Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2014

01-09-2014 | Topic Review

Advances in genetic and epigenetic analyses of gliomas: a neuropathological perspective

Authors: Nadejda M. Tsankova, Peter Canoll

Published in: Journal of Neuro-Oncology | Issue 3/2014

Login to get access

Abstract

Gliomas, the most common malignant primary brain tumors, are universally fatal once they progress from low-grade into high-grade neoplasms. In recent years, we have accumulated unprecedented data about the genetic and epigenetic abnormalities in gliomas; yet, our appreciation of how these deadly tumors arise is still rudimentary. One of the major deterrents in understanding gliomagenesis is the remarkably complex and heterogeneous molecular composition of gliomas, as well as their ability to change phenotypically as they progress and recur. In the past decade, several monumental studies have begun to define better glioma heterogeneity. Four distinct molecular subgroups have emerged: proneural, classical, mesenchymal, and neural; which have unique gene expression signatures and prognostic significance. Of these, gliomas of the proneural subtype, which encompass most grade II/III diffuse gliomas and secondary glioblastomas and often carry isocitrate dehydrogenase (IDH) mutations, have emerged as a distinct tumor subclass with a notably superior prognosis. Important molecular markers with prognostic relevance, such as mutant IDH1/2, have already been incorporated into clinical neuropathological practice. The recent molecular discoveries in gliomas have also emphasized the intimate link between epigenetics and genetics in gliomagenesis. Several of the novel genetic mutations described are responsible for distinct epigenetic remodeling in gliomas, the mechanisms of which are currently being elucidated. Importantly, these epigenetic and genomic alterations represent new and exciting drug targets for future therapeutic interventions in our continuous fight with this fatal malignancy.
Literature
1.
2.
go back to reference Doetsch F et al (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36(6):1021–1034PubMedCrossRef Doetsch F et al (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36(6):1021–1034PubMedCrossRef
3.
go back to reference Ivkovic S, Canoll P, Goldman JE (2008) Constitutive EGFR signaling in oligodendrocyte progenitors leads to diffuse hyperplasia in postnatal white matter. J Neurosci 28(4):914–922PubMedCrossRefPubMedCentral Ivkovic S, Canoll P, Goldman JE (2008) Constitutive EGFR signaling in oligodendrocyte progenitors leads to diffuse hyperplasia in postnatal white matter. J Neurosci 28(4):914–922PubMedCrossRefPubMedCentral
4.
go back to reference Weickert CS et al (2000) Localization of epidermal growth factor receptors and putative neuroblasts in human subependymal zone. J Comp Neurol 423(3):359–372PubMedCrossRef Weickert CS et al (2000) Localization of epidermal growth factor receptors and putative neuroblasts in human subependymal zone. J Comp Neurol 423(3):359–372PubMedCrossRef
5.
go back to reference Liu B, Neufeld AH (2007) Activation of epidermal growth factor receptors in astrocytes: from development to neural injury. J Neurosci Res 85(16):3523–3529PubMedCrossRef Liu B, Neufeld AH (2007) Activation of epidermal growth factor receptors in astrocytes: from development to neural injury. J Neurosci Res 85(16):3523–3529PubMedCrossRef
6.
go back to reference Hofer S, Lassman AB (2010) Molecular markers in gliomas: impact for the clinician. Target Oncol 5(3):201–210PubMedCrossRef Hofer S, Lassman AB (2010) Molecular markers in gliomas: impact for the clinician. Target Oncol 5(3):201–210PubMedCrossRef
7.
go back to reference Mellinghoff IK et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353(19):2012–2024PubMedCrossRef Mellinghoff IK et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353(19):2012–2024PubMedCrossRef
8.
go back to reference Kalman B et al (2013) Epidermal growth factor receptor as a therapeutic target in glioblastoma. NeuroMol Med 15(2):420–434CrossRef Kalman B et al (2013) Epidermal growth factor receptor as a therapeutic target in glioblastoma. NeuroMol Med 15(2):420–434CrossRef
11.
go back to reference Weller M et al (2013) Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol 14(9):e370–e379PubMedCrossRef Weller M et al (2013) Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol 14(9):e370–e379PubMedCrossRef
12.
go back to reference Hartmann C et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118(4):469–474PubMedCrossRef Hartmann C et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118(4):469–474PubMedCrossRef
13.
go back to reference Hartmann C et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120(6):707–718PubMedCrossRef Hartmann C et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120(6):707–718PubMedCrossRef
15.
16.
go back to reference Jiao Y et al (2012) Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3(7):709–722PubMedPubMedCentral Jiao Y et al (2012) Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3(7):709–722PubMedPubMedCentral
17.
go back to reference Jones PS et al (2013) Molecular genetics of low-grade gliomas: genomic alterations guiding diagnosis and therapeutic intervention. 11th annual Frye-Halloran brain tumor symposium. Neurosurg Focus 34(2):E9PubMedCrossRef Jones PS et al (2013) Molecular genetics of low-grade gliomas: genomic alterations guiding diagnosis and therapeutic intervention. 11th annual Frye-Halloran brain tumor symposium. Neurosurg Focus 34(2):E9PubMedCrossRef
18.
go back to reference Wiestler B et al (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126(3):443–451PubMedCrossRef Wiestler B et al (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126(3):443–451PubMedCrossRef
19.
go back to reference Wu G et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253PubMedCrossRefPubMedCentral Wu G et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253PubMedCrossRefPubMedCentral
20.
go back to reference Yuen BT, Knoepfler PS (2013) Histone H3.3 mutations: a variant path to cancer. Cancer Cell 24(5):567–574PubMedCrossRef Yuen BT, Knoepfler PS (2013) Histone H3.3 mutations: a variant path to cancer. Cancer Cell 24(5):567–574PubMedCrossRef
