Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 2/2020

01-02-2020 | Computed Tomography | Original Article

Multi-atlas segmentation of the facial nerve from clinical CT for virtual reality simulators

Authors: Bradley M. Gare, Thomas Hudson, Seyed A. Rohani, Daniel G. Allen, Sumit K. Agrawal, Hanif M. Ladak

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 2/2020

Login to get access

Abstract

Purpose

To create a novel, multi-atlas-based segmentation algorithm of the facial nerve (FN) requiring minimal user intervention that could be easily deployed into an existing open-source toolkit. Specifically, the mastoid, tympanic and labyrinthine segments of the FN would be segmented.

Methods

High-resolution micro-computed tomography (micro-CT) scans were pre-segmented and used as atlases of the FN. The algorithm requires the user to place four fiducials to orient the target, low-resolution clinical CT scan, and generate a centerline along the nerve. Based on this data, the appropriate atlas is chosen by the algorithm and then rigidly and non-rigidly registered to provide an automated segmentation of the FN.

Results

The algorithm was successfully developed and implemented into an existing open-source software framework. Validation was performed on 28 temporal bones, where the automated segmentation was compared against gold-standard manual segmentation by an expert. The algorithm achieved an average Dice metric of 0.76 and an average Hausdorff distance of 0.17 mm for the tympanic and mastoid portions of the FN when segmenting healthy facial nerves, which are similar to previously published algorithms.

