Skip to main content
Top
Published in: Current Osteoporosis Reports 6/2016

01-12-2016 | Craniofacial Skeleton (G Roberts, Section Editor)

Bone Response of Loaded Periodontal Ligament

Authors: Eliane Hermes Dutra, Ravindra Nanda, Sumit Yadav

Published in: Current Osteoporosis Reports | Issue 6/2016

Login to get access

Abstract

The tooth-periodontal ligament-alveolar bone complex acts symbiotically to dissipate the mechanical loads incurred during mastication and/or orthodontic tooth movement. The periodontal ligament functions both in the tension and compression. At the molecular and celleular levels, the loads in the periodontal ligament trigger mechanobiological events in the alveolar bone, which leads to bone modeling and remodeling. The current review focuses on the bone response to mechanical loading of the periodontal ligament on the tension and pressure sides. Understanding the bone response has major implications for dentistry, including a better understanding of the different types of orthodontic tooth movement.
Literature
1.
go back to reference Reitan K. Tissue behavior during orthodontic tooth movement. Am J Orthod. 1960;46(12):881–900.CrossRef Reitan K. Tissue behavior during orthodontic tooth movement. Am J Orthod. 1960;46(12):881–900.CrossRef
2.
go back to reference Reitan K. Clinical and histologic observations on tooth movement during and after orthodontic treatment. Am J Orthod. 1967;53(10):721–45.CrossRefPubMed Reitan K. Clinical and histologic observations on tooth movement during and after orthodontic treatment. Am J Orthod. 1967;53(10):721–45.CrossRefPubMed
3.
go back to reference Von Bohl M, Maltha J, Von den Hoff H, Kuijpers-Jagtman AM. Changes in the periodontal ligament after experimental tooth movement using high and low continuous forces in beagle dogs. Angle Orthod. 2004;74(1):16–25. Von Bohl M, Maltha J, Von den Hoff H, Kuijpers-Jagtman AM. Changes in the periodontal ligament after experimental tooth movement using high and low continuous forces in beagle dogs. Angle Orthod. 2004;74(1):16–25.
4.
go back to reference Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod. 2006;28(3):221–40.CrossRefPubMed Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod. 2006;28(3):221–40.CrossRefPubMed
5.
go back to reference King GJ, Keeling SD, Wronski TJ. Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone. 1991;12(6):401–9.CrossRefPubMed King GJ, Keeling SD, Wronski TJ. Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone. 1991;12(6):401–9.CrossRefPubMed
6.
go back to reference Leiker BJ, Nanda RS, Currier GF, Howes RI, Sinha PK. The effects of exogenous prostaglandins on orthodontic tooth movement in rats. Am J Orthod Dentofac Orthop. 1995;108(4):380–8.CrossRef Leiker BJ, Nanda RS, Currier GF, Howes RI, Sinha PK. The effects of exogenous prostaglandins on orthodontic tooth movement in rats. Am J Orthod Dentofac Orthop. 1995;108(4):380–8.CrossRef
7.
go back to reference Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2006;129(4):458–68.CrossRefPubMed Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2006;129(4):458–68.CrossRefPubMed
8.
go back to reference Shetty N, Patil AK, Ganeshkar SV, Hegde S. Comparison of the effects of ibuprofen and acetaminophen on PGE2 levels in the GCF during orthodontic tooth movement: a human study. Prog Orthod. 2013;14:6.CrossRefPubMedPubMedCentral Shetty N, Patil AK, Ganeshkar SV, Hegde S. Comparison of the effects of ibuprofen and acetaminophen on PGE2 levels in the GCF during orthodontic tooth movement: a human study. Prog Orthod. 2013;14:6.CrossRefPubMedPubMedCentral
9.
go back to reference Yamasaki K, Miura F, Suda T. Prostaglandin as a mediator of bone resorption induced by experimental tooth movement in rats. J Dent Res. 1980;59(10):1635–42.CrossRefPubMed Yamasaki K, Miura F, Suda T. Prostaglandin as a mediator of bone resorption induced by experimental tooth movement in rats. J Dent Res. 1980;59(10):1635–42.CrossRefPubMed
