Skip to main content
Top
Published in: Molecular Imaging and Biology 2/2019

01-04-2019 | Magnetic Resonance Imaging | Special Topic

Summary of Imaging in 2020: Visualizing the Future of Healthcare with MR Imaging

Authors: Brooke A. Corbin, Alyssa C. Pollard, Matthew J. Allen, Mark D. Pagel

Published in: Molecular Imaging and Biology | Issue 2/2019

Login to get access

Abstract

The Imaging in 2020 meeting convenes biannually to discuss innovations in medical imaging. The 2018 meeting, titled “Visualizing the Future of Healthcare with MR Imaging,” sought to encourage discussions of the future goals of MRI research, feature important discoveries, and foster scientific discourse between scientists from a variety of fields of expertise. Here, we highlight presented research and resulting discussions of the meeting.
Literature
3.
go back to reference Helm L, Morrow JR, Bond CJ et al (2018) Gadolinium-based contrast agents. In: Pierre VC, Allen MJ (eds) Contrast agents for MRI: experimental methods. The Royal Society of Chemistry, Croydon, pp 121–242 Helm L, Morrow JR, Bond CJ et al (2018) Gadolinium-based contrast agents. In: Pierre VC, Allen MJ (eds) Contrast agents for MRI: experimental methods. The Royal Society of Chemistry, Croydon, pp 121–242
4.
go back to reference Young SW, Qing F, Harriman A, Sessler JL et al (1996) Gadolinium (III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI. Proc Natl Acad Sci U S A 93:6610–6615CrossRefPubMedPubMedCentral Young SW, Qing F, Harriman A, Sessler JL et al (1996) Gadolinium (III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI. Proc Natl Acad Sci U S A 93:6610–6615CrossRefPubMedPubMedCentral
5.
go back to reference Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16:3–8CrossRefPubMed Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16:3–8CrossRefPubMed
6.
go back to reference Kanda T, Fukusato T, Matsuda M et al (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232CrossRefPubMed Kanda T, Fukusato T, Matsuda M et al (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232CrossRefPubMed
7.
go back to reference Kanda T, Osawa M, Oba H et al (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809CrossRefPubMed Kanda T, Osawa M, Oba H et al (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809CrossRefPubMed
8.
go back to reference Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefPubMed Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefPubMed
9.
go back to reference McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782CrossRefPubMed McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782CrossRefPubMed
10.
go back to reference Kanal E, Tweedle MF (2015) Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology 275:630–634CrossRefPubMed Kanal E, Tweedle MF (2015) Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology 275:630–634CrossRefPubMed
11.
go back to reference Grobner T (2006) Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108CrossRefPubMed Grobner T (2006) Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108CrossRefPubMed
12.
go back to reference Andreucci M, Solomon R, Tasanarong A (2014) Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention. Biomed Res Int 2014:741018PubMedPubMedCentral Andreucci M, Solomon R, Tasanarong A (2014) Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention. Biomed Res Int 2014:741018PubMedPubMedCentral
13.
go back to reference Thomsen HS (2009) Nephrogenic systemic fibrosis: history and epidemiology. Radiol Clin N Am 47:827–831CrossRefPubMed Thomsen HS (2009) Nephrogenic systemic fibrosis: history and epidemiology. Radiol Clin N Am 47:827–831CrossRefPubMed
14.
go back to reference Wilson J, Gleghorn K, Seigel Q, Kelly B (2017) Nephrogenic systemic fibrosis: a 15-year retrospective study at a single tertiary care center. J Am Acad Dermatol 77:235–240CrossRefPubMed Wilson J, Gleghorn K, Seigel Q, Kelly B (2017) Nephrogenic systemic fibrosis: a 15-year retrospective study at a single tertiary care center. J Am Acad Dermatol 77:235–240CrossRefPubMed
15.