Conclusion

A successful FN segmentation algorithm was developed using a high-resolution micro-CT multi-atlas approach. The algorithm was unique in its ability to segment the entire intratemporal FN, with the exception of the meatal segment, which was not included in the segmentation as it was not discernible from the vestibulocochlear nerve within the internal auditory canal. It will be published as an open-source extension to allow use in virtual reality simulators for automatic segmentation, greatly reducing the time for expert segmentation and verification.
Literature
1.
go back to reference Hohman MH, Hadlock TA (2014) Etiology diagnosis, and management of facial palsy: 2000 patients at a facial nerve center. Laryngoscope 124(7):E283–E293CrossRef Hohman MH, Hadlock TA (2014) Etiology diagnosis, and management of facial palsy: 2000 patients at a facial nerve center. Laryngoscope 124(7):E283–E293CrossRef
2.
go back to reference Bradbury ET, Simons W, Sanders R (2006) Psychological and social factors in reconstructive surgery for hemi-facial palsy. J Plast Reconstr Aesthet Surg 59(3):272–278CrossRef Bradbury ET, Simons W, Sanders R (2006) Psychological and social factors in reconstructive surgery for hemi-facial palsy. J Plast Reconstr Aesthet Surg 59(3):272–278CrossRef
3.
go back to reference VanSwearingen JM, Cohn JF, Turnbull J, Mrzai T, Johnson P (1998) Psychological distress: linking impairment with disability in facial neuromotor disorders. Otology Head Neck Surg 118(6):790–796CrossRef VanSwearingen JM, Cohn JF, Turnbull J, Mrzai T, Johnson P (1998) Psychological distress: linking impairment with disability in facial neuromotor disorders. Otology Head Neck Surg 118(6):790–796CrossRef
4.
go back to reference Kharat RD, Golhar SV, Patil CY (2009) Study of intratemporal course of facial nerve and its variations—25 temporal bones dissection. Indian J Otolaryngol Head Neck Surg 61(1):39–42CrossRef Kharat RD, Golhar SV, Patil CY (2009) Study of intratemporal course of facial nerve and its variations—25 temporal bones dissection. Indian J Otolaryngol Head Neck Surg 61(1):39–42CrossRef
5.
go back to reference Tüccar E, Tekdemir I, Aslan A, Elhan A, Deda H (2000) Radiological anatomy of the intratemporal course of facial nerve. Clin Anat 13(2):83–87CrossRef Tüccar E, Tekdemir I, Aslan A, Elhan A, Deda H (2000) Radiological anatomy of the intratemporal course of facial nerve. Clin Anat 13(2):83–87CrossRef
6.
go back to reference Ryu NG, Kim J (2016) How to avoid facial nerve injury in mastoidectomy? J Audiol Otol 20(2):68–72CrossRef Ryu NG, Kim J (2016) How to avoid facial nerve injury in mastoidectomy? J Audiol Otol 20(2):68–72CrossRef
7.
go back to reference Babu NM (2018) Intratemporal facial nerve trauma—a study of 40 cases. J Evol Med Dental Sci 7(12):1465–1467CrossRef Babu NM (2018) Intratemporal facial nerve trauma—a study of 40 cases. J Evol Med Dental Sci 7(12):1465–1467CrossRef
8.
go back to reference Voormolen EHJ, van Stralen M, Woerdeman PA, Pluim JPW, Noordmans HJ, Regli L, Berkelbach van der Sprenkel JW, Viergever MA (2011) Intra-temporal facial nerve centerline segmentation for navigated temporal bone surgery. In: SPIE 7964, Medical imaging 2011: visualization, image-guided procedures, and modeling Orlando, p 79641C Voormolen EHJ, van Stralen M, Woerdeman PA, Pluim JPW, Noordmans HJ, Regli L, Berkelbach van der Sprenkel JW, Viergever MA (2011) Intra-temporal facial nerve centerline segmentation for navigated temporal bone surgery. In: SPIE 7964, Medical imaging 2011: visualization, image-guided procedures, and modeling Orlando, p 79641C
9.
go back to reference Wiet GJ, Stredney D, Sessanna D, Bryan JA, Welling DB, Schmalbrock P (2002) Virtual temporal bone dissection: an interactive surgical simulator. Otolaryngol Head Neck Surg 127(1):79–83CrossRef Wiet GJ, Stredney D, Sessanna D, Bryan JA, Welling DB, Schmalbrock P (2002) Virtual temporal bone dissection: an interactive surgical simulator. Otolaryngol Head Neck Surg 127(1):79–83CrossRef
10.
go back to reference Chan S, Li P, Locketz G, Salisbury K, Blevins NH (2016) High-fidelity haptic and visual rendering for patient-specific simulation of temporal bone surgery. Comput Assist Surg 21(1):85–101CrossRef Chan S, Li P, Locketz G, Salisbury K, Blevins NH (2016) High-fidelity haptic and visual rendering for patient-specific simulation of temporal bone surgery. Comput Assist Surg 21(1):85–101CrossRef
11.
go back to reference Sorensen MS, Mosegaard J, Trier P (2009) The visible ear simulator: a public PC application for GPU-accelerated haptic 3D simulation of ear surgery based on the visible ear data. Otol Neurotol 30(4):484–487CrossRef Sorensen MS, Mosegaard J, Trier P (2009) The visible ear simulator: a public PC application for GPU-accelerated haptic 3D simulation of ear surgery based on the visible ear data. Otol Neurotol 30(4):484–487CrossRef
12.
go back to reference Nash R, Sykes R, Majithia A, Arora A, Singh A, Khemani S (2012) Objective assessment of learning curves for the Voxel-Man TempoSurg temporal bone surgery computer simulator. J Laryngol Otol 126(7):663–669CrossRef Nash R, Sykes R, Majithia A, Arora A, Singh A, Khemani S (2012) Objective assessment of learning curves for the Voxel-Man TempoSurg temporal bone surgery computer simulator. J Laryngol Otol 126(7):663–669CrossRef
13.
go back to reference Fried MP, Sadoughi B, Weghorst SJ, Zeltsan M (2007) Construct validity of the endoscopic sinus surgery simulator. Arch Otolaryngol Head Neck Surg 133(4):350CrossRef Fried MP, Sadoughi B, Weghorst SJ, Zeltsan M (2007) Construct validity of the endoscopic sinus surgery simulator. Arch Otolaryngol Head Neck Surg 133(4):350CrossRef
14.
go back to reference Endo K, Sata N, Ishiguro Y, Miki A, Sasanuma H, Sakuma Y, Shimizu A, Hyodo M, Lefor A, Yasuda Y (2017) A patient-specific surgical simulator using preoperative imaging data: an interactive simulator using a three-dimensional tactile mouse. J Comput Surg 1(1):1–8 Endo K, Sata N, Ishiguro Y, Miki A, Sasanuma H, Sakuma Y, Shimizu A, Hyodo M, Lefor A, Yasuda Y (2017) A patient-specific surgical simulator using preoperative imaging data: an interactive simulator using a three-dimensional tactile mouse. J Comput Surg 1(1):1–8
15.
