Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 5, 2005

Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and ldlr mice

  • Kristiaan Wouters , Ronit Shiri-Sverdlov , Patrick J. van Gorp , Marc van Bilsen and Marten H. Hofker

Abstract

Hyperlipidemia is the most important risk factor for atherosclerosis, which is the major cause of cardiovascular disease. The etiology of hyperlipidemia and atherosclerosis is complex and governed by multiple interacting genes. However, mutations in two genes have been shown to be directly involved, i.e., the low-density lipoprotein receptor (LDLR) and apolipoprotein E (ApoE). Genetically modified mouse models have been instrumental in elucidating the underlying molecular mechanisms in lipid metabolism. In this review, we focus on the use of two of the most widely used mouse models, ApoE- and LDLR-deficient mice. After almost a decade of applications, it is clear that each model has unique strengths and drawbacks when carrying out studies of the role of additional genes and environmental factors such as nutrition and lipid-lowering drugs. Importantly, we elaborate on mice expressing mutant forms of APOE, including the APOE3Leiden ( APOE3L) and the APOE2 knock-in ( APOE2k) mouse models. These models have outstanding potential, as they are highly responsive to dietary factors and pharmacological interventions.


Corresponding author: Marten H. Hofker, Cardiovascular Research Institute Maastricht, Department of Molecular Genetics, Universiteit Maastricht UNS50/11, P.O. Box 616, 6200MD Maastricht, The Netherlands Phone: +31-43-388-1138, Fax: +31-43-388-4574, E-mail:

References

1 Lugo-Somolinos A, Sanchez JE. Xanthomas: a marker for hyperlipidemias. Bol Asoc Med P R 2003; 95: 12–6. Search in Google Scholar

2 Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1992; 1: 445–66. 10.1002/humu.1380010602Search in Google Scholar

3 Mahley RW, Rall SC Jr. Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and abnormal lipoprotein metabolism, 7th ed. New York: McGraw-Hill, 1995. Search in Google Scholar

4 Schaefer EJ, Gregg RE, Ghiselli G, Forte TM, Ordovas JM, Zech LA, et al. Familial apolipoprotein E deficiency. J Clin Invest 1986; 78: 1206–19. 10.1172/JCI112704Search in Google Scholar

5 Ji Z, Fazio S, Mahley R. Variable heparan sulfate proteoglycan binding of apolipoprotein E variants may modulate the expression of type III hyperlipoproteinemia. J Biol Chem 1994; 269: 13421–8. 10.1016/S0021-9258(17)36849-7Search in Google Scholar

6 Brewer HB Jr, Zech LA, Gregg RE, Schwartz D, Schaefer EJ. NIH conference. Type III hyperlipoproteinemia: diagnosis, molecular defects, pathology, and treatment. Ann Intern Med 1983; 98: 623–40. 10.7326/0003-4819-98-5-623Search in Google Scholar

7 Shore VG, Shore B. Heterogeneity of human plasma very low density lipoproteins. Separation of species differing in protein components. Biochemistry 1973; 12: 502–7. 10.1021/bi00727a022Search in Google Scholar

8 Mahley RW, Innerarity TL, Bersot TP, Lipson A, Margolis S. Alterations in human high-density lipoproteins, with or without increased plasma-cholesterol, induced by diets high in cholesterol. Lancet 1978; 2: 807–9. 10.1016/S0140-6736(78)92588-6Search in Google Scholar

9 Innerarity TL, Mahley RW. Enhanced binding by cultured human fibroblasts of apo-E-containing lipoproteins as compared with low density lipoproteins. Biochemistry 1978; 17: 1440–7. 10.1021/bi00601a013Search in Google Scholar

10 Ji ZS, Brecht WJ, Miranda RD, Hussain MM, Innerarity TL, Mahley RW. Role of heparan sulfate proteoglycans in the binding and uptake of apolipoprotein E-enriched remnant lipoproteins by cultured cells. J Biol Chem 1993; 268: 10160–7. 10.1016/S0021-9258(18)82186-XSearch in Google Scholar

11 Ji ZS, Fazio S, Lee YL, Mahley RW. Secretion-capture role for apolipoprotein E in remnant lipoprotein metabolism involving cell surface heparan sulfate proteoglycans. J Biol Chem 1994; 269: 2764–72. 10.1016/S0021-9258(17)42009-6Search in Google Scholar