10.
go back to reference Ren Y, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci. 2008;116(2):89–97.CrossRefPubMed Ren Y, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci. 2008;116(2):89–97.CrossRefPubMed
11.
go back to reference Kapoor P, Kharbanda OP, Monga N, Miglani R, Kapila S. Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: a systematic review. Prog Orthod. 2014;15:65.CrossRefPubMedPubMedCentral Kapoor P, Kharbanda OP, Monga N, Miglani R, Kapila S. Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: a systematic review. Prog Orthod. 2014;15:65.CrossRefPubMedPubMedCentral
12.
go back to reference Grieve 3rd WG, Johnson GK, Moore RN, Reinhardt RA, DuBois LM. Prostaglandin E (PGE) and interleukin-1 beta (IL-1 beta) levels in gingival crevicular fluid during human orthodontic tooth movement. Am J Orthod Dentofac Orthop. 1994;105(4):369–74.CrossRef Grieve 3rd WG, Johnson GK, Moore RN, Reinhardt RA, DuBois LM. Prostaglandin E (PGE) and interleukin-1 beta (IL-1 beta) levels in gingival crevicular fluid during human orthodontic tooth movement. Am J Orthod Dentofac Orthop. 1994;105(4):369–74.CrossRef
13.
go back to reference Kaku M, Motokawa M, Tohma Y, Tsuka N, Koseki H, Sunagawa H, et al. VEGF and M-CSF levels in periodontal tissue during tooth movement. Biomed Res (Tokyo, Japan). 2008;29(4):181–7.CrossRef Kaku M, Motokawa M, Tohma Y, Tsuka N, Koseki H, Sunagawa H, et al. VEGF and M-CSF levels in periodontal tissue during tooth movement. Biomed Res (Tokyo, Japan). 2008;29(4):181–7.CrossRef
14.
go back to reference Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.CrossRefPubMed Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.CrossRefPubMed
15.
go back to reference Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.CrossRefPubMedPubMedCentral Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.CrossRefPubMedPubMedCentral
16.
go back to reference Yamaguchi M. RANK/RANKL/OPG during orthodontic tooth movement. Orthod Craniofac Res. 2009;12(2):113–9.CrossRefPubMed Yamaguchi M. RANK/RANKL/OPG during orthodontic tooth movement. Orthod Craniofac Res. 2009;12(2):113–9.CrossRefPubMed
17.
go back to reference Brooks PJ, Heckler AF, Wei K, Gong SG. M-CSF accelerates orthodontic tooth movement by targeting preosteoclasts in mice. Angle Orthod. 2011;81(2):277–83.CrossRefPubMed Brooks PJ, Heckler AF, Wei K, Gong SG. M-CSF accelerates orthodontic tooth movement by targeting preosteoclasts in mice. Angle Orthod. 2011;81(2):277–83.CrossRefPubMed
19.
go back to reference Uematsu S, Mogi M, Deguchi T. Interleukin (IL)-1 beta, IL-6, tumor necrosis factor-alpha, epidermal growth factor, and beta 2-microglobulin levels are elevated in gingival crevicular fluid during human orthodontic tooth movement. J Dent Res. 1996;75(1):562–7.CrossRefPubMed Uematsu S, Mogi M, Deguchi T. Interleukin (IL)-1 beta, IL-6, tumor necrosis factor-alpha, epidermal growth factor, and beta 2-microglobulin levels are elevated in gingival crevicular fluid during human orthodontic tooth movement. J Dent Res. 1996;75(1):562–7.CrossRefPubMed
20.
go back to reference van Gastel J, Teughels W, Quirynen M, Struyf S, Van Damme J, Coucke W, et al. Longitudinal changes in gingival crevicular fluid after placement of fixed orthodontic appliances. Am J Orthod Dentofac Orthop. 2011;139(6):735–44.CrossRef van Gastel J, Teughels W, Quirynen M, Struyf S, Van Damme J, Coucke W, et al. Longitudinal changes in gingival crevicular fluid after placement of fixed orthodontic appliances. Am J Orthod Dentofac Orthop. 2011;139(6):735–44.CrossRef
21.
go back to reference Khan UA, Hashimi SM, Bakr MM, Forwood MR, Morrison NA. CCL2 and CCR2 are Essential for the Formation of Osteoclasts and Foreign Body Giant Cells. J Cell Biochem. 2016;117(2):382–9.CrossRefPubMed Khan UA, Hashimi SM, Bakr MM, Forwood MR, Morrison NA. CCL2 and CCR2 are Essential for the Formation of Osteoclasts and Foreign Body Giant Cells. J Cell Biochem. 2016;117(2):382–9.CrossRefPubMed
