Skip to main content
Top
Published in: Current Allergy and Asthma Reports 12/2016

01-12-2016 | Immunotherapy and Immunomodulators (B Vickery, Section Editor)

Epigenetic Changes During Food-Specific Immunotherapy

Authors: Bryan J. Bunning, Rosemarie H. DeKruyff, Kari C. Nadeau

Published in: Current Allergy and Asthma Reports | Issue 12/2016

Login to get access

Abstract

Purpose of Review

The prevalence and severity of IgE-mediated food allergy has increased dramatically over the last 15 years and is becoming a global health problem. Multiple lines of evidence suggest that epigenetic modifications of the genome resulting from gene-environment interactions have a key role in the increased prevalence of atopic disease. In this review, we describe the recent evidence suggesting how epigenetic changes mediate susceptibility to food allergies, and discuss how immunotherapy (IT) may reverse these effects. We discuss the areas of the epigenome as yet unexplored in terms of food allergy and IT such as histone modification and chromatin accessibility, and new techniques that may be utilized in future studies.

Recent Findings

Recent findings provide strong evidence that DNA methylation of certain promoter regions such as Forkhead box protein 3 is associated with clinical reactivity, and further, can be changed during IT treatment. Reports on other epigenetic changes are limited but also show evidence of significant change based on both disease status and treatment.

