Skip to main content
Top
Published in: Current Osteoporosis Reports 6/2016

01-12-2016 | Regenerative Biology and Medicine in Osteoporosis (T Webster, Section Editor)

In Situ Sensor Advancements for Osteoporosis Prevention, Diagnosis, and Treatment

Authors: Luting Liu, Thomas J. Webster

Published in: Current Osteoporosis Reports | Issue 6/2016

Login to get access

Abstract

Osteoporosis is still a serious issue in healthcare, and will continue to increase due to the aging and growth of the population. Early diagnosis is the key to successfully treating many diseases. The earlier the osteoporosis is diagnosed, the more quickly people can take action to stop bone deterioration. Motivated by this, researchers and companies have begun developing smart in situ bone sensors in order to dramatically help people to monitor their bone mass density (BMD), bone strain or bone turnover markers (BTMs); promptly track early signs of osteoporosis; and even monitor the healing process following surgery or antiresorptive therapy. This paper focuses on the latest advancements in the field of bone biosensing materials and sensor technologies and how they can help now and in the future to detect disease and monitor bone health.
Literature
3.
go back to reference • Cosman F, Beur SJD, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25:2359–81. The clinician’s guide to prevention and treatment of osteoporosis developed by several experts in the field of bone health offers concise recommendations regarding prevention, risk assessment, diagnosis, and treatment of osteoporosis in postmenopausal women and men based on the most common existing diagnostic and treatment methods.CrossRefPubMedPubMedCentral • Cosman F, Beur SJD, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25:2359–81. The clinician’s guide to prevention and treatment of osteoporosis developed by several experts in the field of bone health offers concise recommendations regarding prevention, risk assessment, diagnosis, and treatment of osteoporosis in postmenopausal women and men based on the most common existing diagnostic and treatment methods.CrossRefPubMedPubMedCentral
4.
go back to reference Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22:465–75.CrossRefPubMed Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22:465–75.CrossRefPubMed
6.
go back to reference Barozzi N, Peeters GM, Tett SE. Actions following adverse drug events—how do these influence uptake and utilisation of newer and/or similar medications? BMC Health Serv Res. 2015;15:498.CrossRefPubMedPubMedCentral Barozzi N, Peeters GM, Tett SE. Actions following adverse drug events—how do these influence uptake and utilisation of newer and/or similar medications? BMC Health Serv Res. 2015;15:498.CrossRefPubMedPubMedCentral
8.
go back to reference López-López J, Estrugo-Devesa A, Jane-Salas E, Ayuso-Montero R, Gómez-Vaquero C. Early diagnosis of osteoporosis by means of orthopantomograms and oral x-rays: a systematic review. Med Oral Patol Oral Cir Bucal. 2011;16:e905–13.CrossRefPubMed López-López J, Estrugo-Devesa A, Jane-Salas E, Ayuso-Montero R, Gómez-Vaquero C. Early diagnosis of osteoporosis by means of orthopantomograms and oral x-rays: a systematic review. Med Oral Patol Oral Cir Bucal. 2011;16:e905–13.CrossRefPubMed
9.
go back to reference Bartl R, Frisch B. Osteoporosis: diagnosis, prevention, therapy. Berlin: Springer; 2009. ISBN: 978-3-540-79526-1 (Print) 978-3-540-79527-8 (Online).CrossRef Bartl R, Frisch B. Osteoporosis: diagnosis, prevention, therapy. Berlin: Springer; 2009. ISBN: 978-3-540-79526-1 (Print) 978-3-540-79527-8 (Online).CrossRef
10.