22.
go back to reference Wintges K, Beil FT, Albers J, Jeschke A, Schweizer M, Claass B, et al. Impaired bone formation and increased osteoclastogenesis in mice lacking chemokine (C-C motif) ligand 5 (Ccl5). J Bone Miner Res. 2013;28(10):2070–80.CrossRefPubMed Wintges K, Beil FT, Albers J, Jeschke A, Schweizer M, Claass B, et al. Impaired bone formation and increased osteoclastogenesis in mice lacking chemokine (C-C motif) ligand 5 (Ccl5). J Bone Miner Res. 2013;28(10):2070–80.CrossRefPubMed
23.
go back to reference Yu X, Huang Y, Collin-Osdoby P, Osdoby P. CCR1 chemokines promote the chemotactic recruitment, RANKL development, and motility of osteoclasts and are induced by inflammatory cytokines in osteoblasts. J Bone Miner Res Off J Am Soc Bone Miner Res. 2004;19(12):2065–77.CrossRef Yu X, Huang Y, Collin-Osdoby P, Osdoby P. CCR1 chemokines promote the chemotactic recruitment, RANKL development, and motility of osteoclasts and are induced by inflammatory cytokines in osteoblasts. J Bone Miner Res Off J Am Soc Bone Miner Res. 2004;19(12):2065–77.CrossRef
24.
go back to reference Lean JM, Murphy C, Fuller K, Chambers TJ. CCL9/MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J Cell Biochem. 2002;87(4):386–93.CrossRefPubMed Lean JM, Murphy C, Fuller K, Chambers TJ. CCL9/MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J Cell Biochem. 2002;87(4):386–93.CrossRefPubMed
25.
go back to reference Taddei SR, Andrade Jr I, Queiroz-Junior CM, Garlet TP, Garlet GP, Cunha Fde Q, et al. Role of CCR2 in orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2012;141(2):153–60.CrossRef Taddei SR, Andrade Jr I, Queiroz-Junior CM, Garlet TP, Garlet GP, Cunha Fde Q, et al. Role of CCR2 in orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2012;141(2):153–60.CrossRef
26.
go back to reference Teixeira CC, Khoo E, Tran J, Chartres I, Liu Y, Thant LM, et al. Cytokine expression and accelerated tooth movement. J Dent Res. 2010;89(10):1135–41.CrossRefPubMedPubMedCentral Teixeira CC, Khoo E, Tran J, Chartres I, Liu Y, Thant LM, et al. Cytokine expression and accelerated tooth movement. J Dent Res. 2010;89(10):1135–41.CrossRefPubMedPubMedCentral
27.
go back to reference Andrade Jr I, Taddei SR, Garlet GP, Garlet TP, Teixeira AL, Silva TA, et al. CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res. 2009;88(11):1037–41.CrossRefPubMed Andrade Jr I, Taddei SR, Garlet GP, Garlet TP, Teixeira AL, Silva TA, et al. CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res. 2009;88(11):1037–41.CrossRefPubMed
28.
29.
go back to reference Bergomi M, Wiskott HW, Botsis J, Mellal A, Belser UC. Load response of periodontal ligament: assessment of fluid flow, compressibility, and effect of pore pressure. J Biomech Eng. 2010;132(1):014504.PubMed Bergomi M, Wiskott HW, Botsis J, Mellal A, Belser UC. Load response of periodontal ligament: assessment of fluid flow, compressibility, and effect of pore pressure. J Biomech Eng. 2010;132(1):014504.PubMed
30.
go back to reference Noble BS, Reeve J. Osteocyte function, osteocyte death and bone fracture resistance. Mol Cell Endocrinol. 2000;159(1–2):7–13.CrossRefPubMed Noble BS, Reeve J. Osteocyte function, osteocyte death and bone fracture resistance. Mol Cell Endocrinol. 2000;159(1–2):7–13.CrossRefPubMed
31.•
go back to reference Bonewald LF. The amazing osteocyte. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26(2):229–38. This review article focusses on the role of osteocytes on mechanotransduction and activation of osteoclasts.CrossRef Bonewald LF. The amazing osteocyte. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26(2):229–38. This review article focusses on the role of osteocytes on mechanotransduction and activation of osteoclasts.CrossRef