Summary

In comparison to epigenetic studies focusing on asthma and allergic rhinitis, food allergy remains understudied. However, within the next decade, it is likely that epigenetic modifications may be used as biomarkers to aid in diagnosis and treatment of food-allergic patients. DNA methylation at specific loci has shown associations between food challenge outcomes, successful desensitization treatment, and overall phenotype compared to healthy controls.
Literature
1.
go back to reference Branum AM, Lukacs SL. Food allergy among children in the United States. Pediatrics. 2009;124(6):1549–55.CrossRefPubMed Branum AM, Lukacs SL. Food allergy among children in the United States. Pediatrics. 2009;124(6):1549–55.CrossRefPubMed
2.
go back to reference Sicherer SH, Sampson HA. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol. 2014;133(2):291-307; quiz 8. Sicherer SH, Sampson HA. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol. 2014;133(2):291-307; quiz 8.
4.
5.
go back to reference Song F, Smith JF, Kimura MT, Morrow AD, Matsuyama T, Nagase H, et al. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci U S A. 2005;102(9):3336–41.CrossRefPubMedPubMedCentral Song F, Smith JF, Kimura MT, Morrow AD, Matsuyama T, Nagase H, et al. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci U S A. 2005;102(9):3336–41.CrossRefPubMedPubMedCentral
6.
go back to reference Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A. 2006;103(5):1412–7.CrossRefPubMedPubMedCentral Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A. 2006;103(5):1412–7.CrossRefPubMedPubMedCentral
9.
go back to reference Drong AW, Nicholson G, Hedman AK, Meduri E, Grundberg E, Small KS, et al. The presence of methylation quantitative trait loci indicates a direct genetic influence on the level of DNA methylation in adipose tissue. PLoS One. 2013;8(2):e55923.CrossRefPubMedPubMedCentral Drong AW, Nicholson G, Hedman AK, Meduri E, Grundberg E, Small KS, et al. The presence of methylation quantitative trait loci indicates a direct genetic influence on the level of DNA methylation in adipose tissue. PLoS One. 2013;8(2):e55923.CrossRefPubMedPubMedCentral
10.
go back to reference Liu Y, Li X, Aryee MJ, Ekstrom TJ, Padyukov L, Klareskog L, et al. GeMes, clusters of DNA methylation under genetic control, can inform genetic and epigenetic analysis of disease. Am J Hum Genet. 2014;94(4):485–95.CrossRefPubMedPubMedCentral Liu Y, Li X, Aryee MJ, Ekstrom TJ, Padyukov L, Klareskog L, et al. GeMes, clusters of DNA methylation under genetic control, can inform genetic and epigenetic analysis of disease. Am J Hum Genet. 2014;94(4):485–95.CrossRefPubMedPubMedCentral
11.
go back to reference Greer FR, Sicherer SH, Burks AW. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. Pediatrics. 2008;121(1):183–91.CrossRefPubMed Greer FR, Sicherer SH, Burks AW. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. Pediatrics. 2008;121(1):183–91.CrossRefPubMed
12.
go back to reference Du Toit G, Katz Y, Sasieni P, Mesher D, Maleki SJ, Fisher HR, et al. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J Allergy Clin Immunol. 2008;122(5):984–91.CrossRefPubMed Du Toit G, Katz Y, Sasieni P, Mesher D, Maleki SJ, Fisher HR, et al. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J Allergy Clin Immunol. 2008;122(5):984–91.CrossRefPubMed
13.
go back to reference •• Du Toit G, Roberts G, Sayre PH, Bahnson HT, Radulovic S, Santos AF, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372(9):803–13. The LEAP study gave strong evidence that early exposure to an allergen is preventative. In a randomized study of 640 infants (average age = 7.8mo) who were likely to develop peanut allergy, 13.7% of children who avoided peanut were allergic to peanuts at 60 months of age compared to 1.9% of the consumption group. This helps support the theory that environmental queues are critical to the development of allergy.CrossRefPubMedPubMedCentral •• Du Toit G, Roberts G, Sayre PH, Bahnson HT, Radulovic S, Santos AF, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372(9):803–13. The LEAP study gave strong evidence that early exposure to an allergen is preventative. In a randomized study of 640 infants (average age = 7.8mo) who were likely to develop peanut allergy, 13.7% of children who avoided peanut were allergic to peanuts at 60 months of age compared to 1.9% of the consumption group. This helps support the theory that environmental queues are critical to the development of allergy.CrossRefPubMedPubMedCentral
14.
go back to reference du Toit DF, Lambrechts AV, Stark H, Warren BL. Long-term results of stent graft treatment of subclavian artery injuries: management of choice for stable patients? J Vasc Surg. 2008;47(4):739–43.CrossRefPubMed du Toit DF, Lambrechts AV, Stark H, Warren BL. Long-term results of stent graft treatment of subclavian artery injuries: management of choice for stable patients? J Vasc Surg. 2008;47(4):739–43.CrossRefPubMed
15.
go back to reference Koplin JJ, Osborne NJ, Wake M, Martin PE, Gurrin LC, Robinson MN, et al. Can early introduction of egg prevent egg allergy in infants? A population-based study. J Allergy Clin Immunol. 2010;126(4):807–13.CrossRefPubMed Koplin JJ, Osborne NJ, Wake M, Martin PE, Gurrin LC, Robinson MN, et al. Can early introduction of egg prevent egg allergy in infants? A population-based study. J Allergy Clin Immunol. 2010;126(4):807–13.CrossRefPubMed