go back to reference Miller PD, Zapalowski C, Kulak CA, Bilezikian JP. Bone densitometry: the best way to detect osteoporosis and to monitor therapy. J Clin Endocrinol Metab. 1999;84:1867–71.CrossRefPubMed Miller PD, Zapalowski C, Kulak CA, Bilezikian JP. Bone densitometry: the best way to detect osteoporosis and to monitor therapy. J Clin Endocrinol Metab. 1999;84:1867–71.CrossRefPubMed
11.
go back to reference Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11:123–62.CrossRefPubMed Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11:123–62.CrossRefPubMed
12.
13.
go back to reference Majumdar S. Magnetic resonance imaging for osteoporosis. Skelet Radiol. 2008;37:95–7.CrossRef Majumdar S. Magnetic resonance imaging for osteoporosis. Skelet Radiol. 2008;37:95–7.CrossRef
14.
go back to reference Benitez CL, Schneider DL, Barrett-Connor E, Sartoris DJ. Hand ultrasound for osteoporosis screening in postmenopausal women. Osteoporos Int. 2000;11:203–10.CrossRefPubMed Benitez CL, Schneider DL, Barrett-Connor E, Sartoris DJ. Hand ultrasound for osteoporosis screening in postmenopausal women. Osteoporos Int. 2000;11:203–10.CrossRefPubMed
15.
go back to reference •• Khashayar P, Amoabediny G, Larijani B, Vanfleteren J. Bone biosensors: knowing the present and predicting the future. J Micromech Microeng. 2016;26:023002. Paper reviews the latest advancements in the field of bone biosensing technologies in three main categories: biomechanical sensors, multiplex automated assays, label-free biosensors.CrossRef •• Khashayar P, Amoabediny G, Larijani B, Vanfleteren J. Bone biosensors: knowing the present and predicting the future. J Micromech Microeng. 2016;26:023002. Paper reviews the latest advancements in the field of bone biosensing technologies in three main categories: biomechanical sensors, multiplex automated assays, label-free biosensors.CrossRef
16.
go back to reference Ledet EH, D’Lima D, Westerhoff P, Szivek JA, Wachs RA, Bergmann G. Implantable sensor technology: from research to clinical practice. J Am Acad Orthop Surg. 2012;20:383–92.CrossRefPubMed Ledet EH, D’Lima D, Westerhoff P, Szivek JA, Wachs RA, Bergmann G. Implantable sensor technology: from research to clinical practice. J Am Acad Orthop Surg. 2012;20:383–92.CrossRefPubMed
17.
go back to reference Sattler M, Clauss J, Schmidhuber M, Belsky J, Wolf B. Implantable sensor system for the monitoring of bone healing. IFMBE Proc. 2009;25:281–4.CrossRef Sattler M, Clauss J, Schmidhuber M, Belsky J, Wolf B. Implantable sensor system for the monitoring of bone healing. IFMBE Proc. 2009;25:281–4.CrossRef
18.
go back to reference Bassi AS, Knopf GK. Smart biosensor technology. Boca Raton: CRC Press; 2006. ISBN: 978-0-8493-3759-8 (print) 978-1-4200-1950-6 (online).CrossRef Bassi AS, Knopf GK. Smart biosensor technology. Boca Raton: CRC Press; 2006. ISBN: 978-0-8493-3759-8 (print) 978-1-4200-1950-6 (online).CrossRef
19.
go back to reference Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK. Nanobiosensors: concepts and variations. ISRN Nanomaterials. 2013; 327435. Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK. Nanobiosensors: concepts and variations. ISRN Nanomaterials. 2013; 327435.
20.
21.
go back to reference Webster TJ. Nanotechnology enabled in situ sensors for monitoring health. New York: Springer; 2011. ISBN: 978-1-4419-7290-3 (Print) 978-1-4419-7291-0 (Online).CrossRef Webster TJ. Nanotechnology enabled in situ sensors for monitoring health. New York: Springer; 2011. ISBN: 978-1-4419-7290-3 (Print) 978-1-4419-7291-0 (Online).CrossRef
22.
