Skip to main content
Top
Published in: Obesity Surgery 12/2017

01-12-2017 | Original Contributions

An Optimized IES Method and Its Inhibitory Effects and Mechanisms on Food Intake and Body Weight in Diet-Induced Obese Rats: IES for Obesity

Authors: Xinyue Wan, Jieyun Yin, Robert Foreman, Jiande D. Z. Chen

Published in: Obesity Surgery | Issue 12/2017

Login to get access

Abstract

Purpose

This paper aims to optimize stimulation parameters and durations for intestinal electrical stimulation (IES) and to explore the effects and mechanisms of chronic IES with optimized methodology in obesity rats.

Materials and Methods

Sixteen diet-induced obese (DIO) rats were tested for food intake with four different sets of IES parameters each lasting 1 week. Then, another 12 DIO rats were used to test the effect of IES on food intake with different stimulation durations. Finally, 16 DIO rats were treated with IES or sham-IES for 4 weeks. Meal patterns, food intake, and body weight were observed. Mechanisms involving gastrointestinal motility, ghrelin, and glucagon-like peptide-1 (GLP-1) were studied.

Results

(1) Acute IES with different parameters showed different inhibitory effects on food intake, and the most effective parameters were 0.6 s on, 0.9 s off, 80 Hz, 2 ms, and 4 mA with which 26.3% decrease in food intake was noted (p < 0.001). (2) IES with daily treatment of 12 h was most effective in suppressing food intake compared with 1 or 6 h. (3) Four-week IES reduced net weight by 10.9% (p < 0.05 vs. sham-IES) and epididymal fat pad weight by 13.9% (p < 0.001). (4) IES delayed gastric emptying (p < 0.001) and accelerated intestinal transit (p < 0.05). (5) IES increased both fasting and postprandial plasma levels of GLP-1 but not ghrelin.