16.
go back to reference Palmer DJ, Metcalfe J, Makrides M, Gold MS, Quinn P, West CE, et al. Early regular egg exposure in infants with eczema: a randomized controlled trial. J Allergy Clin Immunol. 2013;132(2):387–92 e1.CrossRefPubMed Palmer DJ, Metcalfe J, Makrides M, Gold MS, Quinn P, West CE, et al. Early regular egg exposure in infants with eczema: a randomized controlled trial. J Allergy Clin Immunol. 2013;132(2):387–92 e1.CrossRefPubMed
17.
go back to reference Joseph CL, Ownby DR, Havstad SL, Woodcroft KJ, Wegienka G, MacKechnie H, et al. Early complementary feeding and risk of food sensitization in a birth cohort. J Allergy Clin Immunol. 2011;127(5):1203–10 e5.CrossRefPubMedPubMedCentral Joseph CL, Ownby DR, Havstad SL, Woodcroft KJ, Wegienka G, MacKechnie H, et al. Early complementary feeding and risk of food sensitization in a birth cohort. J Allergy Clin Immunol. 2011;127(5):1203–10 e5.CrossRefPubMedPubMedCentral
18.
go back to reference Nwaru BI, Erkkola M, Ahonen S, Kaila M, Haapala AM, Kronberg-Kippila C, et al. Age at the introduction of solid foods during the first year and allergic sensitization at age 5 years. Pediatrics. 2010;125(1):50–9.CrossRefPubMed Nwaru BI, Erkkola M, Ahonen S, Kaila M, Haapala AM, Kronberg-Kippila C, et al. Age at the introduction of solid foods during the first year and allergic sensitization at age 5 years. Pediatrics. 2010;125(1):50–9.CrossRefPubMed
19.
go back to reference Katz Y, Rajuan N, Goldberg MR, Eisenberg E, Heyman E, Cohen A, et al. Early exposure to cow’s milk protein is protective against IgE-mediated cow’s milk protein allergy. J Allergy Clin Immunol. 2010;126(1):77–82 e1.CrossRefPubMed Katz Y, Rajuan N, Goldberg MR, Eisenberg E, Heyman E, Cohen A, et al. Early exposure to cow’s milk protein is protective against IgE-mediated cow’s milk protein allergy. J Allergy Clin Immunol. 2010;126(1):77–82 e1.CrossRefPubMed
20.
go back to reference Furuhjelm C, Warstedt K, Larsson J, Fredriksson M, Bottcher MF, Falth-Magnusson K, et al. Fish oil supplementation in pregnancy and lactation may decrease the risk of infant allergy. Acta Paediatr. 2009;98(9):1461–7.CrossRefPubMed Furuhjelm C, Warstedt K, Larsson J, Fredriksson M, Bottcher MF, Falth-Magnusson K, et al. Fish oil supplementation in pregnancy and lactation may decrease the risk of infant allergy. Acta Paediatr. 2009;98(9):1461–7.CrossRefPubMed
21.
go back to reference Kull I, Bergstrom A, Lilja G, Pershagen G, Wickman M. Fish consumption during the first year of life and development of allergic diseases during childhood. Allergy. 2006;61(8):1009–15.CrossRefPubMed Kull I, Bergstrom A, Lilja G, Pershagen G, Wickman M. Fish consumption during the first year of life and development of allergic diseases during childhood. Allergy. 2006;61(8):1009–15.CrossRefPubMed
22.
go back to reference Milner JD, Stein DM, McCarter R, Moon RY. Early infant multivitamin supplementation is associated with increased risk for food allergy and asthma. Pediatrics. 2004;114(1):27–32.CrossRefPubMed Milner JD, Stein DM, McCarter R, Moon RY. Early infant multivitamin supplementation is associated with increased risk for food allergy and asthma. Pediatrics. 2004;114(1):27–32.CrossRefPubMed
23.
go back to reference Kulig M, Luck W, Lau S, Niggemann B, Bergmann R, Klettke U, et al. Effect of pre- and postnatal tobacco smoke exposure on specific sensitization to food and inhalant allergens during the first 3 years of life. Multicenter Allergy Study Group, Germany. Allergy. 1999;54(3):220–8.CrossRefPubMed Kulig M, Luck W, Lau S, Niggemann B, Bergmann R, Klettke U, et al. Effect of pre- and postnatal tobacco smoke exposure on specific sensitization to food and inhalant allergens during the first 3 years of life. Multicenter Allergy Study Group, Germany. Allergy. 1999;54(3):220–8.CrossRefPubMed
24.
go back to reference Lannero E, Wickman M, van Hage M, Bergstrom A, Pershagen G, Nordvall L. Exposure to environmental tobacco smoke and sensitisation in children. Thorax. 2008;63(2):172–6.CrossRefPubMed Lannero E, Wickman M, van Hage M, Bergstrom A, Pershagen G, Nordvall L. Exposure to environmental tobacco smoke and sensitisation in children. Thorax. 2008;63(2):172–6.CrossRefPubMed
25.
go back to reference Bowatte G, Lodge C, Lowe AJ, Erbas B, Perret J, Abramson MJ, et al. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies. Allergy. 2015;70(3):245–56.CrossRefPubMed Bowatte G, Lodge C, Lowe AJ, Erbas B, Perret J, Abramson MJ, et al. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies. Allergy. 2015;70(3):245–56.CrossRefPubMed
26.
go back to reference Ji H, Khurana Hershey GK. Genetic and epigenetic influence on the response to environmental particulate matter. J Allergy Clin Immunol. 2012;129(1):33–41.CrossRefPubMedPubMedCentral Ji H, Khurana Hershey GK. Genetic and epigenetic influence on the response to environmental particulate matter. J Allergy Clin Immunol. 2012;129(1):33–41.CrossRefPubMedPubMedCentral
27.
