Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 2/2021

Open Access 01-04-2021 | Pharmacokinetics | Original Research

Context-sensitive decrement times for inhaled anesthetics in obese patients explored with Gas Man®

Authors: Jonas Weber, Johannes Schmidt, Steffen Wirth, Stefan Schumann, James H. Philip, Leopold H. J. Eberhart

Published in: Journal of Clinical Monitoring and Computing | Issue 2/2021

Login to get access

Abstract

Anesthesia care providers and anesthesia decision support tools use mathematical pharmacokinetic models to control delivery and especially removal of anesthetics from the patient’s body. However, these models are not able to reflect alterations in pharmacokinetics of volatile anesthetics caused by obesity. The primary aim of this study was to refine those models for obese patients. To investigate the effects of obesity on the elimination of desflurane, isoflurane and sevoflurane for various anesthesia durations, the Gas Man® computer simulation software was used. Four different models simulating patients with weights of 70 kg, 100 kg, 125 kg and 150 kg were constructed by increasing fat weight to the standard 70 kg model. For each modelled patient condition, the vaporizer was set to reach quickly and then maintain an alveolar concentration of 1.0 minimum alveolar concentration (MAC). Subsequently, the circuit was switched to an open (non-rebreathing) circuit model, the inspiratory anesthetic concentration was set to 0 and the time to the anesthetic decrements by 67% (awakening times), 90% (recovery times) and 95% (resolution times) in the vessel-rich tissue compartment including highly perfused tissue of the central nervous system were determined. Awakening times did not differ greatly between the simulation models. After volatile anesthesia with sevoflurane and isoflurane, awakening times were lower in the more obese simulation models. With increasing obesity, recovery and resolution times were higher. The additional adipose tissue in obese simulation models did not prolong awakening times and thus may act more like a sink for volatile anesthetics. The results of these simulations should be validated by comparing the elimination of volatile anesthetics in obese patients with data from our simulation models.
Literature
2.
3.
go back to reference Casati A, Putzu M. Anesthesia in the obese patient: pharmacokinetic considerations. J Clin Anesth. 2005;17:134–45.PubMedCrossRef Casati A, Putzu M. Anesthesia in the obese patient: pharmacokinetic considerations. J Clin Anesth. 2005;17:134–45.PubMedCrossRef
4.
go back to reference Ingrande J, Lemmens HJM. Dose adjustment of anaesthetics in the morbidly obese. Br J Anaesth. 2010;105(Suppl 1):i16–23.PubMedCrossRef Ingrande J, Lemmens HJM. Dose adjustment of anaesthetics in the morbidly obese. Br J Anaesth. 2010;105(Suppl 1):i16–23.PubMedCrossRef
5.
go back to reference Cheymol G. Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet. 2000;39:215–31.PubMedCrossRef Cheymol G. Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet. 2000;39:215–31.PubMedCrossRef
6.
go back to reference Torri G, Casati A, Albertin A, Comotti L, Bignami E, Scarioni M, Paganelli M. Randomized comparison of isoflurane and sevoflurane for laparoscopic gastric banding in morbidly obese patients. J Clin Anesth. 2001;13:565–70.PubMedCrossRef Torri G, Casati A, Albertin A, Comotti L, Bignami E, Scarioni M, Paganelli M. Randomized comparison of isoflurane and sevoflurane for laparoscopic gastric banding in morbidly obese patients. J Clin Anesth. 2001;13:565–70.PubMedCrossRef
7.
go back to reference Yasuda N, Lockhart SH, Eger EI, Weiskopg RB, Johnson BH, et al. Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology. 1991;1991:489–98.CrossRef Yasuda N, Lockhart SH, Eger EI, Weiskopg RB, Johnson BH, et al. Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology. 1991;1991:489–98.CrossRef
8.
go back to reference Welborn LG, Hannallah RS, Norden JM, Ruttimann UE, Callan CM. Comparison of emergence and recovery characteristics of sevoflurane, desflurane, and halothane in pediatric ambulatory patients. Anesth Analg. 1996;83:917–20.PubMedCrossRef Welborn LG, Hannallah RS, Norden JM, Ruttimann UE, Callan CM. Comparison of emergence and recovery characteristics of sevoflurane, desflurane, and halothane in pediatric ambulatory patients. Anesth Analg. 1996;83:917–20.PubMedCrossRef
9.