Conclusion

Twelve-hour daily IES using optimized stimulation parameters reduces food intake and body weight in DIO rats by altering gastrointestinal motility and GLP-1. The IES methodology derived in this study may have a therapeutic potential for obesity.
Literature
1.
go back to reference Moore S, Hall JN, Harper S, et al. Global and national socioeconomic disparities in obesity, over-weight, and underweight status. J Obes. 2010;2010(ID 514674):11. Moore S, Hall JN, Harper S, et al. Global and national socioeconomic disparities in obesity, over-weight, and underweight status. J Obes. 2010;2010(ID 514674):11.
2.
go back to reference Meek CL, Lewis HB, Reimann F, et al. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides. 2016;77:28–37.CrossRefPubMed Meek CL, Lewis HB, Reimann F, et al. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides. 2016;77:28–37.CrossRefPubMed
3.
4.
go back to reference Mans E, Serra-Prat M, Palomera E, et al. Sleeve gastrectomy effects on hunger, satiation, and gastrointestinal hormone and motility responses after a liquid meal test. Am J Clin Nutr. 2015;102(3):540–7.CrossRefPubMed Mans E, Serra-Prat M, Palomera E, et al. Sleeve gastrectomy effects on hunger, satiation, and gastrointestinal hormone and motility responses after a liquid meal test. Am J Clin Nutr. 2015;102(3):540–7.CrossRefPubMed
5.
go back to reference Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2(2):152–64.CrossRefPubMed Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2(2):152–64.CrossRefPubMed
6.
go back to reference Elder KA, Wolfe BM. Bariatric surgery: a review of procedures and outcomes. Gastroenterology. 2007;132(6):2253–71.CrossRefPubMed Elder KA, Wolfe BM. Bariatric surgery: a review of procedures and outcomes. Gastroenterology. 2007;132(6):2253–71.CrossRefPubMed
7.
go back to reference Weinstein AL, Marascalchi BJ, Spiegel MA, et al. Patient preferences and bariatric surgery procedure selection; the need for shared decision-making. Obes Surg. 2014;24(11):1933–9.CrossRefPubMed Weinstein AL, Marascalchi BJ, Spiegel MA, et al. Patient preferences and bariatric surgery procedure selection; the need for shared decision-making. Obes Surg. 2014;24(11):1933–9.CrossRefPubMed
8.
go back to reference Franco J, Ruiz P, Palermo M, et al. A review of studies comparing three laparoscopic procedures in bariatric surgery: sleeve gastrectomy, Roux-en-Y gastric bypass and adjustable gastric banding. Obes Surg. 2011;21(9):1458–68.CrossRefPubMed Franco J, Ruiz P, Palermo M, et al. A review of studies comparing three laparoscopic procedures in bariatric surgery: sleeve gastrectomy, Roux-en-Y gastric bypass and adjustable gastric banding. Obes Surg. 2011;21(9):1458–68.CrossRefPubMed
9.
go back to reference Chen JDZ, Lin HC. Intestinal pacing accelerates small bowel transit slowed by fat-induced ileal brake. Dig Dis Sci. 2003;48:251–6.CrossRefPubMed Chen JDZ, Lin HC. Intestinal pacing accelerates small bowel transit slowed by fat-induced ileal brake. Dig Dis Sci. 2003;48:251–6.CrossRefPubMed
10.
go back to reference Sun Y, Chen JD. Intestinal electric stimulation accelerates whole gut transit and promotes fat excrement in conscious rats. Int J Obes. 2009;33(8):817–23.CrossRef Sun Y, Chen JD. Intestinal electric stimulation accelerates whole gut transit and promotes fat excrement in conscious rats. Int J Obes. 2009;33(8):817–23.CrossRef
11.
12.
go back to reference Yin J, Zhang J, Chen JD. Inhibitory effects of intestinal electrical stimulation on food intake, weight loss and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R78–82.CrossRefPubMed Yin J, Zhang J, Chen JD. Inhibitory effects of intestinal electrical stimulation on food intake, weight loss and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R78–82.CrossRefPubMed
13.
go back to reference Zhang J, Zhu H, Chen JD. Central neuronal mechanisms of intestinal electrical stimulation: effects on duodenum distention-responsive (DD-R) neurons in the VMH of rats. Neurosci Lett. 2009;457(1):27–31.CrossRefPubMedPubMedCentral Zhang J, Zhu H, Chen JD. Central neuronal mechanisms of intestinal electrical stimulation: effects on duodenum distention-responsive (DD-R) neurons in the VMH of rats. Neurosci Lett. 2009;457(1):27–31.CrossRefPubMedPubMedCentral
14.