go back to reference Hikino S, Nakayama H, Yamamoto J, Kinukawa N, Sakamoto M, Hara T. Food allergy and atopic dermatitis in low birthweight infants during early childhood. Acta Paediatr. 2001;90(8):850–5.CrossRefPubMed Hikino S, Nakayama H, Yamamoto J, Kinukawa N, Sakamoto M, Hara T. Food allergy and atopic dermatitis in low birthweight infants during early childhood. Acta Paediatr. 2001;90(8):850–5.CrossRefPubMed
28.
go back to reference Chandran U, Demissie K, Echeverria SE, Long JB, Mizan S, Mino J. Food allergy among low birthweight children in a national survey. Matern Child Health J. 2013;17(1):165–71.CrossRefPubMed Chandran U, Demissie K, Echeverria SE, Long JB, Mizan S, Mino J. Food allergy among low birthweight children in a national survey. Matern Child Health J. 2013;17(1):165–71.CrossRefPubMed
29.
go back to reference Eggesbo M, Botten G, Stigum H, Nafstad P, Magnus P. Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol. 2003;112(2):420–6.CrossRefPubMed Eggesbo M, Botten G, Stigum H, Nafstad P, Magnus P. Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol. 2003;112(2):420–6.CrossRefPubMed
30.
go back to reference Lewis MC, Inman CF, Patel D, Schmidt B, Mulder I, Miller B, et al. Direct experimental evidence that early-life farm environment influences regulation of immune responses. Pediatr Allergy Immunol. 2012;23(3):265–9.CrossRefPubMed Lewis MC, Inman CF, Patel D, Schmidt B, Mulder I, Miller B, et al. Direct experimental evidence that early-life farm environment influences regulation of immune responses. Pediatr Allergy Immunol. 2012;23(3):265–9.CrossRefPubMed
31.
go back to reference Negele K, Heinrich J, Borte M, von Berg A, Schaaf B, Lehmann I, et al. Mode of delivery and development of atopic disease during the first 2 years of life. Pediatr Allergy Immunol. 2004;15(1):48–54.CrossRefPubMed Negele K, Heinrich J, Borte M, von Berg A, Schaaf B, Lehmann I, et al. Mode of delivery and development of atopic disease during the first 2 years of life. Pediatr Allergy Immunol. 2004;15(1):48–54.CrossRefPubMed
32.
go back to reference Noverr MC, Huffnagle GB. The ‘microflora hypothesis’ of allergic diseases. Clin Exp Allergy. 2005;35(12):1511–20.CrossRefPubMed Noverr MC, Huffnagle GB. The ‘microflora hypothesis’ of allergic diseases. Clin Exp Allergy. 2005;35(12):1511–20.CrossRefPubMed
33.
go back to reference Sanchez-Valverde F, Gil F, Martinez D, Fernandez B, Aznal E, Oscoz M, et al. The impact of caesarean delivery and type of feeding on cow’s milk allergy in infants and subsequent development of allergic march in childhood. Allergy. 2009;64(6):884–9.CrossRefPubMed Sanchez-Valverde F, Gil F, Martinez D, Fernandez B, Aznal E, Oscoz M, et al. The impact of caesarean delivery and type of feeding on cow’s milk allergy in infants and subsequent development of allergic march in childhood. Allergy. 2009;64(6):884–9.CrossRefPubMed
34.
go back to reference Brand S, Teich R, Dicke T, Harb H, Yildirim AO, Tost J, et al. Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol. 2011;128(3):618-25 e1-7. Brand S, Teich R, Dicke T, Harb H, Yildirim AO, Tost J, et al. Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol. 2011;128(3):618-25 e1-7.
35.
go back to reference Kumar R, Tsai HJ, Hong X, Liu X, Wang G, Pearson C, et al. Race, ancestry, and development of food-allergen sensitization in early childhood. Pediatrics. 2011;128(4):e821–9.CrossRefPubMedPubMedCentral Kumar R, Tsai HJ, Hong X, Liu X, Wang G, Pearson C, et al. Race, ancestry, and development of food-allergen sensitization in early childhood. Pediatrics. 2011;128(4):e821–9.CrossRefPubMedPubMedCentral
36.
go back to reference Liu AH, Jaramillo R, Sicherer SH, Wood RA, Bock SA, Burks AW, et al. National prevalence and risk factors for food allergy and relationship to asthma: results from the National Health and Nutrition Examination Survey 2005-2006. J Allergy Clin Immunol. 2010;126(4):798–806 e13.CrossRefPubMedPubMedCentral Liu AH, Jaramillo R, Sicherer SH, Wood RA, Bock SA, Burks AW, et al. National prevalence and risk factors for food allergy and relationship to asthma: results from the National Health and Nutrition Examination Survey 2005-2006. J Allergy Clin Immunol. 2010;126(4):798–806 e13.CrossRefPubMedPubMedCentral
37.
go back to reference Sicherer SH, Munoz-Furlong A, Sampson HA. Prevalence of seafood allergy in the United States determined by a random telephone survey. J Allergy Clin Immunol. 2004;114(1):159–65.CrossRefPubMed Sicherer SH, Munoz-Furlong A, Sampson HA. Prevalence of seafood allergy in the United States determined by a random telephone survey. J Allergy Clin Immunol. 2004;114(1):159–65.CrossRefPubMed
39.
go back to reference Liu X, Zhang S, Tsai HJ, Hong X, Wang B, Fang Y, et al. Genetic and environmental contributions to allergen sensitization in a Chinese twin study. Clin Exp Allergy. 2009;39(7):991–8.CrossRefPubMedPubMedCentral Liu X, Zhang S, Tsai HJ, Hong X, Wang B, Fang Y, et al. Genetic and environmental contributions to allergen sensitization in a Chinese twin study. Clin Exp Allergy. 2009;39(7):991–8.CrossRefPubMedPubMedCentral
40.