go back to reference Tran N, Webster TJ. Nanotechnology for bone materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:336–51.CrossRefPubMed Tran N, Webster TJ. Nanotechnology for bone materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:336–51.CrossRefPubMed
25.
go back to reference Lee J, Vasikaran S. Current recommendations for laboratory testing and use of bone turnover markers in management of osteoporosis. Ann Lab Med. 2012;32:105–12.CrossRefPubMedPubMedCentral Lee J, Vasikaran S. Current recommendations for laboratory testing and use of bone turnover markers in management of osteoporosis. Ann Lab Med. 2012;32:105–12.CrossRefPubMedPubMedCentral
26.
go back to reference Bieglmayer C, Dimai HP, Gasser RW, Kudlacek S, Obermayer-Pietsch B, Woloszczuk W, et al. Biomarkers of bone turnover in diagnosis and therapy of osteoporosis: a consensus advice from an Austrian working group. Wien Med Wochenschr. 2012;162:464–77.CrossRefPubMed Bieglmayer C, Dimai HP, Gasser RW, Kudlacek S, Obermayer-Pietsch B, Woloszczuk W, et al. Biomarkers of bone turnover in diagnosis and therapy of osteoporosis: a consensus advice from an Austrian working group. Wien Med Wochenschr. 2012;162:464–77.CrossRefPubMed
27.
go back to reference Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54:182–90.CrossRefPubMed Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54:182–90.CrossRefPubMed
28.
go back to reference • Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of bone marker measurements in osteoporosis. J Transl Med. 2013;11:201. This paper focuses on identification of specific biomarkers (i.e. specific marker of bone resorption (CTX) and bone formation (P1NP)) and utilization of bone marker measurements for the clinical management of osteoporosis and other bone diseases.CrossRefPubMedPubMedCentral • Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of bone marker measurements in osteoporosis. J Transl Med. 2013;11:201. This paper focuses on identification of specific biomarkers (i.e. specific marker of bone resorption (CTX) and bone formation (P1NP)) and utilization of bone marker measurements for the clinical management of osteoporosis and other bone diseases.CrossRefPubMedPubMedCentral
29.
go back to reference Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors—sensor principles and architectures. Sensors. 2008;8:1400–58.CrossRefPubMedCentral Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors—sensor principles and architectures. Sensors. 2008;8:1400–58.CrossRefPubMedCentral
30.
go back to reference Wang Y, Vaddiraju S, Gu B, Papadimitrakopoulos F, Burgess DJ. Foreign body reaction to implantable biosensors: effects of tissue trauma and implant size. J Diabetes Sci Technol. 2015;9:966–77.CrossRefPubMedPubMedCentral Wang Y, Vaddiraju S, Gu B, Papadimitrakopoulos F, Burgess DJ. Foreign body reaction to implantable biosensors: effects of tissue trauma and implant size. J Diabetes Sci Technol. 2015;9:966–77.CrossRefPubMedPubMedCentral
31.
go back to reference Karp FB, Bernotski NA, Valdes TI, Bohringer KF. Foreign body response investigated with an implanted biosensor by in situ electrical impedance spectroscopy. IEEE Sensors J. 2008;8:104–12.CrossRef Karp FB, Bernotski NA, Valdes TI, Bohringer KF. Foreign body response investigated with an implanted biosensor by in situ electrical impedance spectroscopy. IEEE Sensors J. 2008;8:104–12.CrossRef
32.