12 Huang Y, Liu XQ, Rall SC, Jr., Taylor JM, von Eckardstein A, Assmann G, et al. Overexpression and accumulation of apolipoprotein E as a cause of hypertriglyceridemia. J Biol Chem 1998; 273: 26388–93. 10.1074/jbc.273.41.26388Search in Google Scholar PubMed

13 Rensen PC, van Berkel TJ. Apolipoprotein E effectively inhibits lipoprotein lipase-mediated lipolysis of chylomicron-like triglyceride-rich lipid emulsions in vitro and in vivo. J Biol Chem 1996; 271: 14791–9. 10.1074/jbc.271.25.14791Search in Google Scholar

14 Huang Y, Ji ZS, Brecht WJ, Rall SC Jr, Taylor JM, Mahley RW. Overexpression of apolipoprotein E3 in transgenic rabbits causes combined hyperlipidemia by stimulating hepatic VLDL production and impairing VLDL lipolysis. Arterioscler Thromb Vasc Biol 1999; 19: 2952–9. 10.1161/01.ATV.19.12.2952Search in Google Scholar

15 Mensenkamp AR, Havekes LM, Romijn JA, Kuipers F. Hepatic steatosis and very low density lipoprotein secretion: the involvement of apolipoprotein E. J Hepatol 2001; 35: 816–22. 10.1016/S0168-8278(01)00249-5Search in Google Scholar

16 Huang Y, von Eckardstein A, Wu S, Maeda N, Assmann G. A plasma lipoprotein containing only apolipoprotein E and with gamma mobility on electrophoresis releases cholesterol from cells. Proc Natl Acad Sci USA 1994; 91: 1834–8. 10.1073/pnas.91.5.1834Search in Google Scholar

17 Zhu Y, Bellosta S, Langer C, Bernini F, Pitas RE, Mahley RW, et al. Low-dose expression of a human apolipoprotein E transgene in macrophages restores cholesterol efflux capacity of apolipoprotein E-deficient mouse plasma. Proc Natl Acad Sci USA 1998; 95: 7585–90. 10.1073/pnas.95.13.7585Search in Google Scholar

18 Mahley RW, Huang Y, Rall SC Jr. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes. J Lipid Res 1999; 40: 1933–49. 10.1016/S0022-2275(20)32417-2Search in Google Scholar

19 de Knijff P, van den Maagdenberg AM, Stalenhoef AF, Leuven JA, Demacker PN, Kuyt LP, et al. Familial dysbetalipoproteinemia associated with apolipoprotein E3-Leiden in an extended multigeneration pedigree. J Clin Invest 1991; 88: 643–55. 10.1172/JCI115349Search in Google Scholar

20 Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 1985; 57: 65–73. 10.1016/0021-9150(85)90138-8Search in Google Scholar

21 Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999; 340: 115–26. 10.1056/NEJM199901143400207Search in Google Scholar

22 Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell 2001; 104: 503–16. 10.1016/S0092-8674(01)00238-0Search in Google Scholar

23 Breslow JL. Genetic differences in endothelial cells may determine atherosclerosis susceptibility. Circulation 2000; 102: 5–6. 10.1161/01.CIR.102.1.5Search in Google Scholar

24 Liao F, Andalibi A, deBeer FC, Fogelman AM, Lusis AJ. Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor activation in response to an atherogenic diet in mice. J Clin Invest 1993; 91: 2572–9. 10.1172/JCI116495Search in Google Scholar

25 Vergnes L, Phan J, Strauss M, Tafuri S, Reue K. Cholesterol and cholate components of an atherogenic diet induce distinct stages of hepatic inflammatory gene expression. J Biol Chem 2003; 278: 42774–84. 10.1074/jbc.M306022200Search in Google Scholar

26 Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 1992; 71: 343–53. 10.1016/0092-8674(92)90362-GSearch in Google Scholar

27 Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992; 258: 468–71. 10.1126/science.1411543Search in Google Scholar

28 van den Maagdenberg AM, Hofker MH, Krimpenfort PJ, de Bruijn I, van Vlijmen B, van der Boom H, et al. Transgenic mice carrying the apolipoprotein E3-Leiden gene exhibit hyperlipoproteinemia. J Biol Chem 1993; 268: 10540–5. 10.1016/S0021-9258(18)82232-3Search in Google Scholar

