function. Lipids Health Dis. 2011;10:175.PubMedCrossRef Redondo S et al. Emerging therapeutic strategies to enhance HDL function. Lipids Health Dis. 2011;10:175.PubMedCrossRef
37.
go back to reference Hewing B, Fisher EA. Rationale for cholesteryl ester transfer protein inhibition. Curr Opin Lipidol. 2012;23(4):372–6.PubMedCrossRef Hewing B, Fisher EA. Rationale for cholesteryl ester transfer protein inhibition. Curr Opin Lipidol. 2012;23(4):372–6.PubMedCrossRef
38.
go back to reference Schwartz, G.G., et al., Effects of Dalcetrapib in Patients with a Recent Acute Coronary Syndrome. N Engl J Med, 2012. Schwartz, G.G., et al., Effects of Dalcetrapib in Patients with a Recent Acute Coronary Syndrome. N Engl J Med, 2012.
39.
go back to reference Nicklin MJ et al. Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene. J Exp Med. 2000;191(2):303–12.PubMedCrossRef Nicklin MJ et al. Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene. J Exp Med. 2000;191(2):303–12.PubMedCrossRef
40.
go back to reference Isoda K et al. Lack of interleukin-1 receptor antagonist modulates plaque composition in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2004;24(6):1068–73.PubMedCrossRef Isoda K et al. Lack of interleukin-1 receptor antagonist modulates plaque composition in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2004;24(6):1068–73.PubMedCrossRef
41.
go back to reference Devlin CM et al. Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Proc Natl Acad Sci U S A. 2002;99(9):6280–5.PubMedCrossRef Devlin CM et al. Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Proc Natl Acad Sci U S A. 2002;99(9):6280–5.PubMedCrossRef
42.
go back to reference Elhage R et al. Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation. 1998;97(3):242–4.PubMedCrossRef Elhage R et al. Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation. 1998;97(3):242–4.PubMedCrossRef
43.
go back to reference • Ridker PM et al. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162(4):597–605. Design of the CANTOS study testing the effect of anti-IL-1β therapy in atherosclerosis. The first human test of the inflammation hypothesis for atherogenesis.PubMedCrossRef • Ridker PM et al. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162(4):597–605. Design of the CANTOS study testing the effect of anti-IL-1β therapy in atherosclerosis. The first human test of the inflammation hypothesis for atherogenesis.PubMedCrossRef
44.
go back to reference Alexander MR et al. Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J Clin Invest. 2012;122(1):70–9.PubMedCrossRef Alexander MR et al. Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J Clin Invest. 2012;122(1):70–9.PubMedCrossRef
Metadata
Title
Cholesterol Crystals and Inflammation
Authors
Alena Grebe
Eicke Latz
Publication date
01-03-2013
Publisher
Current Science Inc.
Published in
Current Rheumatology Reports / Issue 3/2013
Print ISSN: 1523-3774
Electronic ISSN: 1534-6307
DOI
https://doi.org/10.1007/s11926-012-0313-z

Other articles of this Issue 3/2013

Current Rheumatology Reports 3/2013 Go to the issue

CHRONIC PAIN (LJ CROFFORD, SECTION EDITOR)

What Are We Treating with Chronic Opioid Therapy?

RHEUMATOID ARTHRITIS (LW MORELAND, SECTION EDITOR)

The Role of the Microbiome in Rheumatic Diseases

PSORIATIC ARTHRITIS (O FITZGERALD AND P HELLIWELL, SECTION EDITORS)

Psoriatic Arthritis: Phenotypic Variance and Nosology

PEDIATRIC RHEUMATOLOGY (TJA LEHMAN, SECTION EDITOR)

Use of Biomarkers in the Management of Children with Lupus