go back to reference Wang Y, Alkasab TK, Narin O et al (2011) Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology 260:105–111CrossRefPubMed Wang Y, Alkasab TK, Narin O et al (2011) Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology 260:105–111CrossRefPubMed
16.
go back to reference Cacheris WP, Quay SC, Rocklage SM (1990) The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn Reson Imaging 8:467–481CrossRefPubMed Cacheris WP, Quay SC, Rocklage SM (1990) The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn Reson Imaging 8:467–481CrossRefPubMed
17.
go back to reference Wedeking P, Kumar K, Tweedle MF (1992) Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Magn Reson Imaging 10:641–648CrossRefPubMed Wedeking P, Kumar K, Tweedle MF (1992) Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Magn Reson Imaging 10:641–648CrossRefPubMed
18.
go back to reference Idée J-M, Port M, Raynal I et al (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol 20:563–576CrossRefPubMed Idée J-M, Port M, Raynal I et al (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol 20:563–576CrossRefPubMed
20.
go back to reference Frenzel T, Lengsfeld P, Schirmer H et al (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 °C. Investig Radiol 43:817–828CrossRef Frenzel T, Lengsfeld P, Schirmer H et al (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 °C. Investig Radiol 43:817–828CrossRef
22.
go back to reference Caravan P, Das B, Dumas S et al (2007) Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem Int Ed 46:8171–8173CrossRef Caravan P, Das B, Dumas S et al (2007) Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem Int Ed 46:8171–8173CrossRef
23.
go back to reference Farrar CT, DePeralta DK, Day H et al (2015) 3D molecular MR imaging of liver fibrosis and response to rapamycin therapy in a bile duct ligation rat model. J Hepatol 63:689–696CrossRefPubMedPubMedCentral Farrar CT, DePeralta DK, Day H et al (2015) 3D molecular MR imaging of liver fibrosis and response to rapamycin therapy in a bile duct ligation rat model. J Hepatol 63:689–696CrossRefPubMedPubMedCentral
24.
26.
go back to reference Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87:901–927CrossRef Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87:901–927CrossRef
27.
go back to reference Loehr JA, Stinnett GR, Hernández-Rivera M et al (2016) Eliminating Nox2 reactive oxygen species production protects dystrophic skeletal muscle from pathological calcium influx assessed in vivo by manganese-enhanced magnetic resonance imaging. J Physiol 594:6395–6405CrossRefPubMedPubMedCentral Loehr JA, Stinnett GR, Hernández-Rivera M et al (2016) Eliminating Nox2 reactive oxygen species production protects dystrophic skeletal muscle from pathological calcium influx assessed in vivo by manganese-enhanced magnetic resonance imaging. J Physiol 594:6395–6405CrossRefPubMedPubMedCentral
28.
go back to reference Gale EM, Mukherjee S, Liu C et al (2014) Structure–redox–relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes. Inorg Chem 53:10748–10761CrossRefPubMedPubMedCentral Gale EM, Mukherjee S, Liu C et al (2014) Structure–redox–relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes. Inorg Chem 53:10748–10761CrossRefPubMedPubMedCentral
30.
go back to reference Gale EM, Caravan P (2018) Gadolinium-free contrast agents for magnetic resonance imaging of the central nervous system. ACS Chem Neurosci 9:395–397CrossRefPubMed Gale EM, Caravan P (2018) Gadolinium-free contrast agents for magnetic resonance imaging of the central nervous system. ACS Chem Neurosci 9:395–397CrossRefPubMed
32.
go back to reference Jiang Y, Zheng W, Long L et al (2007) Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: search for biomarkers of manganese exposure. NeuroToxicology 28:126–135CrossRefPubMed Jiang Y, Zheng W, Long L et al (2007) Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: search for biomarkers of manganese exposure. NeuroToxicology 28:126–135CrossRefPubMed
33.
go back to reference Finney K-LNA, Harnden AC, Rogers NJ et al (2017) Simultaneous triple imaging with two PARASHIFT probes: encoding anatomical, pH and temperature information using magnetic resonance shift imaging. Chem Eur J 23:7976–7989CrossRefPubMed Finney K-LNA, Harnden AC, Rogers NJ et al (2017) Simultaneous triple imaging with two PARASHIFT probes: encoding anatomical, pH and temperature information using magnetic resonance shift imaging. Chem Eur J 23:7976–7989CrossRefPubMed