go back to reference Yasuda N, Targ AG, Eger EI. Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg. 1989;69:370–3.PubMedCrossRef Yasuda N, Targ AG, Eger EI. Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg. 1989;69:370–3.PubMedCrossRef
10.
go back to reference Yasuda N, Tang AG, Eger EI, Johnson BH, Weiskopf RB. Pharmacokinetics of desflurane, sevoflurane, isoflurane, and halothane in pigs. Anesth Analg. 1990;71:340–8.CrossRef Yasuda N, Tang AG, Eger EI, Johnson BH, Weiskopf RB. Pharmacokinetics of desflurane, sevoflurane, isoflurane, and halothane in pigs. Anesth Analg. 1990;71:340–8.CrossRef
11.
go back to reference Casati A, Marchetti C, Spreafico E, Mamo D. Effects of obesity on wash-in and wash-out kinetics of sevoflurane. Eur J Anaesthesiol. 2004;21:243–5.PubMedCrossRef Casati A, Marchetti C, Spreafico E, Mamo D. Effects of obesity on wash-in and wash-out kinetics of sevoflurane. Eur J Anaesthesiol. 2004;21:243–5.PubMedCrossRef
12.
go back to reference Eger EI, Saidman LJ. Illustrations of inhaled anesthetic uptake, including intertissue diffusion to and from fat. Anesth Analg. 2005;100:1020–33.PubMedCrossRef Eger EI, Saidman LJ. Illustrations of inhaled anesthetic uptake, including intertissue diffusion to and from fat. Anesth Analg. 2005;100:1020–33.PubMedCrossRef
13.
go back to reference Juvin P, Vadam C, Malek L, Dupont H, Marmuse JP, Desmonts JM. Postoperative recovery after desflurane, propofol, or isoflurane anesthesia among morbidly obese patients: a prospective, randomized study. Anesth Analg. 2000;91:714–9.PubMedCrossRef Juvin P, Vadam C, Malek L, Dupont H, Marmuse JP, Desmonts JM. Postoperative recovery after desflurane, propofol, or isoflurane anesthesia among morbidly obese patients: a prospective, randomized study. Anesth Analg. 2000;91:714–9.PubMedCrossRef
14.
go back to reference La Colla L, Albertin A, La Colla G, Mangano A. Faster wash-out and recovery for desflurane vs sevoflurane in morbidly obese patients when no premedication is used. Br J Anaesth. 2007;99:353–8.PubMedCrossRef La Colla L, Albertin A, La Colla G, Mangano A. Faster wash-out and recovery for desflurane vs sevoflurane in morbidly obese patients when no premedication is used. Br J Anaesth. 2007;99:353–8.PubMedCrossRef
15.
go back to reference Lemmens HJM, Saidman LJ, Eger EI, Laster MJ. Obesity modestly affects inhaled anesthetic kinetics in humans. Anesth Analg. 2008;107:1864–70.PubMedCrossRef Lemmens HJM, Saidman LJ, Eger EI, Laster MJ. Obesity modestly affects inhaled anesthetic kinetics in humans. Anesth Analg. 2008;107:1864–70.PubMedCrossRef
16.
go back to reference Strum EM, Szenohradszki J, Kaufman WA, Anthone GJ, Manz IL, Lumb PD. Emergence and recovery characteristics of desflurane versus sevoflurane in morbidly obese adult surgical patients: a prospective, randomized study. Anesth Analg. 2004;99:1848–53. Strum EM, Szenohradszki J, Kaufman WA, Anthone GJ, Manz IL, Lumb PD. Emergence and recovery characteristics of desflurane versus sevoflurane in morbidly obese adult surgical patients: a prospective, randomized study. Anesth Analg. 2004;99:1848–53.