go back to reference •• Hong X, Hao K, Ladd-Acosta C, Hansen KD, Tsai HJ, Liu X, et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun. 2015;6:6304. This GWAS study of 2759 food allergic participants (1315 children, 1444 parents), found two peanut allergy specific loci in the HLA-DR and -DQ gene regions. The SNPs in these regions are associated with differential DNA methylation of HLA-DQB1 and HLA-DRB1 and suggests that this gene region is a risk factor for peanut allergy.CrossRefPubMedPubMedCentral •• Hong X, Hao K, Ladd-Acosta C, Hansen KD, Tsai HJ, Liu X, et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun. 2015;6:6304. This GWAS study of 2759 food allergic participants (1315 children, 1444 parents), found two peanut allergy specific loci in the HLA-DR and -DQ gene regions. The SNPs in these regions are associated with differential DNA methylation of HLA-DQB1 and HLA-DRB1 and suggests that this gene region is a risk factor for peanut allergy.CrossRefPubMedPubMedCentral
42.
go back to reference Howell WM, Turner SJ, Hourihane JO, Dean TP, Warner JO. HLA class II DRB1, DQB1 and DPB1 genotypic associations with peanut allergy: evidence from a family-based and case-control study. Clin Exp Allergy. 1998;28(2):156–62.CrossRefPubMed Howell WM, Turner SJ, Hourihane JO, Dean TP, Warner JO. HLA class II DRB1, DQB1 and DPB1 genotypic associations with peanut allergy: evidence from a family-based and case-control study. Clin Exp Allergy. 1998;28(2):156–62.CrossRefPubMed
43.
go back to reference Kontakioti E, Domvri K, Papakosta D, Daniilidis M. HLA and asthma phenotypes/endotypes: a review. Hum Immunol. 2014;75(8):930–9.CrossRefPubMed Kontakioti E, Domvri K, Papakosta D, Daniilidis M. HLA and asthma phenotypes/endotypes: a review. Hum Immunol. 2014;75(8):930–9.CrossRefPubMed
45.
go back to reference • Martino D, Joo JE, Sexton-Oates A, Dang T, Allen K, Saffery R, et al. Epigenome-wide association study reveals longitudinally stable DNA methylation differences in CD4+ T cells from children with IgE-mediated food allergy. Epigenetics. 2014;9(7):998–1006. Using a birth cohort, Martino et al examined the methylation profile of 12 food allergic one year olds and 12 age matched controls at birth and at 12 months. They found 179 differentially methylated regions at 12 months, but 136 regions at birth compared to the control group.CrossRefPubMedPubMedCentral • Martino D, Joo JE, Sexton-Oates A, Dang T, Allen K, Saffery R, et al. Epigenome-wide association study reveals longitudinally stable DNA methylation differences in CD4+ T cells from children with IgE-mediated food allergy. Epigenetics. 2014;9(7):998–1006. Using a birth cohort, Martino et al examined the methylation profile of 12 food allergic one year olds and 12 age matched controls at birth and at 12 months. They found 179 differentially methylated regions at 12 months, but 136 regions at birth compared to the control group.CrossRefPubMedPubMedCentral
46.
go back to reference Kondo N, Kobayashi Y, Shinoda S, Kasahara K, Kameyama T, Iwasa S, et al. Cord blood lymphocyte responses to food antigens for the prediction of allergic disorders. Arch Dis Child. 1992;67(8):1003–7.CrossRefPubMedPubMedCentral Kondo N, Kobayashi Y, Shinoda S, Kasahara K, Kameyama T, Iwasa S, et al. Cord blood lymphocyte responses to food antigens for the prediction of allergic disorders. Arch Dis Child. 1992;67(8):1003–7.CrossRefPubMedPubMedCentral
47.
go back to reference Prescott SL, Macaubas C, Smallacombe T, Holt BJ, Sly PD, Loh R, et al. Reciprocal age-related patterns of allergen-specific T-cell immunity in normal vs. atopic infants. Clin Exp Allergy. 1998;28 Suppl 5:39-44; discussion 50-1. Prescott SL, Macaubas C, Smallacombe T, Holt BJ, Sly PD, Loh R, et al. Reciprocal age-related patterns of allergen-specific T-cell immunity in normal vs. atopic infants. Clin Exp Allergy. 1998;28 Suppl 5:39-44; discussion 50-1.
48.
go back to reference Tang ML, Kemp AS, Thorburn J, Hill DJ. Reduced interferon-gamma secretion in neonates and subsequent atopy. Lancet. 1994;344(8928):983–5.CrossRefPubMed Tang ML, Kemp AS, Thorburn J, Hill DJ. Reduced interferon-gamma secretion in neonates and subsequent atopy. Lancet. 1994;344(8928):983–5.CrossRefPubMed
49.
go back to reference Martino DJ, Bosco A, McKenna KL, Hollams E, Mok D, Holt PG, et al. T-cell activation genes differentially expressed at birth in CD4+ T-cells from children who develop IgE food allergy. Allergy. 2012;67(2):191–200.CrossRefPubMed Martino DJ, Bosco A, McKenna KL, Hollams E, Mok D, Holt PG, et al. T-cell activation genes differentially expressed at birth in CD4+ T-cells from children who develop IgE food allergy. Allergy. 2012;67(2):191–200.CrossRefPubMed
50.
go back to reference •• Hong X, Ladd-Acosta C, Hao K, Sherwood B, Ji H, Keet CA, et al. Epigenome-wide association study links site-specific DNA methylation changes with cow’s milk allergy. J Allergy Clin Immunol. 2016. Hong et al. took 106 children with cow’s milk allergy (CMA) and 76 non-atopic controls and measured DNA methylation levels at 485,512 genomic loci. For those differentially methylated regions in relation to CMA, two replication cohorts ( n  = 25 and 140) were used to validate findings. Results found eight validated regions with association to CMA, including three novel regions. •• Hong X, Ladd-Acosta C, Hao K, Sherwood B, Ji H, Keet CA, et al. Epigenome-wide association study links site-specific DNA methylation changes with cow’s milk allergy. J Allergy Clin Immunol. 2016. Hong et al. took 106 children with cow’s milk allergy (CMA) and 76 non-atopic controls and measured DNA methylation levels at 485,512 genomic loci. For those differentially methylated regions in relation to CMA, two replication cohorts ( n= 25 and 140) were used to validate findings. Results found eight validated regions with association to CMA, including three novel regions.