21.
go back to reference Schwartzentruber J et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231PubMedCrossRef Schwartzentruber J et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231PubMedCrossRef
22.
go back to reference Sturm D et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437PubMedCrossRef Sturm D et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437PubMedCrossRef
23.
go back to reference Khuong-Quang DA et al (2012) K27 M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3):439–447PubMedCrossRefPubMedCentral Khuong-Quang DA et al (2012) K27 M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3):439–447PubMedCrossRefPubMedCentral
24.
go back to reference Jones DT et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68(21):8673–8677PubMedCrossRefPubMedCentral Jones DT et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68(21):8673–8677PubMedCrossRefPubMedCentral
25.
go back to reference Pfister S et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Investig 118(5):1739–1749PubMedCrossRefPubMedCentral Pfister S et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Investig 118(5):1739–1749PubMedCrossRefPubMedCentral
26.
go back to reference Schindler G et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405PubMedCrossRef Schindler G et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405PubMedCrossRef
29.
30.
go back to reference Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068CrossRef Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068CrossRef
31.
go back to reference Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedCrossRefPubMedCentral Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedCrossRefPubMedCentral
32.
go back to reference Cooper LA et al (2010) The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PLoS ONE 5(9):e12548PubMedCrossRefPubMedCentral Cooper LA et al (2010) The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PLoS ONE 5(9):e12548PubMedCrossRefPubMedCentral
33.
34.
go back to reference Zong H, Verhaak RG, Canoll P (2012) The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev Mol Diagn 12(4):383–394PubMedCrossRefPubMedCentral Zong H, Verhaak RG, Canoll P (2012) The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev Mol Diagn 12(4):383–394PubMedCrossRefPubMedCentral
35.
36.
go back to reference Bhat KP et al (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24(3):331–346PubMedCrossRef Bhat KP et al (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24(3):331–346PubMedCrossRef
37.
go back to reference Piao Y et al (2013) Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition. Clin Cancer Res 19(16):4392–4403PubMedCrossRef Piao Y et al (2013) Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition. Clin Cancer Res 19(16):4392–4403PubMedCrossRef
38.
go back to reference Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173PubMedCrossRef Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173PubMedCrossRef
40.
go back to reference Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med 352(10):997–1003PubMedCrossRef Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med 352(10):997–1003PubMedCrossRef
41.
go back to reference Lalezari S et al (2013) Combined analysis of O6-methylguanine-DNA methyltransferase protein expression and promoter methylation provides optimized prognostication of glioblastoma outcome. Neuro Oncol 15(3):370–381PubMedCrossRefPubMedCentral Lalezari S et al (2013) Combined analysis of O6-methylguanine-DNA methyltransferase protein expression and promoter methylation provides optimized prognostication of glioblastoma outcome. Neuro Oncol 15(3):370–381PubMedCrossRefPubMedCentral
42.
go back to reference Shah N et al (2011) Comprehensive analysis of MGMT promoter methylation: correlation with MGMT expression and clinical response in GBM. PLoS ONE 6(1):e16146PubMedCrossRefPubMedCentral Shah N et al (2011) Comprehensive analysis of MGMT promoter methylation: correlation with MGMT expression and clinical response in GBM. PLoS ONE 6(1):e16146PubMedCrossRefPubMedCentral
43.
go back to reference Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. New Engl J Med 353(8):811–822PubMedCrossRef Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. New Engl J Med 353(8):811–822PubMedCrossRef
46.
go back to reference Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33PubMedCrossRef Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33PubMedCrossRef
48.
go back to reference Bernstein BE et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326PubMedCrossRef Bernstein BE et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326PubMedCrossRef
49.
go back to reference Rubinstein JC et al (2010) Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma. BMC Med Genom 3:4CrossRef Rubinstein JC et al (2010) Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma. BMC Med Genom 3:4CrossRef
50.
go back to reference Martinez R, Esteller M (2010) The DNA methylome of glioblastoma multiforme. Neurobiol Dis 39(1):40–46PubMedCrossRef Martinez R, Esteller M (2010) The DNA methylome of glioblastoma multiforme. Neurobiol Dis 39(1):40–46PubMedCrossRef
51.
52.
go back to reference Montano N et al (2011) Expression of EGFRvIII in glioblastoma: prognostic significance revisited. Neoplasia 13(12):1113–1121PubMedPubMedCentral Montano N et al (2011) Expression of EGFRvIII in glioblastoma: prognostic significance revisited. Neoplasia 13(12):1113–1121PubMedPubMedCentral
54.
go back to reference Kloosterhof NK et al (2011) Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 12(1):83–91PubMedCrossRef Kloosterhof NK et al (2011) Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 12(1):83–91PubMedCrossRef
Metadata
Title
Advances in genetic and epigenetic analyses of gliomas: a neuropathological perspective
Authors
Nadejda M. Tsankova
Peter Canoll
Publication date
01-09-2014
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2014
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-014-1499-x

Other articles of this Issue 3/2014

Journal of Neuro-Oncology 3/2014 Go to the issue