go back to reference Khawaled R, Blumen G, Fabricant G, et al. Intestinal electrical stimulation decreases postprandial blood glucose levels in rats. Surg Obes Relat Dis. 2009;5(6):692–7.CrossRefPubMed Khawaled R, Blumen G, Fabricant G, et al. Intestinal electrical stimulation decreases postprandial blood glucose levels in rats. Surg Obes Relat Dis. 2009;5(6):692–7.CrossRefPubMed
15.
go back to reference Kelly KA, Code CF. Duodenal-gastric reflux and slowed gastric emptying by electrical pacing of the canine duodenal pacesetter potential. Gastroenterology. 1977;72(3):429–33.PubMed Kelly KA, Code CF. Duodenal-gastric reflux and slowed gastric emptying by electrical pacing of the canine duodenal pacesetter potential. Gastroenterology. 1977;72(3):429–33.PubMed
16.
go back to reference Soper NJ, Geisler KL, Sarr MG, et al. Regulation of canine jejunal transit. Am J Phys. 1990;259:G928–33. Soper NJ, Geisler KL, Sarr MG, et al. Regulation of canine jejunal transit. Am J Phys. 1990;259:G928–33.
17.
go back to reference Yin J, Ouyang H, Chen JD. Potential of intestinal electrical stimulation for obesity: a preliminary canine study. Obesity. 2007;15(5):1133–8.CrossRefPubMed Yin J, Ouyang H, Chen JD. Potential of intestinal electrical stimulation for obesity: a preliminary canine study. Obesity. 2007;15(5):1133–8.CrossRefPubMed
18.
go back to reference Xu X, Lei Y, Chen JD. Duodenum electrical stimulation delays gastric emptying, reduces food intake and accelerates small bowel transit in pigs. 2011;19(2):442–8. Xu X, Lei Y, Chen JD. Duodenum electrical stimulation delays gastric emptying, reduces food intake and accelerates small bowel transit in pigs. 2011;19(2):442–8.
19.
go back to reference Aberle J, Busch P, Veigel J, et al. Duodenal electric stimulation: results of a first-in-man study. Obes Surg. 2016;26(2):369–75. Aberle J, Busch P, Veigel J, et al. Duodenal electric stimulation: results of a first-in-man study. Obes Surg. 2016;26(2):369–75.
20.
go back to reference Xu X, Lei Y, Chen JD. Effects and mechanisms of electrical stimulation of the stomach, duodenum, ileum, and colon on gastric tone in dogs. Dig Dis Sci. 2010;55(4):895–901.CrossRefPubMed Xu X, Lei Y, Chen JD. Effects and mechanisms of electrical stimulation of the stomach, duodenum, ileum, and colon on gastric tone in dogs. Dig Dis Sci. 2010;55(4):895–901.CrossRefPubMed
21.
go back to reference Akwari OE, Kelley KA, Steinbach JH, et al. Electric pacing of intact and transected canine small intestine and its computer model. Am J Phys. 1975;229:1188–97. Akwari OE, Kelley KA, Steinbach JH, et al. Electric pacing of intact and transected canine small intestine and its computer model. Am J Phys. 1975;229:1188–97.
22.
go back to reference Bjorck S, Kelly KA, Phillips SF. Mechanisms of enhanced canine enteric absorption with intestinal pacing. Am J Phys. 1987;252:G548–53. Bjorck S, Kelly KA, Phillips SF. Mechanisms of enhanced canine enteric absorption with intestinal pacing. Am J Phys. 1987;252:G548–53.
23.
24.
go back to reference Ouyang X, Li S, Foreman R, et al. Hyperglycemia-induced small intestinal dysrhythmias attributed to sympathovagal imbalance in normal and diabetic rats. Neurogastroenterol Motil. 2015;27(3):406–15.CrossRefPubMed Ouyang X, Li S, Foreman R, et al. Hyperglycemia-induced small intestinal dysrhythmias attributed to sympathovagal imbalance in normal and diabetic rats. Neurogastroenterol Motil. 2015;27(3):406–15.CrossRefPubMed
25.
go back to reference Lin X, Peters LJ, Hayes J, et al. Entrainment of segmental small intestinal slow waves with electrical stimulation in dogs. Dig Dis Sci. 2000;45(4):652–6.CrossRefPubMed Lin X, Peters LJ, Hayes J, et al. Entrainment of segmental small intestinal slow waves with electrical stimulation in dogs. Dig Dis Sci. 2000;45(4):652–6.CrossRefPubMed
26.
go back to reference Lin X, Hayes J, Peters LJ, et al. Entrainment of intestinal slow waves with electrical stimulation using intraluminal electrodes. Ann Biomed Eng. 2000;28(5):582–7.CrossRefPubMed Lin X, Hayes J, Peters LJ, et al. Entrainment of intestinal slow waves with electrical stimulation using intraluminal electrodes. Ann Biomed Eng. 2000;28(5):582–7.CrossRefPubMed
27.