51.
go back to reference • Swamy RS, Reshamwala N, Hunter T, Vissamsetti S, Santos CB, Baroody FM, et al. Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy. J Allergy Clin Immunol. 2012;130(1):215–24 e7. In a study examing environmental allergy sublingual immunotherapy (SLIT) to timothy grass and dust mite, Swamy et al. found that active SLIT reduced DNAm of CpG sites within the FOXP3 locus compared to receiving control treatment.CrossRefPubMedPubMedCentral • Swamy RS, Reshamwala N, Hunter T, Vissamsetti S, Santos CB, Baroody FM, et al. Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy. J Allergy Clin Immunol. 2012;130(1):215–24 e7. In a study examing environmental allergy sublingual immunotherapy (SLIT) to timothy grass and dust mite, Swamy et al. found that active SLIT reduced DNAm of CpG sites within the FOXP3 locus compared to receiving control treatment.CrossRefPubMedPubMedCentral
52.
go back to reference •• Syed A, Garcia MA, Lyu SC, Bucayu R, Kohli A, Ishida S, et al. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol. 2014;133(2):500–10. This study compared allergic patients undergoing OIT (n = 24) or continuing to abstain from peanut (n = 20). T-cell function along with demethylation of FOXP3 CpG sites were significantly different between the two groups. However, this change was not permanent as some patients who had withdrawn from therapy regained sensitivity and had increased methylation of FOXP3 CpG sites after three months.CrossRefPubMedPubMedCentral •• Syed A, Garcia MA, Lyu SC, Bucayu R, Kohli A, Ishida S, et al. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol. 2014;133(2):500–10. This study compared allergic patients undergoing OIT (n = 24) or continuing to abstain from peanut (n = 20). T-cell function along with demethylation of FOXP3 CpG sites were significantly different between the two groups. However, this change was not permanent as some patients who had withdrawn from therapy regained sensitivity and had increased methylation of FOXP3 CpG sites after three months.CrossRefPubMedPubMedCentral
53.
go back to reference •• Berni Canani R, Paparo L, Nocerino R, Cosenza L, Pezzella V, Di Costanzo M, et al. Differences in DNA methylation profile of Th1 and Th2 cytokine genes are associated with tolerance acquisition in children with IgE-mediated cow’s milk allergy. Clin Epigenetics. 2015;7:38. Canani et al took 10 CMA children, 20 children who had outgrown their CMA, and 10 control children to compare DNAm levels in CpG regions along with their respective cytokine levels of IL-4, IL-5, IL-10, and INF-γ. The combination of DNAm levels was distinct between active CMA and healthy controls. This provides evidence that DNAm plays a role in Th1/Th2 imbalance seen in food allergy.CrossRefPubMedPubMedCentral •• Berni Canani R, Paparo L, Nocerino R, Cosenza L, Pezzella V, Di Costanzo M, et al. Differences in DNA methylation profile of Th1 and Th2 cytokine genes are associated with tolerance acquisition in children with IgE-mediated cow’s milk allergy. Clin Epigenetics. 2015;7:38. Canani et al took 10 CMA children, 20 children who had outgrown their CMA, and 10 control children to compare DNAm levels in CpG regions along with their respective cytokine levels of IL-4, IL-5, IL-10, and INF-γ. The combination of DNAm levels was distinct between active CMA and healthy controls. This provides evidence that DNAm plays a role in Th1/Th2 imbalance seen in food allergy.CrossRefPubMedPubMedCentral
54.
go back to reference Tang ML, Ponsonby AL, Orsini F, Tey D, Robinson M, Su EL, et al. Administration of a probiotic with peanut oral immunotherapy: A randomized trial. J Allergy Clin Immunol. 2015;135(3):737–44 e8.CrossRefPubMed Tang ML, Ponsonby AL, Orsini F, Tey D, Robinson M, Su EL, et al. Administration of a probiotic with peanut oral immunotherapy: A randomized trial. J Allergy Clin Immunol. 2015;135(3):737–44 e8.CrossRefPubMed
55.
go back to reference Viljanen M, Kuitunen M, Haahtela T, Juntunen-Backman K, Korpela R, Savilahti E. Probiotic effects on faecal inflammatory markers and on faecal IgA in food allergic atopic eczema/dermatitis syndrome infants. Pediatr Allergy Immunol. 2005;16(1):65–71.CrossRefPubMed Viljanen M, Kuitunen M, Haahtela T, Juntunen-Backman K, Korpela R, Savilahti E. Probiotic effects on faecal inflammatory markers and on faecal IgA in food allergic atopic eczema/dermatitis syndrome infants. Pediatr Allergy Immunol. 2005;16(1):65–71.CrossRefPubMed
56.
go back to reference Pessi T, Sutas Y, Hurme M, Isolauri E. Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG. Clin Exp Allergy. 2000;30(12):1804–8.CrossRefPubMed Pessi T, Sutas Y, Hurme M, Isolauri E. Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG. Clin Exp Allergy. 2000;30(12):1804–8.CrossRefPubMed
57.
go back to reference Berni Canani R, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, et al. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 2016;10(3):742–50.CrossRefPubMed Berni Canani R, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, et al. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 2016;10(3):742–50.CrossRefPubMed