34.
go back to reference Bleaney B (1972) Nuclear magnetic resonance shifts of solution due to lanthanide ions. J Magn Reson 8:91–100 Bleaney B (1972) Nuclear magnetic resonance shifts of solution due to lanthanide ions. J Magn Reson 8:91–100
35.
go back to reference Suturina EA, Mason K, Geraldes CFGC et al (2017) Beyond Bleaney’s theory: experimental and theoretical analysis of periodic trends in lanthanide-induced chemical shift. Angew Chem Int Ed 56:12215–12218CrossRef Suturina EA, Mason K, Geraldes CFGC et al (2017) Beyond Bleaney’s theory: experimental and theoretical analysis of periodic trends in lanthanide-induced chemical shift. Angew Chem Int Ed 56:12215–12218CrossRef
36.
go back to reference Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87CrossRefPubMed Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87CrossRefPubMed
37.
go back to reference Thorarinsdottir AE, Du K, Collins JHP, Harris TD (2017) Ratiometric pH imaging with a CoII 2 MRI probe via CEST effects of opposing pH dependences. J Am Chem Soc 139:15836–15847CrossRefPubMed Thorarinsdottir AE, Du K, Collins JHP, Harris TD (2017) Ratiometric pH imaging with a CoII 2 MRI probe via CEST effects of opposing pH dependences. J Am Chem Soc 139:15836–15847CrossRefPubMed
38.
go back to reference Jeon I-R, Park JG, Haney CR, Harris TD (2014) Spin crossover iron (II) complexes as PARACEST MRI thermometers. Chem Sci 5:2461–2465CrossRef Jeon I-R, Park JG, Haney CR, Harris TD (2014) Spin crossover iron (II) complexes as PARACEST MRI thermometers. Chem Sci 5:2461–2465CrossRef
39.
go back to reference Du K, Harris TD (2016) A CuII 2 paramagnetic chemical exchange saturation transfer contrast agent enabled by magnetic exchange coupling. J Am Chem Soc 138:7804–7807CrossRefPubMed Du K, Harris TD (2016) A CuII 2 paramagnetic chemical exchange saturation transfer contrast agent enabled by magnetic exchange coupling. J Am Chem Soc 138:7804–7807CrossRefPubMed
40.
41.
go back to reference Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126CrossRefPubMed Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126CrossRefPubMed
42.
go back to reference Zhou J, Payen J-F, Wilson DA et al (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090CrossRefPubMed Zhou J, Payen J-F, Wilson DA et al (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090CrossRefPubMed
45.
go back to reference Stares E, Rho J, Ahrens ET et al (2018) Fluorine-based contrast agents. In: Pierre VC, Allen MJ (eds) Contrast agents for MRI. The Royal Society of Chemistry, Croyden, pp 479–498 Stares E, Rho J, Ahrens ET et al (2018) Fluorine-based contrast agents. In: Pierre VC, Allen MJ (eds) Contrast agents for MRI. The Royal Society of Chemistry, Croyden, pp 479–498
46.
go back to reference Akazawa K, Sugihara F, Nakamura T et al (2018) Highly sensitive detection of caspase-3/7 activity in living mice using enzyme-responsive 19F MRI Nanoprobes. Bioconjug Chem 29:1720–1728CrossRefPubMed Akazawa K, Sugihara F, Nakamura T et al (2018) Highly sensitive detection of caspase-3/7 activity in living mice using enzyme-responsive 19F MRI Nanoprobes. Bioconjug Chem 29:1720–1728CrossRefPubMed
47.
go back to reference Schmeider AH, Caruthers SD, Keupp J et al (2015) Recent advances in 19Fluorine magnetic resonance imaging with perfluorocarbon emulsions. Engineering 1:475–489CrossRef Schmeider AH, Caruthers SD, Keupp J et al (2015) Recent advances in 19Fluorine magnetic resonance imaging with perfluorocarbon emulsions. Engineering 1:475–489CrossRef
48.
go back to reference Basal LA, Bailey MD, Romero J et al (2017) Fluorinated Eu (II)-based multimodal contrast agent for temperature- and redox-responsive magnetic resonance imaging. Chem Sci 8:8345–8350CrossRefPubMedPubMedCentral Basal LA, Bailey MD, Romero J et al (2017) Fluorinated Eu (II)-based multimodal contrast agent for temperature- and redox-responsive magnetic resonance imaging. Chem Sci 8:8345–8350CrossRefPubMedPubMedCentral