29 Sullivan PM, Mezdour H, Quarfordt SH, Maeda N. Type III hyperlipoproteinemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse Apoe with human Apoe*2. J Clin Invest 1998; 102: 130–5. 10.1172/JCI2673Search in Google Scholar PubMed PubMed Central

30 Zhang SH, Reddick RL, Burkey B, Maeda N. Diet-induced atherosclerosis in mice heterozygous and homozygous for apolipoprotein E gene disruption. J Clin Invest 1994; 94: 937–45. 10.1172/JCI117460Search in Google Scholar PubMed PubMed Central

31 Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993; 92: 883–93. 10.1172/JCI116663Search in Google Scholar PubMed PubMed Central

32 van Vlijmen BJ, Pearce NJ, Bergo M, Staels B, Yates JW, Gribble AD, et al. Apolipoprotein E*3-Leiden transgenic mice as a test model for hypolipidaemic drugs. Arzneimittelforschung 1998; 48: 396–402. Search in Google Scholar

33 Malloy SI, Altenburg MK, Knouff C, Lanningham-Foster L, Parks JS, Maeda N. Harmful effects of increased LDLR expression in mice with human APOE*4 but not APOE*3. Arterioscler Thromb Vasc Biol 2004; 24: 91–7. 10.1161/01.ATV.0000094963.07902.FBSearch in Google Scholar PubMed

34 van Ree JH, van den Broek WJ, Dahlmans VE, Groot PH, Vidgeon-Hart M, Frants RR, et al. Diet-induced hypercholesterolemia and atherosclerosis in heterozygous apolipoprotein E-deficient mice. Atherosclerosis 1994; 111: 25–37. 10.1016/0021-9150(94)90188-0Search in Google Scholar

35 Knowles JW, Maeda N. Genetic modifiers of atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2000; 20: 2336–45. 10.1161/01.ATV.20.11.2336Search in Google Scholar

36 Smith JD, James D, Dansky HM, Wittkowski KM, Moore KJ, Breslow JL. In silico quantitative trait locus map for atherosclerosis susceptibility in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2003; 23: 117–22. 10.1161/01.ATV.0000047461.18902.80Search in Google Scholar PubMed

37 Smith JD, Dansky HM, Breslow JL. Genetic modifiers of atherosclerosis in mice. Ann NY Acad Sci 2001; 947: 247–52 (discussion 252–3). 10.1111/j.1749-6632.2001.tb03946.xSearch in Google Scholar PubMed

38 Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM. Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol 2000; 20: 2587–92. 10.1161/01.ATV.20.12.2587Search in Google Scholar PubMed

39 Cullen P, Baetta R, Bellosta S, Bernini F, Chinetti G, Cignarella A, et al. Rupture of the atherosclerotic plaque: does a good animal model exist? Arterioscler Thromb Vasc Biol 2003; 23: 535–42. 10.1161/01.ATV.0000060200.73623.F8Search in Google Scholar PubMed

40 VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol 2004; 24: 12–22. 10.1161/01.ATV.0000105054.43931.f0Search in Google Scholar PubMed

41 Reardon CA, Blachowicz L, Lukens J, Nissenbaum M, Getz GS. Genetic background selectively influences innominate artery atherosclerosis: immune system deficiency as a probe. Arterioscler Thromb Vasc Biol 2003; 23: 1449–54. 10.1161/01.ATV.0000079793.58054.2ESearch in Google Scholar PubMed

42 Meir KS, Leitersdorf E. Atherosclerosis in the apolipoprotein E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 2004; 24: 1006–14. 10.1161/01.ATV.0000128849.12617.f4Search in Google Scholar PubMed

43 Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation 2000; 101: 207–13. 10.1161/01.CIR.101.2.207Search in Google Scholar PubMed

44 Wang YX, Martin-McNulty B, Huw LY, da Cunha V, Post J, Hinchman J, et al. Anti-atherosclerotic effect of simvastatin depends on the presence of apolipoprotein E. Atherosclerosis 2002; 162: 23–31. 10.1016/S0021-9150(01)00678-5Search in Google Scholar