go back to reference Hassan K, Dort J, Sutherland G, Chan S (2016) Evaluation of software tools for segmentation of temporal bone anatomy. In: Volume 220: medicine meets virtual reality 22. Los Angeles, pp 130–133 Hassan K, Dort J, Sutherland G, Chan S (2016) Evaluation of software tools for segmentation of temporal bone anatomy. In: Volume 220: medicine meets virtual reality 22. Los Angeles, pp 130–133
16.
go back to reference Noble JH, Warren FM, Labadie RF, Dawant BM (2008) Automatic segmentation of the facial nerve and chorda tympani in CT images using spatially dependent feature values. Med Phys 35(12):5375–5384CrossRef Noble JH, Warren FM, Labadie RF, Dawant BM (2008) Automatic segmentation of the facial nerve and chorda tympani in CT images using spatially dependent feature values. Med Phys 35(12):5375–5384CrossRef
17.
go back to reference Noble JH, Warren FM, Labadie RF, Dawant BM (2008) Automatic segmentation of the facial nerve and chorda tympani using image registration and statistical priors. In: Proceedings volume 6914, medical imaging 2008: image processing. San Diego Noble JH, Warren FM, Labadie RF, Dawant BM (2008) Automatic segmentation of the facial nerve and chorda tympani using image registration and statistical priors. In: Proceedings volume 6914, medical imaging 2008: image processing. San Diego
18.
go back to reference Noble JH, Dawant BM, Warren FM, Labadie RF (2009) Automatic identification and 3D rendering of temporal bone anatomy. Otol Neurotol 30(4):436–442CrossRef Noble JH, Dawant BM, Warren FM, Labadie RF (2009) Automatic identification and 3D rendering of temporal bone anatomy. Otol Neurotol 30(4):436–442CrossRef
19.
go back to reference Reda FA, Noble JH, Rivas A, Labadie RF, Dawant BM (2011) Model-based segmentation of the facial nerve and chorda tympani in pediatric CT scans. In: SPIE medical imaging. Orlando Reda FA, Noble JH, Rivas A, Labadie RF, Dawant BM (2011) Model-based segmentation of the facial nerve and chorda tympani in pediatric CT scans. In: SPIE medical imaging. Orlando
20.
go back to reference Reda FA, Noble JH, Rivas A, Labadie RF, Dawant BM (2011) Model-based segmentation of the facial nerve and chorda tympani in pediatric CT scans. In: Proceedings volume 7962, medical imaging 2011: image processing. Orlando Reda FA, Noble JH, Rivas A, Labadie RF, Dawant BM (2011) Model-based segmentation of the facial nerve and chorda tympani in pediatric CT scans. In: Proceedings volume 7962, medical imaging 2011: image processing. Orlando
21.
go back to reference Powell KA, Liang T, Hittle B, Stredney D, Kerwin T, Wiet GJ (2017) Atlas-based segmentation of temporal bone anatomy. Int J Comput Assist Radiol Surg 12(11):1937–1944CrossRef Powell KA, Liang T, Hittle B, Stredney D, Kerwin T, Wiet GJ (2017) Atlas-based segmentation of temporal bone anatomy. Int J Comput Assist Radiol Surg 12(11):1937–1944CrossRef
22.
go back to reference Gerber N, Bell B, Gavaghan K, Weisstanner C, Caversaccio M, Weber S (2014) Surgical planning tool for robotically assisted hearing aid implantation. Int J Comput Assis Radiol Surg 9(1):11–20CrossRef Gerber N, Bell B, Gavaghan K, Weisstanner C, Caversaccio M, Weber S (2014) Surgical planning tool for robotically assisted hearing aid implantation. Int J Comput Assis Radiol Surg 9(1):11–20CrossRef
23.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller J, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341CrossRef Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller J, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341CrossRef
24.
go back to reference Hudson T, Gare B, Allen D, Ladak H, Agrawal S (2018) Segmentation of the facial nerve and other temporal bone structures for patient-specific simulation in surgical. In: Otology. Quebec City Hudson T, Gare B, Allen D, Ladak H, Agrawal S (2018) Segmentation of the facial nerve and other temporal bone structures for patient-specific simulation in surgical. In: Otology. Quebec City
26.
go back to reference Heman-Ackah SE, Gupta S, Lalwani AK (2013) Is facial nerve integrity monitoring of value in chronic ear surgery. Laryngoscope 123(1):2–3CrossRef Heman-Ackah SE, Gupta S, Lalwani AK (2013) Is facial nerve integrity monitoring of value in chronic ear surgery. Laryngoscope 123(1):2–3CrossRef
27.
go back to reference Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22(8):986–1004CrossRef Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22(8):986–1004CrossRef
28.
go back to reference Nocedal J (1980) Updating quasi-Newton matrices with limited storage. Math Comput Am Math Soc 35(151):773–782CrossRef Nocedal J (1980) Updating quasi-Newton matrices with limited storage. Math Comput Am Math Soc 35(151):773–782CrossRef
29.
go back to reference Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15(1):29CrossRef Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15(1):29CrossRef
30.
go back to reference Lu P, Barazzetti L, Chandran V, Gavaghan K, Weber S, Gerber N, Reyes M (2015) Facial nerve image enhancement from CBCT using supervised learning technique. In: 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). Milano, pp 2964–2967 Lu P, Barazzetti L, Chandran V, Gavaghan K, Weber S, Gerber N, Reyes M (2015) Facial nerve image enhancement from CBCT using supervised learning technique. In: 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). Milano, pp 2964–2967
31.
go back to reference Lu P, Barazzetti L, Chandran V, Gavaghan K, Weber S, Gerber N, Reyes M (2018) Highly accurate facial nerve segmentation refinement from CBCT/CT imaging using a super-resolution classification approach. IEEE Trans Biomed Eng 65(1):178–188CrossRef Lu P, Barazzetti L, Chandran V, Gavaghan K, Weber S, Gerber N, Reyes M (2018) Highly accurate facial nerve segmentation refinement from CBCT/CT imaging using a super-resolution classification approach. IEEE Trans Biomed Eng 65(1):178–188CrossRef
Metadata
Title
Multi-atlas segmentation of the facial nerve from clinical CT for virtual reality simulators
Authors
Bradley M. Gare
Thomas Hudson
Seyed A. Rohani
Daniel G. Allen
Sumit K. Agrawal
Hanif M. Ladak
Publication date
01-02-2020
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 2/2020
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02091-0

Other articles of this Issue 2/2020

International Journal of Computer Assisted Radiology and Surgery 2/2020 Go to the issue