58.
go back to reference •• Martino D, Dang T, Sexton-Oates A, Prescott S, Tang ML, Dharmage S, et al. Blood DNA methylation biomarkers predict clinical reactivity in food-sensitized infants. J Allergy Clin Immunol. 2015;135(5):1319-28 e1-12. Martino et al. created a panel consisting of DNAm levels in 96 CpG sites which could predict food challenge outcomes. Using a replication cohort, this panel was able to predict the outcome at a rate of 79.2%. This panel was able to outperform both skin prick test and allergen specific IgE test in this regard. •• Martino D, Dang T, Sexton-Oates A, Prescott S, Tang ML, Dharmage S, et al. Blood DNA methylation biomarkers predict clinical reactivity in food-sensitized infants. J Allergy Clin Immunol. 2015;135(5):1319-28 e1-12. Martino et al. created a panel consisting of DNAm levels in 96 CpG sites which could predict food challenge outcomes. Using a replication cohort, this panel was able to predict the outcome at a rate of 79.2%. This panel was able to outperform both skin prick test and allergen specific IgE test in this regard.
59.
go back to reference Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2012;13(1):36–46. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2012;13(1):36–46.
60.
go back to reference Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733–9.CrossRefPubMed Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733–9.CrossRefPubMed
61.
go back to reference Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012;13:341.CrossRefPubMedPubMedCentral Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012;13:341.CrossRefPubMedPubMedCentral
62.
go back to reference Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell. 1991;64(6):1123–34.CrossRefPubMed Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell. 1991;64(6):1123–34.CrossRefPubMed
63.
go back to reference Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–9.CrossRefPubMed Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–9.CrossRefPubMed
64.
go back to reference Murr R. Interplay between different epigenetic modifications and mechanisms. Adv Genet. 2010;70:101–41.PubMed Murr R. Interplay between different epigenetic modifications and mechanisms. Adv Genet. 2010;70:101–41.PubMed
65.
go back to reference Weissmann F, Lyko F. Cooperative interactions between epigenetic modifications and their function in the regulation of chromosome architecture. Bioessays. 2003;25(8):792–7.CrossRefPubMed Weissmann F, Lyko F. Cooperative interactions between epigenetic modifications and their function in the regulation of chromosome architecture. Bioessays. 2003;25(8):792–7.CrossRefPubMed
66.
go back to reference Qu K, Zaba LC, Giresi PG, Li R, Longmire M, Kim YH, et al. Individuality and variation of personal regulomes in primary human T cells. Cell Syst. 2015;1(1):51–61.CrossRefPubMedPubMedCentral Qu K, Zaba LC, Giresi PG, Li R, Longmire M, Kim YH, et al. Individuality and variation of personal regulomes in primary human T cells. Cell Syst. 2015;1(1):51–61.CrossRefPubMedPubMedCentral
67.
go back to reference Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.CrossRefPubMedPubMedCentral Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.CrossRefPubMedPubMedCentral
68.
go back to reference Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 2008;40(7):897–903.CrossRefPubMedPubMedCentral Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 2008;40(7):897–903.CrossRefPubMedPubMedCentral
69.
go back to reference Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A. 2003;100(15):8758–63.CrossRefPubMedPubMedCentral Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A. 2003;100(15):8758–63.CrossRefPubMedPubMedCentral
70.
go back to reference Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou MM. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature. 2010;466(7303):258–62.CrossRefPubMedPubMedCentral Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou MM. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature. 2010;466(7303):258–62.CrossRefPubMedPubMedCentral
71.
go back to reference Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15(11):703–8.CrossRefPubMed Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15(11):703–8.CrossRefPubMed
72.
go back to reference Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.CrossRefPubMed Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.CrossRefPubMed
73.
go back to reference • Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity. 2009;30(1):155–67. Wei et al. was able to show specific histone modifications and their relation to CD4+ T cells, providing support that epigenetic regulation plays a role in immune balance.CrossRefPubMedPubMedCentral • Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity. 2009;30(1):155–67. Wei et al. was able to show specific histone modifications and their relation to CD4+ T cells, providing support that epigenetic regulation plays a role in immune balance.CrossRefPubMedPubMedCentral
75.
go back to reference Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–8.CrossRefPubMedPubMedCentral Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–8.CrossRefPubMedPubMedCentral
76.