45 Bea F, Blessing E, Bennett B, Levitz M, Wallace EP, Rosenfeld ME. Simvastatin promotes atherosclerotic plaque stability in apoE-deficient mice independently of lipid lowering. Arterioscler Thromb Vasc Biol 2002; 22: 1832–7. 10.1161/01.ATV.0000036081.01231.16Search in Google Scholar

46 Fu T, Kashireddy P, Borensztajn J. The peroxisome-proliferator-activated receptor alpha agonist ciprofibrate severely aggravates hypercholesterolaemia and accelerates the development of atherosclerosis in mice lacking apolipoprotein E. Biochem J 2003; 373: 941–7. 10.1042/bj20030105Search in Google Scholar

47 Tordjman K, Bernal-Mizrachi C, Zemany L, Weng S, Feng C, Zhang F, et al. PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest 2001; 107: 1025–34. 10.1172/JCI11497Search in Google Scholar

48 Zuckerman SH, Kauffman RF, Evans GF. Peroxisome proliferator-activated receptor alpha, gamma coagonist LY465608 inhibits macrophage activation and atherosclerosis in apolipoprotein E knockout mice. Lipids 2002; 37: 487–94. 10.1007/s11745-002-0922-2Search in Google Scholar

49 Fu T, Kozarsky KF, Borensztajn J. Overexpression of SR-BI by adenoviral vector reverses the fibrate-induced hypercholesterolemia of apolipoprotein E-deficient mice. J Biol Chem 2003; 278: 52559–63. 10.1074/jbc.M310892200Search in Google Scholar

50 Tai ES, Adiconis X, Ordovas JM, Carmena-Ramon R, Real J, Corella D, et al. Polymorphisms at the SRBI locus are associated with lipoprotein levels in subjects with heterozygous familial hypercholesterolemia. Clin Genet 2003; 63: 53–8. 10.1034/j.1399-0004.2003.630108.xSearch in Google Scholar

51 Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996; 271: 518–20. 10.1126/science.271.5248.518Search in Google Scholar

52 Greeve J, Altkemper I, Dieterich JH, Greten H, Windler E. Apolipoprotein B mRNA editing in 12 different mammalian species: hepatic expression is reflected in low concentrations of apoB-containing plasma lipoproteins. J Lipid Res 1993; 34: 1367–83. 10.1016/S0022-2275(20)36966-2Search in Google Scholar

53 Veniant MM, Zlot CH, Walzem RL, Pierotti V, Driscoll R, Dichek D, et al. Lipoprotein clearance mechanisms in LDL receptor-deficient “Apo-B48-only” and “Apo-B100-only” mice. J Clin Invest 1998; 102: 1559–68. 10.1172/JCI4164Search in Google Scholar PubMed PubMed Central

54 Jong MC, Dahlmans VE, van Gorp PJ, van Dijk KW, Breuer ML, Hofker MH, et al. In the absence of the low density lipoprotein receptor, human apolipoprotein C1 overexpression in transgenic mice inhibits the hepatic uptake of very low density lipoproteins via a receptor-associated protein-sensitive pathway. J Clin Invest 1996; 98: 2259–67. 10.1172/JCI119036Search in Google Scholar

55 Mahley RW, Ji Z-S. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 1999; 40: 1–16. 10.1016/S0022-2275(20)33334-4Search in Google Scholar

56 Daugherty A. Mouse models of atherosclerosis. Am J Med Sci 2002; 323: 3–10. 10.1097/00000441-200201000-00002Search in Google Scholar

57 de Winther MP, Heeringa P. Bone marrow transplantations to study gene function in hematopoietic cells. Methods Mol Biol 2003; 209: 281–92. Search in Google Scholar

58 Fazio S, Babaev VR, Burleigh ME, Major AS, Hasty AH, Linton MF. Physiological expression of macrophage apoE in the artery wall reduces atherosclerosis in severely hyperlipidemic mice. J Lipid Res 2002; 43: 1602–9. 10.1194/jlr.M200108-JLR200Search in Google Scholar

59 Kanters E, Pasparakis M, Gijbels MJ, Vergouwe MN, Partouns-Hendriks I, Fijneman RJ, et al. Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2003; 112: 1176–85. 10.1172/JCI200318580Search in Google Scholar