go back to reference •• Luz RAS, Iost RM, Crespilho FN. Nanomaterials for biosensors and implantable biodevices. Nanobioelectrochemistry. Berlin Heidelberg: Springer; 2013. p. 27–48. This book chapter focuses on utilization of biological molecules (i.e. enzymes, nucleotides, antigens, DNA, aminoacids) in conjunction with nanostructured materials (i.e. nanoparticlebased materials and carbon materials) for development of miniaturized devices and implantable biosensors for real time monitoring. •• Luz RAS, Iost RM, Crespilho FN. Nanomaterials for biosensors and implantable biodevices. Nanobioelectrochemistry. Berlin Heidelberg: Springer; 2013. p. 27–48. This book chapter focuses on utilization of biological molecules (i.e. enzymes, nucleotides, antigens, DNA, aminoacids) in conjunction with nanostructured materials (i.e. nanoparticlebased materials and carbon materials) for development of miniaturized devices and implantable biosensors for real time monitoring.
33.
go back to reference Eastell R, Hannon RA. Biomarkers of bone health and osteoporosis risk. Proc Nutr Soc. 2008;67:157–62.CrossRefPubMed Eastell R, Hannon RA. Biomarkers of bone health and osteoporosis risk. Proc Nutr Soc. 2008;67:157–62.CrossRefPubMed
34.
go back to reference Halleen JM, Alatalo SL, Janckila AJ, Woitge HW, Seibel MJ, Väänänen HK. Serum tartrate-resistant acid phosphatase 5b is a specific and sensitive marker of bone resorption. Clin Chem. 2001;47:597–600.PubMed Halleen JM, Alatalo SL, Janckila AJ, Woitge HW, Seibel MJ, Väänänen HK. Serum tartrate-resistant acid phosphatase 5b is a specific and sensitive marker of bone resorption. Clin Chem. 2001;47:597–600.PubMed
35.
go back to reference Hysi L, Rexha T. Serum osteocalcin as a specific marker of bone turnover in postmenopausal women. Albanian J Agric Sci Suppl Special Edition. 2014:341-344. Hysi L, Rexha T. Serum osteocalcin as a specific marker of bone turnover in postmenopausal women. Albanian J Agric Sci Suppl Special Edition. 2014:341-344.
36.
go back to reference Jagtap VR, Ganu JV, Nagane NS. BMD and serum intact osteocalcin in postmenopausal osteoporosis women. Indian J Clin Biochem. 2011;26:70–3.CrossRefPubMed Jagtap VR, Ganu JV, Nagane NS. BMD and serum intact osteocalcin in postmenopausal osteoporosis women. Indian J Clin Biochem. 2011;26:70–3.CrossRefPubMed
37.
go back to reference • Ji X, Chen X, Yu X. MicroRNAs in osteoclastogenesis and function: potential therapeutic targets for osteoporosis. Int J Mol Sci. 2016;17:349. This paper containts a summary of microRNAs, presents our current understanding of how microRNAs regulate osteoclastogenesis, and discusses their potential clinical implications, such as biomarkers and the development of new drugs for osteoporosis.CrossRefPubMedPubMedCentral • Ji X, Chen X, Yu X. MicroRNAs in osteoclastogenesis and function: potential therapeutic targets for osteoporosis. Int J Mol Sci. 2016;17:349. This paper containts a summary of microRNAs, presents our current understanding of how microRNAs regulate osteoclastogenesis, and discusses their potential clinical implications, such as biomarkers and the development of new drugs for osteoporosis.CrossRefPubMedPubMedCentral
38.
go back to reference Wang Y, Li L, Moore BT, Peng X-H, Fang X, Lappe JM, et al. MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS One. 2012;7:e34641.CrossRefPubMedPubMedCentral Wang Y, Li L, Moore BT, Peng X-H, Fang X, Lappe JM, et al. MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS One. 2012;7:e34641.CrossRefPubMedPubMedCentral
39.
go back to reference Cao Z, Moore BT, Wang Y, Peng XH, Lappe JM, Recker RR, et al. MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PLoS One. 2014;9:e97098.CrossRefPubMedPubMedCentral Cao Z, Moore BT, Wang Y, Peng XH, Lappe JM, Recker RR, et al. MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PLoS One. 2014;9:e97098.CrossRefPubMedPubMedCentral
40.