32.••
go back to reference Matsumoto T, Iimura T, Ogura K, Moriyama K, Yamaguchi A. The Role of Osteocytes in Bone Resorption during Orthodontic Tooth Movement. J Dent Res. 2013;92(4):340–5. The authors showed that the ablation of osteocytes using diptherial toxin in transgenic mice leads to decreased orthodontic tooth movement. The decreased alveolar bone resorption demonstrate the role of osteocytes in the activation of osteoclasts.CrossRefPubMed Matsumoto T, Iimura T, Ogura K, Moriyama K, Yamaguchi A. The Role of Osteocytes in Bone Resorption during Orthodontic Tooth Movement. J Dent Res. 2013;92(4):340–5. The authors showed that the ablation of osteocytes using diptherial toxin in transgenic mice leads to decreased orthodontic tooth movement. The decreased alveolar bone resorption demonstrate the role of osteocytes in the activation of osteoclasts.CrossRefPubMed
33.
go back to reference Cheung WY, Simmons CA, You L. Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression. Bone. 2012;50(1):104–10.CrossRefPubMed Cheung WY, Simmons CA, You L. Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression. Bone. 2012;50(1):104–10.CrossRefPubMed
34.
go back to reference Al-Dujaili SA, Lau E, Al-Dujaili H, Tsang K, Guenther A, You L. Apoptotic osteocytes regulate osteoclast precursor recruitment and differentiation in vitro. J Cell Biochem. 2011;112(9):2412–23.CrossRefPubMed Al-Dujaili SA, Lau E, Al-Dujaili H, Tsang K, Guenther A, You L. Apoptotic osteocytes regulate osteoclast precursor recruitment and differentiation in vitro. J Cell Biochem. 2011;112(9):2412–23.CrossRefPubMed
35.
go back to reference Moin S, Kalajzic Z, Utreja A, Nihara J, Wadhwa S, Uribe F, et al. Osteocyte death during orthodontic tooth movement in mice. Angle Orthod. 2014;84(6):1086–92.CrossRefPubMed Moin S, Kalajzic Z, Utreja A, Nihara J, Wadhwa S, Uribe F, et al. Osteocyte death during orthodontic tooth movement in mice. Angle Orthod. 2014;84(6):1086–92.CrossRefPubMed
36.
go back to reference Nguyen AM, Jacobs CR. Emerging role of primary cilia as mechanosensors in osteocytes. Bone. 2013;54(2):196–204.CrossRefPubMed Nguyen AM, Jacobs CR. Emerging role of primary cilia as mechanosensors in osteocytes. Bone. 2013;54(2):196–204.CrossRefPubMed
37.
go back to reference Shalish M, Will LA, Fukai N, Hou B, Olsen BR. Role of polycystin-1 in bone remodeling: orthodontic tooth movement study in mutant mice. Angle Orthod. 2014;84(5):885–90.CrossRefPubMed Shalish M, Will LA, Fukai N, Hou B, Olsen BR. Role of polycystin-1 in bone remodeling: orthodontic tooth movement study in mutant mice. Angle Orthod. 2014;84(5):885–90.CrossRefPubMed
38.
go back to reference Miyagawa A, Chiba M, Hayashi H, Igarashi K. Compressive force induces VEGF production in periodontal tissues. J Dent Res. 2009;88(8):752–6.CrossRefPubMed Miyagawa A, Chiba M, Hayashi H, Igarashi K. Compressive force induces VEGF production in periodontal tissues. J Dent Res. 2009;88(8):752–6.CrossRefPubMed
39.
go back to reference Cardaropoli D, Gaveglio L. The Influence of Orthodontic Movement on Periodontal Tissues Level. Semin Orthod. 2007;13(4):234–45.CrossRef Cardaropoli D, Gaveglio L. The Influence of Orthodontic Movement on Periodontal Tissues Level. Semin Orthod. 2007;13(4):234–45.CrossRef
40.
go back to reference Norevall LI, Forsgren S, Matsson L. Expression of neuropeptides (CGRP, substance P) during and after orthodontic tooth movement in the rat. Eur J Orthod. 1995;17(4):311–25.CrossRefPubMed Norevall LI, Forsgren S, Matsson L. Expression of neuropeptides (CGRP, substance P) during and after orthodontic tooth movement in the rat. Eur J Orthod. 1995;17(4):311–25.CrossRefPubMed
41.