17.
go back to reference Lesser GT, Deutsch S. Measurement of adipose tissue blood flow and perfusion in man by uptake of 85Kr. J Appl Physiol. 1967;23:621–30.PubMedCrossRef Lesser GT, Deutsch S. Measurement of adipose tissue blood flow and perfusion in man by uptake of 85Kr. J Appl Physiol. 1967;23:621–30.PubMedCrossRef
18.
go back to reference Cirillo V, Zito Marinosci G, de Robertis E, Iacono C, Romano GM, Desantis O, et al. Navigator® and SmartPilot® View are helpful in guiding anesthesia and reducing anesthetic drug dosing. Miner Anestesiol. 2015;81:1163–9. Cirillo V, Zito Marinosci G, de Robertis E, Iacono C, Romano GM, Desantis O, et al. Navigator® and SmartPilot® View are helpful in guiding anesthesia and reducing anesthetic drug dosing. Miner Anestesiol. 2015;81:1163–9.
19.
go back to reference Connor CW. Optimizing target control of the vessel rich group with volatile anesthetics. J Clin Monit Comput. 2019;33:445–54.PubMedCrossRef Connor CW. Optimizing target control of the vessel rich group with volatile anesthetics. J Clin Monit Comput. 2019;33:445–54.PubMedCrossRef
20.
go back to reference Lortat-Jacob B, Billard V, Buschke W, Servin F. Assessing the clinical or pharmaco-economical benefit of target controlled desflurane delivery in surgical patients using the Zeus anaesthesia machine. Anaesthesia. 2009;64:1229–355.PubMedCrossRef Lortat-Jacob B, Billard V, Buschke W, Servin F. Assessing the clinical or pharmaco-economical benefit of target controlled desflurane delivery in surgical patients using the Zeus anaesthesia machine. Anaesthesia. 2009;64:1229–355.PubMedCrossRef
21.
go back to reference Carette R, de Wolf AM, Hendrickx JFA. Automated gas control with the Maquet FLOW-i. J Clin Monit Comput. 2016;30:341–6.PubMedCrossRef Carette R, de Wolf AM, Hendrickx JFA. Automated gas control with the Maquet FLOW-i. J Clin Monit Comput. 2016;30:341–6.PubMedCrossRef
22.
go back to reference Moran P, Barr D, Holmes C. Saving sevoflurane: automated gas control can reduce consumption of anesthetic vapor by one-third in pediatric anesthesia. Paediatr Anaesth. 2019;29:310–4.PubMedCrossRef Moran P, Barr D, Holmes C. Saving sevoflurane: automated gas control can reduce consumption of anesthetic vapor by one-third in pediatric anesthesia. Paediatr Anaesth. 2019;29:310–4.PubMedCrossRef
23.
go back to reference Singaravelu S, Barclay P. Automated control of end-tidal inhalation anaesthetic concentration using the GE Aisys Carestation™. Br J Anaesth. 2013;110:561–6.PubMedCrossRef Singaravelu S, Barclay P. Automated control of end-tidal inhalation anaesthetic concentration using the GE Aisys Carestation™. Br J Anaesth. 2013;110:561–6.PubMedCrossRef
24.
go back to reference Athiraman U, Ravishankar M, Jahagirdhar S. Performance of computer simulated inhalational anesthetic uptake model in comparison with real time isoflurane concentration. J Clin Monit Comput. 2016;30:791–6.PubMedCrossRef Athiraman U, Ravishankar M, Jahagirdhar S. Performance of computer simulated inhalational anesthetic uptake model in comparison with real time isoflurane concentration. J Clin Monit Comput. 2016;30:791–6.PubMedCrossRef
25.
go back to reference De Wolf AM, van Zundert TC, de Cooman S, Hendrickx JF. Theoretical effect of hyperventilation on speed of recovery and risk of rehypnotization following recovery—a GasMan® simulation. BMC Anesthesiol. 2012;12:22.PubMedPubMedCentralCrossRef De Wolf AM, van Zundert TC, de Cooman S, Hendrickx JF. Theoretical effect of hyperventilation on speed of recovery and risk of rehypnotization following recovery—a GasMan® simulation. BMC Anesthesiol. 2012;12:22.PubMedPubMedCentralCrossRef
26.
go back to reference Eger EI, Shafer SL. Tutorial: context-sensitive decrement times for inhaled anesthetics. Anesth Analg. 2005;101:688–96. Eger EI, Shafer SL. Tutorial: context-sensitive decrement times for inhaled anesthetics. Anesth Analg. 2005;101:688–96.