go back to reference Yin J. Chen JDz. Excitatory effects of synchronized intestinal electrical stimulation on small intestinal motility in dogs. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1190–5.CrossRefPubMed Yin J. Chen JDz. Excitatory effects of synchronized intestinal electrical stimulation on small intestinal motility in dogs. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1190–5.CrossRefPubMed
28.
go back to reference Farley C, Cook JA, Spar BD, et al. Meal pattern analysis of diet-induced obesity in susceptible and resistant rats. Obes Res. 2003;11(7):845–51.CrossRefPubMed Farley C, Cook JA, Spar BD, et al. Meal pattern analysis of diet-induced obesity in susceptible and resistant rats. Obes Res. 2003;11(7):845–51.CrossRefPubMed
29.
go back to reference Li S, Maude-Griffin R, Pullan AJ, et al. Gastric emptying and Ca (2+) and K(+) channels of circular smooth muscle cells in diet-induced obese prone and resistant rats. Obesity (Silver Spring). 2013;21(2):326–35.CrossRef Li S, Maude-Griffin R, Pullan AJ, et al. Gastric emptying and Ca (2+) and K(+) channels of circular smooth muscle cells in diet-induced obese prone and resistant rats. Obesity (Silver Spring). 2013;21(2):326–35.CrossRef
30.
go back to reference Sallam HS, Oliveira HM, Gan HT, et al. Ghrelin improves burn-induced delayed gastrointestinal transit in rats. Am J Physiol Regul Integr Comp Physiol. 2007;292:R253–7.CrossRefPubMed Sallam HS, Oliveira HM, Gan HT, et al. Ghrelin improves burn-induced delayed gastrointestinal transit in rats. Am J Physiol Regul Integr Comp Physiol. 2007;292:R253–7.CrossRefPubMed
31.
go back to reference Yin J, Hou X, Chen JD. Roles of interstitial cells of Cajal in intestinal transit and exogenous electrical pacing. Dig Dis Sci. 2006;51(10):1818–23.CrossRefPubMed Yin J, Hou X, Chen JD. Roles of interstitial cells of Cajal in intestinal transit and exogenous electrical pacing. Dig Dis Sci. 2006;51(10):1818–23.CrossRefPubMed
32.
go back to reference Li S, Chen JD. Pulse width-dependent effects of intestinal electrical stimulation for obesity: role of gastrointestinal motility and hormones. Obes Surg. 2016 29. Li S, Chen JD. Pulse width-dependent effects of intestinal electrical stimulation for obesity: role of gastrointestinal motility and hormones. Obes Surg. 2016 29.
33.
go back to reference Shikora SA, Bergenstal R, Bessler M, et al. Implantable gastric stimulation for the treatment of clinically severe obesity: results of the SHAPE trial. Surg Obes Relat Dis. 2009;5(1):31–7.CrossRefPubMed Shikora SA, Bergenstal R, Bessler M, et al. Implantable gastric stimulation for the treatment of clinically severe obesity: results of the SHAPE trial. Surg Obes Relat Dis. 2009;5(1):31–7.CrossRefPubMed
34.
go back to reference Shikora SA, Storch K. Implantable gastric stimulation for the treatment of severe obesity: the American experience. Surg Obes Relat Dis. 2005;1(3):334–42.CrossRefPubMed Shikora SA, Storch K. Implantable gastric stimulation for the treatment of severe obesity: the American experience. Surg Obes Relat Dis. 2005;1(3):334–42.CrossRefPubMed
35.
go back to reference Horbach T, Thalheimer A, Seyfried F, et al. Abiliti closed-loop gastric electrical stimulation system for treatment of obesity: clinical results with a 27-month follow-up. Obes Surg. 2015;25(10):1779–87.CrossRefPubMedPubMedCentral Horbach T, Thalheimer A, Seyfried F, et al. Abiliti closed-loop gastric electrical stimulation system for treatment of obesity: clinical results with a 27-month follow-up. Obes Surg. 2015;25(10):1779–87.CrossRefPubMedPubMedCentral
36.
go back to reference Miras M, Serrano M, Durán C, et al. Early experience with customized, meal-triggered gastric electrical stimulation in obese patients. Obes Surg. 2015;25(1):174–9.CrossRefPubMed Miras M, Serrano M, Durán C, et al. Early experience with customized, meal-triggered gastric electrical stimulation in obese patients. Obes Surg. 2015;25(1):174–9.CrossRefPubMed
37.
go back to reference Zhang J, Maude-Griffin R, Zhu H, et al. Gastric electrical stimulation parameter dependently alters ventral medial hypothalamic activity and feeding in obese rats. Am J Physiol Gastrointest Liver Physiol. 2011;301(5):G912–8.CrossRefPubMed Zhang J, Maude-Griffin R, Zhu H, et al. Gastric electrical stimulation parameter dependently alters ventral medial hypothalamic activity and feeding in obese rats. Am J Physiol Gastrointest Liver Physiol. 2011;301(5):G912–8.CrossRefPubMed
38.