go back to reference Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol. 2015;109:21 9 1-9. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol. 2015;109:21 9 1-9.
78.
go back to reference Niwa R, Slack FJ. The evolution of animal microRNA function. Curr Opin Genet Dev. 2007;17(2):145–50.CrossRefPubMed Niwa R, Slack FJ. The evolution of animal microRNA function. Curr Opin Genet Dev. 2007;17(2):145–50.CrossRefPubMed
79.
go back to reference Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, et al. Ancient animal microRNAs and the evolution of tissue identity. Nature. 2010;463(7284):1084–8.CrossRefPubMedPubMedCentral Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, et al. Ancient animal microRNAs and the evolution of tissue identity. Nature. 2010;463(7284):1084–8.CrossRefPubMedPubMedCentral
80.
go back to reference Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–34.CrossRefPubMed Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–34.CrossRefPubMed
81.
go back to reference •• Lu TX, Rothenberg ME. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J Allergy Clin Immunol. 2013;132(1):3-13; quiz 4. Lu et al detailed the relation between regulatory mechanisms of allergic inflammation and specific miRNA. MiRNA has been associated with TH1/TH2 balance, T-cell activation, and other pathways critical to atopic disease. •• Lu TX, Rothenberg ME. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J Allergy Clin Immunol. 2013;132(1):3-13; quiz 4. Lu et al detailed the relation between regulatory mechanisms of allergic inflammation and specific miRNA. MiRNA has been associated with TH1/TH2 balance, T-cell activation, and other pathways critical to atopic disease.
82.
go back to reference Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009;182(8):4994–5002.CrossRefPubMedPubMedCentral Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009;182(8):4994–5002.CrossRefPubMedPubMedCentral
83.
go back to reference Sonkoly E, Wei T, Janson PC, Saaf A, Lundeberg L, Tengvall-Linder M, et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One. 2007;2(7):e610.CrossRefPubMedPubMedCentral Sonkoly E, Wei T, Janson PC, Saaf A, Lundeberg L, Tengvall-Linder M, et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One. 2007;2(7):e610.CrossRefPubMedPubMedCentral
84.
go back to reference Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011;128(1):160–7 e4.CrossRefPubMed Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011;128(1):160–7 e4.CrossRefPubMed
85.
go back to reference Lu TX, Lim EJ, Besse JA, Itskovich S, Plassard AJ, Fulkerson PC, et al. MiR-223 deficiency increases eosinophil progenitor proliferation. J Immunol. 2013;190(4):1576–82.CrossRefPubMedPubMedCentral Lu TX, Lim EJ, Besse JA, Itskovich S, Plassard AJ, Fulkerson PC, et al. MiR-223 deficiency increases eosinophil progenitor proliferation. J Immunol. 2013;190(4):1576–82.CrossRefPubMedPubMedCentral
86.
go back to reference •• Lu TX, Sherrill JD, Wen T, Plassard AJ, Besse JA, Abonia JP, et al. MicroRNA signature in patients with eosinophilic esophagitis, reversibility with glucocorticoids, and assessment as disease biomarkers. J Allergy Clin Immunol. 2012;129(4):1064-75 e9. Lu et al provided evidence that there are distinct changes in miRNA expression associated with eosinophilic esophagitis, providing one of the first studys showing the value of miRNA as a biomarker in atopic disease. •• Lu TX, Sherrill JD, Wen T, Plassard AJ, Besse JA, Abonia JP, et al. MicroRNA signature in patients with eosinophilic esophagitis, reversibility with glucocorticoids, and assessment as disease biomarkers. J Allergy Clin Immunol. 2012;129(4):1064-75 e9. Lu et al provided evidence that there are distinct changes in miRNA expression associated with eosinophilic esophagitis, providing one of the first studys showing the value of miRNA as a biomarker in atopic disease.
87.
go back to reference Shaoqing Y, Ruxin Z, Guojun L, Zhiqiang Y, Hua H, Shudong Y, et al. Microarray analysis of differentially expressed microRNAs in allergic rhinitis. Am J Rhinol Allergy. 2011;25(6):e242–6.CrossRefPubMed Shaoqing Y, Ruxin Z, Guojun L, Zhiqiang Y, Hua H, Shudong Y, et al. Microarray analysis of differentially expressed microRNAs in allergic rhinitis. Am J Rhinol Allergy. 2011;25(6):e242–6.CrossRefPubMed
88.
go back to reference Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A. 2009;106(34):14195–200.CrossRefPubMedPubMedCentral Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A. 2009;106(34):14195–200.CrossRefPubMedPubMedCentral
Metadata
Title
Epigenetic Changes During Food-Specific Immunotherapy
Authors
Bryan J. Bunning
Rosemarie H. DeKruyff
Kari C. Nadeau
Publication date
01-12-2016
Publisher
Springer US
Published in
Current Allergy and Asthma Reports / Issue 12/2016
Print ISSN: 1529-7322
Electronic ISSN: 1534-6315
DOI
https://doi.org/10.1007/s11882-016-0665-y

Other articles of this Issue 12/2016

Current Allergy and Asthma Reports 12/2016 Go to the issue

Food Allergy (T Green, Section Editor)

Childcare and School Management Issues in Food Allergy

Allergies and the Environment (M Hernandez, Section Editor)

Benefit of SLIT and SCIT for Allergic Rhinitis and Asthma

Allergies and the Environment (M Hernandez, Section Editor)

Fungal Exposure and Asthma: IgE and Non-IgE-Mediated Mechanisms