27.
go back to reference Leeson S, Roberson RS, Philip JH. Hypoventilation after inhaled anesthesia results in reanesthetization. Anesth Analg. 2014;119:829–35.PubMedCrossRef Leeson S, Roberson RS, Philip JH. Hypoventilation after inhaled anesthesia results in reanesthetization. Anesth Analg. 2014;119:829–35.PubMedCrossRef
28.
go back to reference Philip JH. Using screen-based simulation of inhaled anaesthetic delivery to improve patient care. Br J Anaesth. 2015;115(Suppl 2):89–94.PubMedCrossRef Philip JH. Using screen-based simulation of inhaled anaesthetic delivery to improve patient care. Br J Anaesth. 2015;115(Suppl 2):89–94.PubMedCrossRef
29.
go back to reference Bouillon T, Shafer SL. Hot air or full steam ahead? An empirical pharmacokinetic model of potent inhalational agents. Br J Anaesth. 2000;84:429–31.PubMedCrossRef Bouillon T, Shafer SL. Hot air or full steam ahead? An empirical pharmacokinetic model of potent inhalational agents. Br J Anaesth. 2000;84:429–31.PubMedCrossRef
30.
go back to reference Philip JH. Gas Man–an example of goal oriented computer-assisted teaching which results in learning. Int J Clin Monit Comput. 1986;3:165–73.PubMedCrossRef Philip JH. Gas Man–an example of goal oriented computer-assisted teaching which results in learning. Int J Clin Monit Comput. 1986;3:165–73.PubMedCrossRef
31.
go back to reference Kety SS. The physiological and physical factors governing the uptake of anesthetic gases by the body. Anesthesiology. 1950;11:517–26.PubMedCrossRef Kety SS. The physiological and physical factors governing the uptake of anesthetic gases by the body. Anesthesiology. 1950;11:517–26.PubMedCrossRef
32.
go back to reference Eger EI, Gong D, Koblin DD, Bowland T, Ionescu P, Laster MJ, Weiskopf RB. The effect of anesthetic duration on kinetic and recovery characteristics of desflurane versus sevoflurane, and on the kinetic characteristics of compound A, in volunteers. Anesth Analg. 1998;86:414–21.PubMed Eger EI, Gong D, Koblin DD, Bowland T, Ionescu P, Laster MJ, Weiskopf RB. The effect of anesthetic duration on kinetic and recovery characteristics of desflurane versus sevoflurane, and on the kinetic characteristics of compound A, in volunteers. Anesth Analg. 1998;86:414–21.PubMed
33.
go back to reference Van Zundert T, Hendrickx J, Brebels A, de Cooman S, Gatt S, De Wolf AM. Effect of the mode of administration of inhaled anaesthetics on the interpretation of the F(A)/F(I) curve–a GasMan simulation. Anaesth Intensive Care. 2010;38:76–81.PubMedCrossRef Van Zundert T, Hendrickx J, Brebels A, de Cooman S, Gatt S, De Wolf AM. Effect of the mode of administration of inhaled anaesthetics on the interpretation of the F(A)/F(I) curve–a GasMan simulation. Anaesth Intensive Care. 2010;38:76–81.PubMedCrossRef
34.
go back to reference Kuo AS, Vijjeswarapu MA, Philip JH. Incomplete spontaneous recovery from airway obstruction during inhaled anesthesia induction: a computational simulation. Anesth Analog. 2016;122:698–705.PubMedCrossRef Kuo AS, Vijjeswarapu MA, Philip JH. Incomplete spontaneous recovery from airway obstruction during inhaled anesthesia induction: a computational simulation. Anesth Analog. 2016;122:698–705.PubMedCrossRef
36.
go back to reference Philip JH. GAS MAN® Workbook. 2nd ed. Chestnut Hill. Med Man Simulations, Inc., a nonprofit charitable organization, 2012. Print and electronic. Philip JH. GAS MAN® Workbook. 2nd ed. Chestnut Hill. Med Man Simulations, Inc., a nonprofit charitable organization, 2012. Print and electronic.
