Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 11/2017

01-11-2017 | Original Article

Atlas-Based Segmentation of Temporal Bone Anatomy

Authors: Kimerly A. Powell, Tong Liang, Brad Hittle, Don Stredney, Thomas Kerwin, Gregory J. Wiet

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 11/2017

Login to get access

Abstract

Purpose

To develop a time-efficient automated segmentation approach that could identify critical structures in the temporal bone for visual enhancement and use in surgical simulation software.

Methods

An atlas-based segmentation approach was developed to segment the cochlea, ossicles, semicircular canals (SCCs), and facial nerve in normal temporal bone CT images. This approach was tested in images of 26 cadaver bones (13 left, 13 right). The results of the automated segmentation were compared to manual segmentation visually and using DICE metric, average Hausdorff distance, and volume similarity.

Results

The DICE metrics were greater than 0.8 for the cochlea, malleus, incus, and the SCCs combined. It was slightly lower for the facial nerve. The average Hausdorff distance was less than one voxel for all structures, and the volume similarity was 0.86 or greater for all structures except the stapes.

Conclusions

The atlas-based approach with rigid body registration of the otic capsule was successful in segmenting critical structures of temporal bone anatomy for use in surgical simulation software.
Literature
1.
go back to reference Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010) Elastix: a toolbox for intensity based medical image registration. IEEE Trans Med Imaging 29:196–205CrossRefPubMed Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010) Elastix: a toolbox for intensity based medical image registration. IEEE Trans Med Imaging 29:196–205CrossRefPubMed
2.
go back to reference Shamonin DP, Bron EE, Lelieveldt BPF, Smits M, Klein S, Staring M (2014) Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease. Front Neuroinform 7:1–15 Shamonin DP, Bron EE, Lelieveldt BPF, Smits M, Klein S, Staring M (2014) Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease. Front Neuroinform 7:1–15
4.
go back to reference Otsu N (1979) A threshold selection method from gray-level histogram. IEEE Trans Syst Man Cybern SMC 9:62–66CrossRef Otsu N (1979) A threshold selection method from gray-level histogram. IEEE Trans Syst Man Cybern SMC 9:62–66CrossRef
5.
go back to reference Gonzalez RC, Woods RE (2008) Digital image processing. Pearson Prentice Hall Inc., Upper Saddle River Gonzalez RC, Woods RE (2008) Digital image processing. Pearson Prentice Hall Inc., Upper Saddle River
6.
go back to reference Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15(29):1–28 Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15(29):1–28
7.
go back to reference Zijdenbos AP, Dawant BM, Margolin RA, Palmer A (1994) Morphometrics analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 13(4):716–724CrossRefPubMed Zijdenbos AP, Dawant BM, Margolin RA, Palmer A (1994) Morphometrics analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 13(4):716–724CrossRefPubMed
8.
go back to reference Noble JH, Labadie RF, Majdani O, Dawant BM (2010) Automatic segmentation of intra-cochlear anatomy in conventional CT. IEEE Trans Biomed Eng 58(9):2625–2632CrossRef Noble JH, Labadie RF, Majdani O, Dawant BM (2010) Automatic segmentation of intra-cochlear anatomy in conventional CT. IEEE Trans Biomed Eng 58(9):2625–2632CrossRef
9.
go back to reference Noble JH, Warren FM, Labadie RF, Dawant BM (2008) Automatic segmentation of the facial nerve and chorda tympani in CT images using spatially dependent feature analysis. Med Phys 35:5375–5384 Noble JH, Warren FM, Labadie RF, Dawant BM (2008) Automatic segmentation of the facial nerve and chorda tympani in CT images using spatially dependent feature analysis. Med Phys 35:5375–5384
10.
go back to reference Noble JH, Dawant BM, Warren FM, Labadie RF (2009) Automatic identification and 3D rendering of temporal bone anatomy. Otol Neurotol 30:346–442 Noble JH, Dawant BM, Warren FM, Labadie RF (2009) Automatic identification and 3D rendering of temporal bone anatomy. Otol Neurotol 30:346–442
11.
go back to reference Rodt T, Raiu P, Becker H, Bartling S, Kacher DF, Anderson M, Jolesz FA, Kikinis R (2002) 3D visualisation of the middle ear and adjacent structures using reconstructed multi-slice CT datasets, correlating 3D images and virtual endoscopy to the 2D cross-sectional images. Neuroradiology 44:783–790CrossRefPubMed Rodt T, Raiu P, Becker H, Bartling S, Kacher DF, Anderson M, Jolesz FA, Kikinis R (2002) 3D visualisation of the middle ear and adjacent structures using reconstructed multi-slice CT datasets, correlating 3D images and virtual endoscopy to the 2D cross-sectional images. Neuroradiology 44:783–790CrossRefPubMed