49.
go back to reference Srivastava K, Ferrauto G, Young VG Jr et al (2017) Eight-coordinate, stable Fe (II) complex as a dual 19F and CEST contrast agent for ratiometric pH imaging. Inorg Chem 56:12206–12213CrossRefPubMed Srivastava K, Ferrauto G, Young VG Jr et al (2017) Eight-coordinate, stable Fe (II) complex as a dual 19F and CEST contrast agent for ratiometric pH imaging. Inorg Chem 56:12206–12213CrossRefPubMed
50.
go back to reference Akazawa K, Sugihara F, Minoshima M et al (2018) Sensing caspase-1 activity using activatable 19F MRI nanoprobes with improved turn-on kinetics. Chem Commun 54:11785–11788CrossRef Akazawa K, Sugihara F, Minoshima M et al (2018) Sensing caspase-1 activity using activatable 19F MRI nanoprobes with improved turn-on kinetics. Chem Commun 54:11785–11788CrossRef
51.
go back to reference Nikolaou P, Goodson BM, Chekmenev EY (2015) NMR hyperpolarization techniques for biomedicine. Chem Eur J 21:3156–3166CrossRefPubMed Nikolaou P, Goodson BM, Chekmenev EY (2015) NMR hyperpolarization techniques for biomedicine. Chem Eur J 21:3156–3166CrossRefPubMed
52.
go back to reference Ardenkjæ-Larsen JH, Fridlund B, Gram A et al (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 100:10158–10163CrossRef Ardenkjæ-Larsen JH, Fridlund B, Gram A et al (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 100:10158–10163CrossRef
53.
go back to reference Kettunen MI, Kennedy BWC, Hu D-E, Brindle KM (2013) Spin echo measurements of the extravasation and tumor cell uptake of hyperpolarized [1-13C] lactate and [1-13C]pyruvate. Magn Reson Med 70:1200–1209CrossRefPubMed Kettunen MI, Kennedy BWC, Hu D-E, Brindle KM (2013) Spin echo measurements of the extravasation and tumor cell uptake of hyperpolarized [1-13C] lactate and [1-13C]pyruvate. Magn Reson Med 70:1200–1209CrossRefPubMed
54.
go back to reference Bankson JA, Walker CM, Ramirez MS et al (2015) Kinetic modeling and constrained reconstruction of hyperpolarized [1-13C]-pyruvate offers improved metabolic imaging of tumors. Cancer Res 75:4708–4717CrossRefPubMedPubMedCentral Bankson JA, Walker CM, Ramirez MS et al (2015) Kinetic modeling and constrained reconstruction of hyperpolarized [1-13C]-pyruvate offers improved metabolic imaging of tumors. Cancer Res 75:4708–4717CrossRefPubMedPubMedCentral
55.
go back to reference Walker CM, Chen Y, Lai SY, Bankson JA (2016) A novel perfused Bloch–McConnell simulator for analyzing the accuracy of dynamic hyperpolarized MRS. Med Phys 43:854–864CrossRefPubMedPubMedCentral Walker CM, Chen Y, Lai SY, Bankson JA (2016) A novel perfused Bloch–McConnell simulator for analyzing the accuracy of dynamic hyperpolarized MRS. Med Phys 43:854–864CrossRefPubMedPubMedCentral
56.
go back to reference Rodrigues TB, Serrao EM, Kennedy BWC et al (2014) Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat Med 20:93–97CrossRefPubMed Rodrigues TB, Serrao EM, Kennedy BWC et al (2014) Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat Med 20:93–97CrossRefPubMed
57.
go back to reference Allouche-Arnon H, Lerche MH, Karlsson M et al (2011) Deuteration of a molecular probe for DNP hyperpolarization – a new approach and validation for choline chloride. Contrast Media Mol Imaging 6:499–506CrossRefPubMed Allouche-Arnon H, Lerche MH, Karlsson M et al (2011) Deuteration of a molecular probe for DNP hyperpolarization – a new approach and validation for choline chloride. Contrast Media Mol Imaging 6:499–506CrossRefPubMed
58.
go back to reference Ma D, Gulani V, Seiberlich N et al (2013) Magnetic resonance fingerprinting. Nature 485:187–192CrossRef Ma D, Gulani V, Seiberlich N et al (2013) Magnetic resonance fingerprinting. Nature 485:187–192CrossRef
59.
go back to reference Hamilton JI, Jiang Y, Ma D et al (2018) Investigating and reducing the effects of confounding factors for robust T1 and T2 mapping with cardiac MR fingerprinting. Magn Reson Imaging 53:40–51CrossRefPubMedPubMedCentral Hamilton JI, Jiang Y, Ma D et al (2018) Investigating and reducing the effects of confounding factors for robust T1 and T2 mapping with cardiac MR fingerprinting. Magn Reson Imaging 53:40–51CrossRefPubMedPubMedCentral