37.
go back to reference Hedenstierna G, Santesson J. Breathing mechanics, dead space and gas exchange in the extremely obese, breathing spontaneously and during anaesthesia with intermittent positive pressure ventilation. Acta Anaesthesiol Scand. 1976;20:248–54.PubMedCrossRef Hedenstierna G, Santesson J. Breathing mechanics, dead space and gas exchange in the extremely obese, breathing spontaneously and during anaesthesia with intermittent positive pressure ventilation. Acta Anaesthesiol Scand. 1976;20:248–54.PubMedCrossRef
38.
go back to reference Bailey JM. Context-sensitive half-times and other decrement times of inhaled anesthetics. Anesth Analg. 1997;85:681–6.PubMedCrossRef Bailey JM. Context-sensitive half-times and other decrement times of inhaled anesthetics. Anesth Analg. 1997;85:681–6.PubMedCrossRef
39.
go back to reference Arain SR, Barth CD, Shankar H, Ebert TJ. Choice of volatile anesthetic for the morbidly obese patient: sevoflurane or desflurane. J Clin Anesth. 2005;17:413–9.PubMedCrossRef Arain SR, Barth CD, Shankar H, Ebert TJ. Choice of volatile anesthetic for the morbidly obese patient: sevoflurane or desflurane. J Clin Anesth. 2005;17:413–9.PubMedCrossRef
40.
go back to reference Singh PM, Borle A, McGavin J, Trikha A, Sinha A. Comparison of the recovery profile between desflurane and sevoflurane in patients undergoing bariatric surgery-a meta-analysis of randomized controlled trials. Obes Surg. 2017;27:3031–9.PubMedCrossRef Singh PM, Borle A, McGavin J, Trikha A, Sinha A. Comparison of the recovery profile between desflurane and sevoflurane in patients undergoing bariatric surgery-a meta-analysis of randomized controlled trials. Obes Surg. 2017;27:3031–9.PubMedCrossRef
41.
go back to reference Macario A, Dexter F, Lubarsky D. Meta-analysis of trials comparing postoperative recovery after anesthesia with sevoflurane or desflurane. Am J Health Syst Pharm. 2005;62:63–8.PubMedCrossRef Macario A, Dexter F, Lubarsky D. Meta-analysis of trials comparing postoperative recovery after anesthesia with sevoflurane or desflurane. Am J Health Syst Pharm. 2005;62:63–8.PubMedCrossRef
42.
go back to reference de Baerdemaeker LEC, Jacobs S, Den Blauwen NMM, Pattyn P, Herregods LLG, Mortier EP, Struys MMRF. Postoperative results after desflurane or sevoflurane combined with remifentanil in morbidly obese patients. Obes Surg. 2006;16:728–33.PubMedCrossRef de Baerdemaeker LEC, Jacobs S, Den Blauwen NMM, Pattyn P, Herregods LLG, Mortier EP, Struys MMRF. Postoperative results after desflurane or sevoflurane combined with remifentanil in morbidly obese patients. Obes Surg. 2006;16:728–33.PubMedCrossRef
43.
go back to reference Aldrete JA, Kroulik D. A postanesthetic recovery score. Anesth Analg. 1970;49:924–34. Aldrete JA, Kroulik D. A postanesthetic recovery score. Anesth Analg. 1970;49:924–34.