60 Jong MC, Dahlmans VE, van Gorp PJ, van Dijk KW, Breuer ML, Hofker MH, et al. In the absence of the low density lipoprotein receptor, human apolipoprotein C1 overexpression in transgenic mice inhibits the hepatic uptake of very low density lipoproteins via a receptor-associated protein-sensitive pathway. J Clin Invest 1996; 98: 2259–67. 10.1172/JCI119036Search in Google Scholar

61 Shachter NS, Zhu Y, Walsh A, Breslow JL, Smith JD. Localization of a liver-specific enhancer in the apolipoprotein E/C-I/C-II gene locus. J Lipid Res 1993; 34: 1699–707. 10.1016/S0022-2275(20)35732-1Search in Google Scholar

62 Jong MC, Hofker MH, Havekes LM. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 1999; 19: 472–84. 10.1161/01.ATV.19.3.472Search in Google Scholar PubMed

63 Jong MC, Dahlmans VE, van Gorp PJ, Breuer ML, Mol MJ, van der Zee A, et al. Both lipolysis and hepatic uptake of VLDL are impaired in transgenic mice coexpressing human apolipoprotein E*3Leiden and human apolipoprotein C1. Arterioscler Thromb Vasc Biol 1996; 16: 934–40. 10.1161/01.ATV.16.8.934Search in Google Scholar

64 van Vlijmen BJ, van den Maagdenberg AM, Gijbels MJ, van der Boom H, HogenEsch H, Frants RR, et al. Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice. J Clin Invest 1994; 93: 1403–10. 10.1172/JCI117117Search in Google Scholar PubMed PubMed Central

65 Groot PH, van Vlijmen BJ, Benson GM, Hofker MH, Schiffelers R, Vidgeon-Hart M, et al. Quantitative assessment of aortic atherosclerosis in APOE*3 Leiden transgenic mice and its relationship to serum cholesterol exposure. Arterioscler Thromb Vasc Biol 1996; 16: 926–33. 10.1161/01.ATV.16.8.926Search in Google Scholar

66 van de Poll SW, Delsing DJ, Jukema JW, Princen HM, Havekes LM, Puppels GJ, et al. Raman spectroscopic investigation of atorvastatin, amlodipine, and both on atherosclerotic plaque development in APOE*3 Leiden transgenic mice. Atherosclerosis 2002; 164: 65–71. 10.1016/S0021-9150(02)00055-2Search in Google Scholar

67 van de Poll SW, Delsing DJ, Wouter Jukema J, Princen HM, Havekes LM, Puppels GJ, et al. Effects of amlodipine, atorvastatin and combination of both on advanced atherosclerotic plaque in APOE*3-Leiden transgenic mice. J Mol Cell Cardiol 2003; 35: 109–18. 10.1016/S0022-2828(02)00284-5Search in Google Scholar

68 van Vlijmen BJ, Mensink RP, van't Hof HB, Offermans RF, Hofker MH, Havekes LM. Effects of dietary fish oil on serum lipids and VLDL kinetics in hyperlipidemic apolipoprotein E*3-Leiden transgenic mice. J Lipid Res 1998; 39: 1181–8. 10.1016/S0022-2275(20)32542-6Search in Google Scholar

69 Bergman F, Juul AH, Van der Linden W. Development and regression of morphological and biochemical changes in hamsters and mice fed a cholesterol cholic acid containing diet. Acta Pathol Microbiol Scand A 1970; 78: 179–91. 10.1111/j.1699-0463.1970.tb00252.xSearch in Google Scholar PubMed

70 van Vlijmen BJ, van Dijk KW, van't Hof HB, van Gorp PJ, van der Zee A, van der Boom H, et al. In the absence of endogenous mouse apolipoprotein E, apolipoprotein E*2(Arg-158→Cys) transgenic mice develop more severe hyperlipoproteinemia than apolipoprotein E*3-Leiden transgenic mice. J Biol Chem 1996; 271: 30595–602. 10.1074/jbc.271.48.30595Search in Google Scholar PubMed

71 Huang Y, Schwendner SW, Rall SC Jr, Mahley RW. Hypolipidemic and hyperlipidemic phenotypes in transgenic mice expressing human apolipoprotein E2. J Biol Chem 1996; 271: 29146–51. 10.1074/jbc.271.46.29146Search in Google Scholar PubMed