go back to reference Purroy J, Spurr NK. Molecular genetics of calcium sensing in bone cells. Mol Genet. 2002;11:2377–84. Purroy J, Spurr NK. Molecular genetics of calcium sensing in bone cells. Mol Genet. 2002;11:2377–84.
41.
go back to reference Marie PJ. The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone. 2010;46:571–6.CrossRefPubMed Marie PJ. The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone. 2010;46:571–6.CrossRefPubMed
42.
go back to reference McCormick RK. Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern Med Rev. 2007;12:113–45.PubMed McCormick RK. Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern Med Rev. 2007;12:113–45.PubMed
43.
go back to reference Melik R, Perkgoz NK, Unal E, Puttlitz C, Demir HV. Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications. J Micromech Microeng. 2008;18:115017.CrossRef Melik R, Perkgoz NK, Unal E, Puttlitz C, Demir HV. Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications. J Micromech Microeng. 2008;18:115017.CrossRef
44.
go back to reference Domb AJ, Khan W. Focal controlled drug delivery. Adv Deliv Sci Tech. 2014; 33-59. ISBN: 978-1-4614-9433-1 (Print) 978-1-4614-9434-8 (Online). Domb AJ, Khan W. Focal controlled drug delivery. Adv Deliv Sci Tech. 2014; 33-59. ISBN: 978-1-4614-9433-1 (Print) 978-1-4614-9434-8 (Online).
45.
go back to reference Hermawan H, Ramdan D, Djuansjah JRP. Metals for biomedical applications, biomedical engineering - from theory to applications, Prof. Reza Fazel (Ed.), InTech. 2011; 412-430. ISBN 978-953-307-637-9. Hermawan H, Ramdan D, Djuansjah JRP. Metals for biomedical applications, biomedical engineering - from theory to applications, Prof. Reza Fazel (Ed.), InTech. 2011; 412-430. ISBN 978-953-307-637-9.
46.
go back to reference Thamaraiselvi TV, Rajeswari S. Biological evaluation of bioceramic materials—a review. Trends Biomater Artif Organs. 2004;18:9–17. Thamaraiselvi TV, Rajeswari S. Biological evaluation of bioceramic materials—a review. Trends Biomater Artif Organs. 2004;18:9–17.
47.
go back to reference Qina Y, Howladera MMR, Deena MJ, Haddaraa YM, Selvaganapathyb PR. Polymer integration for packaging of implantable sensors. Sensors Actuat B. 2014;202:758–78.CrossRef Qina Y, Howladera MMR, Deena MJ, Haddaraa YM, Selvaganapathyb PR. Polymer integration for packaging of implantable sensors. Sensors Actuat B. 2014;202:758–78.CrossRef
48.
go back to reference Albert K, Schledjewski R, Harbaugh M, Bleser S, Jamison R, Friedrich K. Characterization of wear in composite material orthopaedic implants. Part II: the implant/bone interface. Biomed Mater Eng. 1994;4:199–211.PubMed Albert K, Schledjewski R, Harbaugh M, Bleser S, Jamison R, Friedrich K. Characterization of wear in composite material orthopaedic implants. Part II: the implant/bone interface. Biomed Mater Eng. 1994;4:199–211.PubMed
49.
go back to reference •• Wujcik EK, Monty CN. Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. WIREs Nanomed Nanobiotechnol. 2013;5:233–49. This paper specifically focuses on implantable sensors equipped with nanostructured carbon allotropes, such as carbon nanotubes or graphene for nanomedicine and nanobiotechnology.CrossRef •• Wujcik EK, Monty CN. Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. WIREs Nanomed Nanobiotechnol. 2013;5:233–49. This paper specifically focuses on implantable sensors equipped with nanostructured carbon allotropes, such as carbon nanotubes or graphene for nanomedicine and nanobiotechnology.CrossRef
51.