12.
go back to reference Seemann MD, Seemann O, Bonel H, Suckfull M, Englmeier K-H, Naumann A, Allen CM, Reiser MF (1999) Evaluation of the middle and inner ear structures: comparison of hybrid rendering, virtual endoscopy and axial 2D source images. Eur Radiol 9:1851–1858CrossRefPubMed Seemann MD, Seemann O, Bonel H, Suckfull M, Englmeier K-H, Naumann A, Allen CM, Reiser MF (1999) Evaluation of the middle and inner ear structures: comparison of hybrid rendering, virtual endoscopy and axial 2D source images. Eur Radiol 9:1851–1858CrossRefPubMed
13.
go back to reference Chan S, Li P, Locketz G, Salisbury K, Blevins NH (2016) High fidelity haptic and visual rendering for patient-specific simulation of temporal bone surgery. Comput Assist Surg 21:85–101CrossRef Chan S, Li P, Locketz G, Salisbury K, Blevins NH (2016) High fidelity haptic and visual rendering for patient-specific simulation of temporal bone surgery. Comput Assist Surg 21:85–101CrossRef
14.
go back to reference Hassan K, Dort JC, Sutherland GR, Chan S (2016) Evaluation of software tools for segmentation of temporal bone anatomy. Proc Med Meets Virtual Real 22:130–133 Hassan K, Dort JC, Sutherland GR, Chan S (2016) Evaluation of software tools for segmentation of temporal bone anatomy. Proc Med Meets Virtual Real 22:130–133
15.
go back to reference Arora A, Swords C, Khemani S, Awad Z, Darzi A, Singh A, Tolley N (2014) Virtual reality case-specific rehearsal in temporal bone surgery: a preliminary evaluation. Int J Surg 12:141–145CrossRefPubMed Arora A, Swords C, Khemani S, Awad Z, Darzi A, Singh A, Tolley N (2014) Virtual reality case-specific rehearsal in temporal bone surgery: a preliminary evaluation. Int J Surg 12:141–145CrossRefPubMed
16.
go back to reference Lee DH, Chan S, Salisbury C, Kim N, Salisbury K, Puria S, Blevins NH (2010) Reconstruction and exploration of virtual middle-ear models derived from micro-CT datasets. Hear Res 263:198–203CrossRefPubMedPubMedCentral Lee DH, Chan S, Salisbury C, Kim N, Salisbury K, Puria S, Blevins NH (2010) Reconstruction and exploration of virtual middle-ear models derived from micro-CT datasets. Hear Res 263:198–203CrossRefPubMedPubMedCentral
17.
go back to reference Rafferty MA, Siewerdsen JH, Chan Y, Daly MJ, Moseley DJ, Jaffray DA, Irish JC (2006) Intraoperative cone-beam CT for guidance of temporal bone surgery. Otolaryngol Head Neck Surg 134:801–808CrossRefPubMed Rafferty MA, Siewerdsen JH, Chan Y, Daly MJ, Moseley DJ, Jaffray DA, Irish JC (2006) Intraoperative cone-beam CT for guidance of temporal bone surgery. Otolaryngol Head Neck Surg 134:801–808CrossRefPubMed
18.
go back to reference Barker E, Trimble K, Chan H, Ramsden J, Nithiananthan S, James A, Bachar G, Daly M, Irish J, Siewerdsen J (2009) Intraoperative use of cone-beam computed tomography in a cadaveric ossified cochlea model. Otolaryngol Head Neck Surg 140:697–702CrossRefPubMedPubMedCentral Barker E, Trimble K, Chan H, Ramsden J, Nithiananthan S, James A, Bachar G, Daly M, Irish J, Siewerdsen J (2009) Intraoperative use of cone-beam computed tomography in a cadaveric ossified cochlea model. Otolaryngol Head Neck Surg 140:697–702CrossRefPubMedPubMedCentral
19.
go back to reference Erovic BM, Chan HHL, Daly MJ, Pothier DD, Yu E, Coulson C, Lai P, Irish JC (2014) Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment. Otol Neurotol 150:107–114 Erovic BM, Chan HHL, Daly MJ, Pothier DD, Yu E, Coulson C, Lai P, Irish JC (2014) Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment. Otol Neurotol 150:107–114
20.
go back to reference Uneri A, Schafer S, Mirota DJ, Nithiananthan S, Otake Y, Taylor RH, Siewerdsen JH (2012) TREK: and integrated system architecture for intraoperative cone-beam CT-guided surgery. Int J CARS 7:159–173CrossRef Uneri A, Schafer S, Mirota DJ, Nithiananthan S, Otake Y, Taylor RH, Siewerdsen JH (2012) TREK: and integrated system architecture for intraoperative cone-beam CT-guided surgery. Int J CARS 7:159–173CrossRef
Metadata
Title
Atlas-Based Segmentation of Temporal Bone Anatomy
Authors
Kimerly A. Powell
Tong Liang
Brad Hittle
Don Stredney
Thomas Kerwin
Gregory J. Wiet
Publication date
01-11-2017
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 11/2017
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-017-1658-6

Other articles of this Issue 11/2017

International Journal of Computer Assisted Radiology and Surgery 11/2017 Go to the issue