72 de Beer F, Hendriks WL, van Vark LC, Kamerling SW, van Dijk KW, Hofker MH, et al. Binding of β-VLDL to heparan sulfate proteoglycans requires lipoprotein lipase, whereas ApoE only modulates binding affinity. Arterioscler Thromb Vasc Biol 1999; 19: 633–7. 10.1161/01.ATV.19.3.633Search in Google Scholar

73 van Dijk KW, van Vlijmen BJ, de Winther MP, van't Hof B, van der Zee A, van der Boom H, et al. Hyperlipidemia of ApoE2(Arg(158)-Cys) and ApoE3-Leiden transgenic mice is modulated predominantly by LDL receptor expression. Arterioscler Thromb Vasc Biol 1999; 19: 2945–51. 10.1161/01.ATV.19.12.2945Search in Google Scholar

74 Sullivan PM, Mezdour H, Aratani Y, Knouff C, Najib J, Reddick RL, et al. Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem 1997; 272: 17972–80. 10.1074/jbc.272.29.17972Search in Google Scholar PubMed

75 Knouff C, Hinsdale ME, Mezdour H, Altenburg MK, Watanabe M, Quarfordt SH, et al. Apo E structure determines VLDL clearance and atherosclerosis risk in mice. J Clin Invest 1999; 103: 1579–86. 10.1172/JCI6172Search in Google Scholar PubMed PubMed Central

76 Hinsdale ME, Sullivan PM, Mezdour H, Maeda N. ApoB-48 and apoB-100 differentially influence the expression of type-III hyperlipoproteinemia in APOE*2 mice. J Lipid Res 2002; 43: 1520–8. 10.1194/jlr.M200103-JLR200Search in Google Scholar PubMed

77 Knouff C, Malloy S, Wilder J, Altenburg MK, Maeda N. Doubling expression of the low density lipoprotein receptor by truncation of the 3′-untranslated region sequence ameliorates type III hyperlipoproteinemia in mice expressing the human ApoE2 isoform. J Biol Chem 2001; 276: 3856–62. 10.1074/jbc.M009423200Search in Google Scholar PubMed

78 Havel RJ, Hamilton RL. Hepatic catabolism of remnant lipoproteins: where the action is. Arterioscler Thromb Vasc Biol 2004; 24: 213–5. 10.1161/01.ATV.0000115382.53810.24Search in Google Scholar PubMed

79 Zannis VI, Chroni A, Kypreos KE, Kan HY, Cesar TB, Zanni EE, et al. Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer. Curr Opin Lipidol 2004; 15: 151–66. 10.1097/00041433-200404000-00008Search in Google Scholar PubMed

80 Kypreos KE, van Dijk KW, van Der Zee A, Havekes LM, Zannis VI. Domains of apolipoprotein E contributing to triglyceride and cholesterol homeostasis in vivo. Carboxyl-terminal region 203–299 promotes hepatic very low density lipoprotein-triglyceride secretion. J Biol Chem 2001; 276: 19778–86. 10.1074/jbc.M100418200Search in Google Scholar PubMed

81 Veniant MM, Withycombe S, Young SG. Lipoprotein size and atherosclerosis susceptibility in Apoe −/− and Ldlr −/− mice. Arterioscler Thromb Vasc Biol 2001; 21: 1567–70. 10.1161/hq1001.097780Search in Google Scholar PubMed

82 Dansky HM, Shu P, Donavan M, Montagno J, Nagle DL, Smutko JS, et al. A phenotype-sensitizing Apoe-deficient genetic background reveals novel atherosclerosis predisposition loci in the mouse. Genetics 2002; 160: 1599–608. 10.1093/genetics/160.4.1599Search in Google Scholar PubMed PubMed Central

83 Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 2003; 422: 297–302. 10.1038/nature01434Search in Google Scholar PubMed

84 Darvasi A. Genomics: gene expression meets genetics. Nature 2003; 422: 269–70. 10.1038/422269aSearch in Google Scholar PubMed

Received: 2004-11-12
Accepted: 2005-2-4
Published Online: 2005-7-5
Published in Print: 2005-5-1

© by Walter de Gruyter Berlin New York

Downloaded on 16.5.2024 from https://www.degruyter.com/document/doi/10.1515/CCLM.2005.085/html
Scroll to top button