go back to reference Patil M, Ramanathan M, Shanov V, Kumta PN. Carbon nanotube-based impedimetric biosensors for bone marker detection. In: Matyáš J, Ohji T, Pickrell G, Wong-Ng W, Kanakala R, editors. Advances in materials science for environmental and energy technologies IV: ceramic transactions, vol. 253. Hoboken: Wiley; 2015. doi:10.1002/9781119190042.ch18. Patil M, Ramanathan M, Shanov V, Kumta PN. Carbon nanotube-based impedimetric biosensors for bone marker detection. In: Matyáš J, Ohji T, Pickrell G, Wong-Ng W, Kanakala R, editors. Advances in materials science for environmental and energy technologies IV: ceramic transactions, vol. 253. Hoboken: Wiley; 2015. doi:10.​1002/​9781119190042.​ch18.
52.
go back to reference Sirivisoot S, Webster TJ. In situ bone growth detection using carbon nanotubes-titanium sensors. Bio Nano Sci. 2013;3:184–91. Sirivisoot S, Webster TJ. In situ bone growth detection using carbon nanotubes-titanium sensors. Bio Nano Sci. 2013;3:184–91.
53.
go back to reference Bao Q, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano. 2012;6:3677–94.CrossRefPubMed Bao Q, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano. 2012;6:3677–94.CrossRefPubMed
54.
go back to reference Sirivisoot S, Parcharoen Y, Webster TJ. Electrochemical detection of bacteria using graphene oxide electrodeposited on titanium implants. Adv Sci Tech. 2014;96:45–53.CrossRef Sirivisoot S, Parcharoen Y, Webster TJ. Electrochemical detection of bacteria using graphene oxide electrodeposited on titanium implants. Adv Sci Tech. 2014;96:45–53.CrossRef
55.
go back to reference Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron. 2009;25:901–5.CrossRefPubMed Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron. 2009;25:901–5.CrossRefPubMed
56.
go back to reference Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, et al. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials. 2011;32:19–27.CrossRefPubMed Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, et al. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials. 2011;32:19–27.CrossRefPubMed
57.
go back to reference Haque A-MJ, Park H, Sung D, Jon S, Choi SY, Kim K. An electrochemically reduced graphene oxidebased electrochemical immunosensing platform for ultrasensitive antigen detection. Anal Chem. 2012;84:1871–8.CrossRefPubMed Haque A-MJ, Park H, Sung D, Jon S, Choi SY, Kim K. An electrochemically reduced graphene oxidebased electrochemical immunosensing platform for ultrasensitive antigen detection. Anal Chem. 2012;84:1871–8.CrossRefPubMed
59.
go back to reference Chung YM, Liu YC. Biosensor and method for bone mineral density measurement. U.S. Patent 7544327 B2, 2009. Chung YM, Liu YC. Biosensor and method for bone mineral density measurement. U.S. Patent 7544327 B2, 2009.
60.
go back to reference Kuballa J, Schüzb J, Gamma H, Webera M. Bone marrow punctures and pain. Acute Pain. 2004;6:9–14.CrossRef Kuballa J, Schüzb J, Gamma H, Webera M. Bone marrow punctures and pain. Acute Pain. 2004;6:9–14.CrossRef
61.
go back to reference Parmar BJ, Longsine W, Sabonghy EP, Han A, Tasciotti E, Weiner BK, et al. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques. Phys Med Biol. 2010;55:4839–59.CrossRefPubMed Parmar BJ, Longsine W, Sabonghy EP, Han A, Tasciotti E, Weiner BK, et al. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques. Phys Med Biol. 2010;55:4839–59.CrossRefPubMed
62.
go back to reference Alfaro F, Weiss L, Campbell P, Miller M, Fedder GK. Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring. J Micromech Microeng. 2009;19:085016.CrossRef Alfaro F, Weiss L, Campbell P, Miller M, Fedder GK. Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring. J Micromech Microeng. 2009;19:085016.CrossRef
63.