go back to reference Liu S, Hou XH, Chen JDZ. Therapeutic potential of duodenal electrical stimulation for obesity: acute effects on gastric emptying and water intake. Am J Gastroenterology. 2005;100:792–6.CrossRef Liu S, Hou XH, Chen JDZ. Therapeutic potential of duodenal electrical stimulation for obesity: acute effects on gastric emptying and water intake. Am J Gastroenterology. 2005;100:792–6.CrossRef
39.
go back to reference Liu J, Qiao X, Hou X, et al. Effect of intestinal pacing on small bowel transit and nutrient absorption in healthy volunteers. Obes Surg. 2009;19(2):196–201.CrossRefPubMed Liu J, Qiao X, Hou X, et al. Effect of intestinal pacing on small bowel transit and nutrient absorption in healthy volunteers. Obes Surg. 2009;19(2):196–201.CrossRefPubMed
40.
go back to reference Liu J, Xiang Y, Qiao X, et al. Hypoglycemic effects of intraluminal intestinal electrical stimulation in healthy volunteers. Obes Surg. 2011;21(2):224–30.CrossRefPubMed Liu J, Xiang Y, Qiao X, et al. Hypoglycemic effects of intraluminal intestinal electrical stimulation in healthy volunteers. Obes Surg. 2011;21(2):224–30.CrossRefPubMed
41.
go back to reference Yin J, Chen JD. Mechanisms and potential applications of intestinal electrical stimulation. Dig Dis Sci. 2010;55(5):1208–20.CrossRefPubMed Yin J, Chen JD. Mechanisms and potential applications of intestinal electrical stimulation. Dig Dis Sci. 2010;55(5):1208–20.CrossRefPubMed
42.
go back to reference Fonken LK, Workman JL, Walton JC, et al. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A. 2010;107(43):18664–9.CrossRefPubMedPubMedCentral Fonken LK, Workman JL, Walton JC, et al. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A. 2010;107(43):18664–9.CrossRefPubMedPubMedCentral
43.
go back to reference Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature. 2006;444(7121):854–9.CrossRefPubMed Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature. 2006;444(7121):854–9.CrossRefPubMed
44.
go back to reference Suzuki S, Ramos EJ, Goncalves CG, et al. Changes in GI hormones and their effect on gastric emptying and transit times after Roux-en-Y gastric bypass in rat model. Surgery. 2005;138(2):283–90.CrossRefPubMed Suzuki S, Ramos EJ, Goncalves CG, et al. Changes in GI hormones and their effect on gastric emptying and transit times after Roux-en-Y gastric bypass in rat model. Surgery. 2005;138(2):283–90.CrossRefPubMed
45.
go back to reference Holdstock C, Zethelius B, Sundbom M, et al. Postprandial changes in gut regulatory peptides in gastric bypass patients. Int J Obes. 2008;32(11):1640–6.CrossRef Holdstock C, Zethelius B, Sundbom M, et al. Postprandial changes in gut regulatory peptides in gastric bypass patients. Int J Obes. 2008;32(11):1640–6.CrossRef
46.
go back to reference Laferrère B, Teixeira J, McGinty J, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(7):2479–85.CrossRefPubMedPubMedCentral Laferrère B, Teixeira J, McGinty J, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(7):2479–85.CrossRefPubMedPubMedCentral
47.
go back to reference Schwartz A, Ort T, Kajekar R, et al. Electrical stimulation of the isolated rat intestine in the presence of nutrient stimulus enhances glucagon-like peptide-1 release. Physiol Meas. 2010;31(9):1147–59.CrossRefPubMed Schwartz A, Ort T, Kajekar R, et al. Electrical stimulation of the isolated rat intestine in the presence of nutrient stimulus enhances glucagon-like peptide-1 release. Physiol Meas. 2010;31(9):1147–59.CrossRefPubMed
48.
go back to reference Sandoval D, Dunki-Jacobs A, Sorrell J, et al. Impact of intestinal electrical stimulation on nutrient-induced GLP-1 secretion in vivo. Neurogastroenterol Motil. 2013;25(8):700–5.CrossRefPubMedPubMedCentral Sandoval D, Dunki-Jacobs A, Sorrell J, et al. Impact of intestinal electrical stimulation on nutrient-induced GLP-1 secretion in vivo. Neurogastroenterol Motil. 2013;25(8):700–5.CrossRefPubMedPubMedCentral
Metadata
Title
An Optimized IES Method and Its Inhibitory Effects and Mechanisms on Food Intake and Body Weight in Diet-Induced Obese Rats: IES for Obesity
Authors
Xinyue Wan
Jieyun Yin
Robert Foreman
Jiande D. Z. Chen
Publication date
01-12-2017
Publisher
Springer US
Published in
Obesity Surgery / Issue 12/2017
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-017-2743-1

Other articles of this Issue 12/2017

Obesity Surgery 12/2017 Go to the issue