go back to reference Garlet TP, Coelho U, Silva JS, Garlet GP. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci. 2007;115(5):355–62.CrossRefPubMed Garlet TP, Coelho U, Silva JS, Garlet GP. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci. 2007;115(5):355–62.CrossRefPubMed
42.
go back to reference Andrade Jr I, Taddei SRA, Souza PEA. Inflammation and Tooth Movement: The Role of Cytokines, Chemokines, and Growth Factors. Semin Orthod. 2012;18(4):257–69.CrossRef Andrade Jr I, Taddei SRA, Souza PEA. Inflammation and Tooth Movement: The Role of Cytokines, Chemokines, and Growth Factors. Semin Orthod. 2012;18(4):257–69.CrossRef
43.
go back to reference Pavlin D, Zadro R, Gluhak-Heinrich J. Temporal pattern of stimulation of osteoblast-associated genes during mechanically-induced osteogenesis in vivo: early responses of osteocalcin and type I collagen. Connect Tissue Res. 2001;42(2):135–48.CrossRefPubMed Pavlin D, Zadro R, Gluhak-Heinrich J. Temporal pattern of stimulation of osteoblast-associated genes during mechanically-induced osteogenesis in vivo: early responses of osteocalcin and type I collagen. Connect Tissue Res. 2001;42(2):135–48.CrossRefPubMed
44.
go back to reference Pavlin D, Gluhak-Heinrich J. Effect of mechanical loading on periodontal cells. Crit Rev Oral Biol Med. 2001;12(5):414–24.CrossRefPubMed Pavlin D, Gluhak-Heinrich J. Effect of mechanical loading on periodontal cells. Crit Rev Oral Biol Med. 2001;12(5):414–24.CrossRefPubMed
45.
go back to reference Gluhak-Heinrich J, Ye L, Bonewald LF, Feng JQ, MacDougall M, Harris SE, et al. Mechanical Loading Stimulates Dentin Matrix Protein 1 (DMP1) Expression in Osteocytes In Vivo. J Bone Miner Res. 2003;18(5):807–17.CrossRefPubMed Gluhak-Heinrich J, Ye L, Bonewald LF, Feng JQ, MacDougall M, Harris SE, et al. Mechanical Loading Stimulates Dentin Matrix Protein 1 (DMP1) Expression in Osteocytes In Vivo. J Bone Miner Res. 2003;18(5):807–17.CrossRefPubMed
46.
go back to reference Gluhak-Heinrich J, Pavlin D, Yang W, MacDougall M, Harris SE. MEPE expression in osteocytes during orthodontic tooth movement. Arch Oral Biol. 2007;52(7):684–90.CrossRefPubMedPubMedCentral Gluhak-Heinrich J, Pavlin D, Yang W, MacDougall M, Harris SE. MEPE expression in osteocytes during orthodontic tooth movement. Arch Oral Biol. 2007;52(7):684–90.CrossRefPubMedPubMedCentral
47.
go back to reference Verna C, Zaffe D, Siciliani G. Histomorphometric study of bone reactions during orthodontic tooth movement in rats. Bone. 1999;24(4):371–9.CrossRefPubMed Verna C, Zaffe D, Siciliani G. Histomorphometric study of bone reactions during orthodontic tooth movement in rats. Bone. 1999;24(4):371–9.CrossRefPubMed
48.
go back to reference Deguchi T, Takano-Yamamoto T, Yabuuchi T, Ando R, Roberts WE, Garetto LP. Histomorphometric evaluation of alveolar bone turnover between the maxilla and the mandible during experimental tooth movement in dogs. Am J Orthod Dentofac Orthop. 2008;133(6):889–97.CrossRef Deguchi T, Takano-Yamamoto T, Yabuuchi T, Ando R, Roberts WE, Garetto LP. Histomorphometric evaluation of alveolar bone turnover between the maxilla and the mandible during experimental tooth movement in dogs. Am J Orthod Dentofac Orthop. 2008;133(6):889–97.CrossRef
Metadata
Title
Bone Response of Loaded Periodontal Ligament
Authors
Eliane Hermes Dutra
Ravindra Nanda
Sumit Yadav
Publication date
01-12-2016
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 6/2016
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-016-0328-x

Other articles of this Issue 6/2016

Current Osteoporosis Reports 6/2016 Go to the issue

Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)

Effects of Type 1 Diabetes on Osteoblasts, Osteocytes, and Osteoclasts

Craniofacial Skeleton (WE Roberts, Section Editor)

Bone Density and Dental External Apical Root Resorption

Regenerative Biology and Medicine in Osteoporosis (T Webster, Section Editor)

In Situ Sensor Advancements for Osteoporosis Prevention, Diagnosis, and Treatment