60.
go back to reference Mehta BB, Coppo S, McGivney DF et al (2018) Magnetic resonance fingerprinting: a technical review. Magn Reson Med 2018:1–22 Mehta BB, Coppo S, McGivney DF et al (2018) Magnetic resonance fingerprinting: a technical review. Magn Reson Med 2018:1–22
61.
go back to reference Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ (2009) Preclinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36:S56–S68CrossRefPubMed Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ (2009) Preclinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36:S56–S68CrossRefPubMed
62.
go back to reference Catana C, Drzezga A, Heiss W-D, Rosen BR (2012) PET/MRI for neurologic applications. J Nucl Med 53:1916–1925CrossRefPubMed Catana C, Drzezga A, Heiss W-D, Rosen BR (2012) PET/MRI for neurologic applications. J Nucl Med 53:1916–1925CrossRefPubMed
63.
go back to reference Wehrl HF, Martirosian P, Schick F, Reischl G, Pichler BJ (2014) Assessment of rodent brain activity using combined [15O]H2O-PET and BOLD-fMRI. NeuroImage 89:271–279CrossRefPubMed Wehrl HF, Martirosian P, Schick F, Reischl G, Pichler BJ (2014) Assessment of rodent brain activity using combined [15O]H2O-PET and BOLD-fMRI. NeuroImage 89:271–279CrossRefPubMed
64.
go back to reference Wehrl HF, Hossain M, Lankes K et al (2013) Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med 19:1184–1190CrossRefPubMed Wehrl HF, Hossain M, Lankes K et al (2013) Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med 19:1184–1190CrossRefPubMed
65.
go back to reference Hofmann M, Steinke F, Scheel V et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883CrossRefPubMed Hofmann M, Steinke F, Scheel V et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883CrossRefPubMed
66.
go back to reference Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217CrossRefPubMed Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217CrossRefPubMed
67.
go back to reference Knopp T, Conolly SM, Buzug TM (2017) Recent progress in magnetic particle imaging: from hardware to preclinical applications. Phys Med Biol 62:E4–E7CrossRefPubMed Knopp T, Conolly SM, Buzug TM (2017) Recent progress in magnetic particle imaging: from hardware to preclinical applications. Phys Med Biol 62:E4–E7CrossRefPubMed
69.
go back to reference Kim E, Zhang J, Hong K et al (2011) Vascular phenotyping of brain tumors using magnetic resonance microscopy (μMRI). J Cereb Blood Flow Metab 31:1623–1636CrossRefPubMedPubMedCentral Kim E, Zhang J, Hong K et al (2011) Vascular phenotyping of brain tumors using magnetic resonance microscopy (μMRI). J Cereb Blood Flow Metab 31:1623–1636CrossRefPubMedPubMedCentral
70.
go back to reference Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA (2015) A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb Cortex 25:4628–4637CrossRefPubMedPubMedCentral Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA (2015) A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb Cortex 25:4628–4637CrossRefPubMedPubMedCentral
71.
go back to reference Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST (2011) Conserved and variable architecture of human white matter connectivity. NeuroImage 54:1262–1279CrossRefPubMed Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST (2011) Conserved and variable architecture of human white matter connectivity. NeuroImage 54:1262–1279CrossRefPubMed
72.
go back to reference Snyder ALS, Corum CA, Moeller S, Powell NJ, Garwood M (2014) MRI by steering resonance through space. Magn Reson Med 72:49–58CrossRefPubMed Snyder ALS, Corum CA, Moeller S, Powell NJ, Garwood M (2014) MRI by steering resonance through space. Magn Reson Med 72:49–58CrossRefPubMed
Metadata
Title
Summary of Imaging in 2020: Visualizing the Future of Healthcare with MR Imaging
Authors
Brooke A. Corbin
Alyssa C. Pollard
Matthew J. Allen
Mark D. Pagel
Publication date
01-04-2019
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 2/2019
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-019-01315-8

Other articles of this Issue 2/2019

Molecular Imaging and Biology 2/2019 Go to the issue