go back to reference Tan EL, Pereles BD, Horton B, Shao R, Zourob M, Ong KG. Implantable biosensors for real-time strain and pressure monitoring. Sensors. 2008;8:6396–406.CrossRefPubMedPubMedCentral Tan EL, Pereles BD, Horton B, Shao R, Zourob M, Ong KG. Implantable biosensors for real-time strain and pressure monitoring. Sensors. 2008;8:6396–406.CrossRefPubMedPubMedCentral
64.
go back to reference Alamusi, Hu N, Fukunaga H, Atobe S, Liu Y, Li J. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors. 2011;11:10691–723.CrossRefPubMedPubMedCentral Alamusi, Hu N, Fukunaga H, Atobe S, Liu Y, Li J. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors. 2011;11:10691–723.CrossRefPubMedPubMedCentral
65.
go back to reference Wen YH, Yang GY, Bailey VJ, Lin G, Tang WC, Keyak JH. Mechanically robust micro-fabricated strain gauges for use on bones. Proc. 3rd Annual Int. IEEE EMBS Special Topic Conf. Microtechnologies in Med. and Biol. 2005; 302-304. Wen YH, Yang GY, Bailey VJ, Lin G, Tang WC, Keyak JH. Mechanically robust micro-fabricated strain gauges for use on bones. Proc. 3rd Annual Int. IEEE EMBS Special Topic Conf. Microtechnologies in Med. and Biol. 2005; 302-304.
66.
go back to reference Pang C, Lee GY, Kim T, Kim SM, Kim HN, Ahn SH, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater. 2012;11:795–801.CrossRefPubMed Pang C, Lee GY, Kim T, Kim SM, Kim HN, Ahn SH, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater. 2012;11:795–801.CrossRefPubMed
67.
go back to reference Dharap P, Li Z, Nagarajaiah S, Barrera EV. Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology. 2004;15:379–82.CrossRef Dharap P, Li Z, Nagarajaiah S, Barrera EV. Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology. 2004;15:379–82.CrossRef
68.
go back to reference Singh P, Rai HM. Performance analysis of photometric strain biosensor for bones using artificial neural network. Int J Comput Appl. 2012;54:8. Singh P, Rai HM. Performance analysis of photometric strain biosensor for bones using artificial neural network. Int J Comput Appl. 2012;54:8.
69.
go back to reference Singh P, Shrivastava A. Optical biosensor based on microbendings technique: an optimized mean to measure the bone strength. Adv Opt Technol. 2014; 853725. Singh P, Shrivastava A. Optical biosensor based on microbendings technique: an optimized mean to measure the bone strength. Adv Opt Technol. 2014; 853725.
70.
go back to reference Fresvig T, Ludvigsen P, Steen H, Reikerås O. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone. Med Eng Phys. 2008;30:104–8.CrossRefPubMed Fresvig T, Ludvigsen P, Steen H, Reikerås O. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone. Med Eng Phys. 2008;30:104–8.CrossRefPubMed
71.
go back to reference Shrivastava S, Prakash R. Assessment of bone condition by acoustic emission technique: a review. J Biomed Sci Eng. 2009;2:144–54.CrossRef Shrivastava S, Prakash R. Assessment of bone condition by acoustic emission technique: a review. J Biomed Sci Eng. 2009;2:144–54.CrossRef
72.
go back to reference Lentle BC, Aldrich JE, Akhtar A. Diagnosis of osteoporosis using acoustic emissions. U.S. Patent 6024711 A, 2000. Lentle BC, Aldrich JE, Akhtar A. Diagnosis of osteoporosis using acoustic emissions. U.S. Patent 6024711 A, 2000.
73.
go back to reference Aggelis DG, Strantza M, Louis O, Boulpaep F, Polyzos D, Hemelrijck DV. Fracture of human femur tissue monitored by acoustic emission sensors. Sensors. 2015;15:5803–19.CrossRefPubMedPubMedCentral Aggelis DG, Strantza M, Louis O, Boulpaep F, Polyzos D, Hemelrijck DV. Fracture of human femur tissue monitored by acoustic emission sensors. Sensors. 2015;15:5803–19.CrossRefPubMedPubMedCentral
74.
75.
76.