44.
go back to reference Cook TL, Smith M, Starkweather JA, Winter PM, Eger EI. Behavioral effects of trace and subanesthetic halothane and nitrous oxide in man. Anesthesiology. 1978;49:419–24.PubMedCrossRef Cook TL, Smith M, Starkweather JA, Winter PM, Eger EI. Behavioral effects of trace and subanesthetic halothane and nitrous oxide in man. Anesthesiology. 1978;49:419–24.PubMedCrossRef
45.
go back to reference Cook TL, Smith M, Winter PM, Starkweather JA, Eger EI. Effect of subanesthetic concentration of enflurane and halothane on human behavior. Anesth Analg. 1978;57:434–40. Cook TL, Smith M, Winter PM, Starkweather JA, Eger EI. Effect of subanesthetic concentration of enflurane and halothane on human behavior. Anesth Analg. 1978;57:434–40.
47.
go back to reference McEwan AI, Smith C, Dyar O, Goodman D, Smith LR, Glass PS. Isoflurane minimum alveolar concentration reduction by fentanyl. Anesthesiology. 1993;78:864–9.PubMedCrossRef McEwan AI, Smith C, Dyar O, Goodman D, Smith LR, Glass PS. Isoflurane minimum alveolar concentration reduction by fentanyl. Anesthesiology. 1993;78:864–9.PubMedCrossRef
49.
go back to reference Ohlsson A, Lindgren JE, Andersson S, Agurell S, Gillespie H, Hollister LE. Single-dose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration. Biomed Environ Mass Spectrom. 1986;13:77–83.PubMedCrossRef Ohlsson A, Lindgren JE, Andersson S, Agurell S, Gillespie H, Hollister LE. Single-dose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration. Biomed Environ Mass Spectrom. 1986;13:77–83.PubMedCrossRef
50.
go back to reference Torri G, Casati A, Comotti L, Bignami E, Santorsola R, Scarioni M. Wash-in and wash-out curves of sevoflurane and isoflurane in morbidly obese patients. Minerva Anestesiol. 2002;68:523–7.PubMed Torri G, Casati A, Comotti L, Bignami E, Santorsola R, Scarioni M. Wash-in and wash-out curves of sevoflurane and isoflurane in morbidly obese patients. Minerva Anestesiol. 2002;68:523–7.PubMed
51.
go back to reference Fidanza F, Keys A, Anderson JT. Density of body fat in man and other mammals. J Appl Physiol. 1953;6:252–6.PubMedCrossRef Fidanza F, Keys A, Anderson JT. Density of body fat in man and other mammals. J Appl Physiol. 1953;6:252–6.PubMedCrossRef
52.
go back to reference Gallagher D, DeLegge M. Body composition (sarcopenia) in obese patients: implications for care in the intensive care unit. JPEN J Parenter Enteral Nutr. 2011;35:21S–S2828.PubMedPubMedCentralCrossRef Gallagher D, DeLegge M. Body composition (sarcopenia) in obese patients: implications for care in the intensive care unit. JPEN J Parenter Enteral Nutr. 2011;35:21S–S2828.PubMedPubMedCentralCrossRef
53.
go back to reference Eichenberger A-S, Proietti S, Wicky S, Frascarolo P, Suter M, Spahn DR, Magnusson L (2002) Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem. Anesth Analog. 95:1788–92, table of contents. Eichenberger A-S, Proietti S, Wicky S, Frascarolo P, Suter M, Spahn DR, Magnusson L (2002) Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem. Anesth Analog. 95:1788–92, table of contents.
54.
go back to reference Esper T, Wehner M, Meinecke C-D, Rueffert H. Blood/Gas partition coefficients for isoflurane, sevoflurane, and desflurane in a clinically relevant patient population. Anesth Analg. 2015;120:45–50.PubMedCrossRef Esper T, Wehner M, Meinecke C-D, Rueffert H. Blood/Gas partition coefficients for isoflurane, sevoflurane, and desflurane in a clinically relevant patient population. Anesth Analg. 2015;120:45–50.PubMedCrossRef
Metadata
Title
Context-sensitive decrement times for inhaled anesthetics in obese patients explored with Gas Man®
Authors
Jonas Weber
Johannes Schmidt
Steffen Wirth
Stefan Schumann
James H. Philip
Leopold H. J. Eberhart
Publication date
01-04-2021
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 2/2021
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-020-00477-z

Other articles of this Issue 2/2021

Journal of Clinical Monitoring and Computing 2/2021 Go to the issue