go back to reference Li CM, Dong H, Cao X, Luong JH, Zhang X. Implantable electrochemical sensors for biomedical and clinical applications: progress, problems, and future possibilities. Curr Med Chem. 2007;14:937–51.CrossRefPubMed Li CM, Dong H, Cao X, Luong JH, Zhang X. Implantable electrochemical sensors for biomedical and clinical applications: progress, problems, and future possibilities. Curr Med Chem. 2007;14:937–51.CrossRefPubMed
77.
go back to reference Sirivisoot S, Webster TJ. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology. 2008;19:295101.CrossRefPubMed Sirivisoot S, Webster TJ. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology. 2008;19:295101.CrossRefPubMed
78.
go back to reference Sirivisoot S, Pareta R, Webster TJ. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology. 2011;22:085101.CrossRefPubMed Sirivisoot S, Pareta R, Webster TJ. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology. 2011;22:085101.CrossRefPubMed
79.
go back to reference Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci U S A. 2004;101:5140–5.CrossRefPubMedPubMedCentral Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci U S A. 2004;101:5140–5.CrossRefPubMedPubMedCentral
80.
go back to reference Caglar P, Tuncel SA, Malcik N, Landers JP, Ferrance JP. A microchip sensor for calcium determination. Anal Bioanal Chem. 2006;386:1303–12.CrossRefPubMed Caglar P, Tuncel SA, Malcik N, Landers JP, Ferrance JP. A microchip sensor for calcium determination. Anal Bioanal Chem. 2006;386:1303–12.CrossRefPubMed
81.
go back to reference Widler L. Calcilytics: antagonists of the calcium-sensing receptor for the treatment of osteoporosis. Future Med Chem. 2011;3:535–47.CrossRefPubMed Widler L. Calcilytics: antagonists of the calcium-sensing receptor for the treatment of osteoporosis. Future Med Chem. 2011;3:535–47.CrossRefPubMed
82.
go back to reference Zhang L, Liu L, Xia N. Electrochemical sensing of alkaline phosphatase activity based on difference of surface charge of electrode. Int J Electrochem Sci. 2013;8:8311–9. Zhang L, Liu L, Xia N. Electrochemical sensing of alkaline phosphatase activity based on difference of surface charge of electrode. Int J Electrochem Sci. 2013;8:8311–9.
83.
84.
go back to reference Bhalla S, Baja S. Bone characterization using piezotransducers as biomedical sensors. Strain. 2008;44:475–8.CrossRef Bhalla S, Baja S. Bone characterization using piezotransducers as biomedical sensors. Strain. 2008;44:475–8.CrossRef
85.
go back to reference Levine AG. Biosystems nanotechnology: big opportunities in the science of the small. Science. 2014;346:870–3.CrossRef Levine AG. Biosystems nanotechnology: big opportunities in the science of the small. Science. 2014;346:870–3.CrossRef
Metadata
Title
In Situ Sensor Advancements for Osteoporosis Prevention, Diagnosis, and Treatment
Authors
Luting Liu
Thomas J. Webster
Publication date
01-12-2016
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 6/2016
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-016-0339-7

Other articles of this Issue 6/2016

Current Osteoporosis Reports 6/2016 Go to the issue

Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)

Bone Microarchitecture in Type 1 Diabetes: It Is Complicated

Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)

Effects of Incretin-Based Therapies and SGLT2 Inhibitors on Skeletal Health

Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)

Advanced Glycation End Products, Diabetes, and Bone Strength

Craniofacial Skeleton (E Roberts, Section Editor)

Osteoporosis and Periodontitis

Craniofacial Skeleton (G Roberts, Section Editor)

Bone Response of Loaded Periodontal Ligament

Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)

Effects of Type 1 Diabetes on Osteoblasts, Osteocytes, and Osteoclasts