Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 3/2019

01-06-2019 | Original Research

Optimizing target control of the vessel rich group with volatile anesthetics

Author: Christopher W. Connor

Published in: Journal of Clinical Monitoring and Computing | Issue 3/2019

Login to get access

Abstract

The ability to monitor the inspired and expired concentrations of volatile anesthetic gases in real time makes these drugs implicitly targetable. However, the end-tidal concentration only represents the concentration within the brain and the vessel rich group (VRG) at steady state, and very poorly approximates the VRG concentration during common dynamic situations such as initial uptake and emergence. How should the vaporization of anesthetic gases be controlled in order to optimally target VRG concentration in clinical practice? Using a generally accepted pharmacokinetic model of uptake and redistribution, a transfer function from the vaporizer setting to the VRG is established and transformed to the time domain. Targeted actuation of the vaporizer in a time-optimal manner is produced by a variable structure, sliding mode controller. Direct mathematical application of the controller produces rapid cycling at the limits of the vaporizer, further prolonged by low fresh gas flows. This phenomenon, known as “chattering”, is unsuitable for operating real equipment. Using a simple and clinically intuitive modification to the targeting algorithm, a variable low-pass boundary layer is applied to the actuation, smoothing discontinuities in the control law and practically eliminating chatter without prolonging the time taken to reach the VRG target concentration by any clinically significant degree. A model is derived for optimum VRG-targeted control of anesthetic vaporizers. An alternate and further application is described, in which deliberate perturbation of the vaporization permits non-invasive estimation of parameters such as cardiac output that are otherwise difficult to measure intra-operatively.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gupta DK, Eger EI. Inhaled anesthesia: the original closed-loop drug administration paradigm. Clin Pharmacol Ther. 2008;84(1):15–8.CrossRefPubMed Gupta DK, Eger EI. Inhaled anesthesia: the original closed-loop drug administration paradigm. Clin Pharmacol Ther. 2008;84(1):15–8.CrossRefPubMed
2.
go back to reference Eger EI, Saidman LJ, Brandstater B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology. 1965;26(6):756–63.CrossRefPubMed Eger EI, Saidman LJ, Brandstater B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology. 1965;26(6):756–63.CrossRefPubMed
3.
go back to reference Sieber TJ, Frei CW, Derighetti M, Feigenwinter P, Leibundgut D, Zbinden AM. Model-based automatic feedback control versus human control of end-tidal isoflurane concentration using low-flow anaesthesia. Br J Anaesth. 2000;85(6):818–25.CrossRefPubMed Sieber TJ, Frei CW, Derighetti M, Feigenwinter P, Leibundgut D, Zbinden AM. Model-based automatic feedback control versus human control of end-tidal isoflurane concentration using low-flow anaesthesia. Br J Anaesth. 2000;85(6):818–25.CrossRefPubMed
4.
go back to reference Lortat-Jacob B, Billard V, Buschke W, Servin F. Assessing the clinical or pharmaco-economical benefit of target controlled desflurane delivery in surgical patients using the Zeus anaesthesia machine. Anaesthesia. 2009;64(11):1229–35.CrossRefPubMed Lortat-Jacob B, Billard V, Buschke W, Servin F. Assessing the clinical or pharmaco-economical benefit of target controlled desflurane delivery in surgical patients using the Zeus anaesthesia machine. Anaesthesia. 2009;64(11):1229–35.CrossRefPubMed
5.
go back to reference Shafer SL, Siegel LC, Cooke JE, Scott JC. Testing computer-controlled infusion pumps by simulation. Anesthesiology. 1988;68(2):261–6.CrossRefPubMed Shafer SL, Siegel LC, Cooke JE, Scott JC. Testing computer-controlled infusion pumps by simulation. Anesthesiology. 1988;68(2):261–6.CrossRefPubMed
6.
go back to reference Bailey JM, Shafer SL. A simple analytical solution to the three-compartment pharmacokinetic model suitable for computer-controlled infusion pumps. IEEE Trans Biomed Eng. 1991;38(6):522–5.CrossRefPubMed Bailey JM, Shafer SL. A simple analytical solution to the three-compartment pharmacokinetic model suitable for computer-controlled infusion pumps. IEEE Trans Biomed Eng. 1991;38(6):522–5.CrossRefPubMed
7.
go back to reference Shafer SL, Gregg KM. Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm. 1992;20(2):147–69.CrossRefPubMed Shafer SL, Gregg KM. Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm. 1992;20(2):147–69.CrossRefPubMed
8.
go back to reference Zwart A, Seagrave RC, Van Dieren A. Ventilation-perfusion ratio obtained by a noninvasive frequency response technique. J Appl Physiol. 1976;41(3):419–24.CrossRefPubMed Zwart A, Seagrave RC, Van Dieren A. Ventilation-perfusion ratio obtained by a noninvasive frequency response technique. J Appl Physiol. 1976;41(3):419–24.CrossRefPubMed
9.
go back to reference Ascher UM, Petzold LR. Computer methods for ordinary differential equations and differential-algebraic equations. Philadelphia: Society for Industrial and Applied Mathematics; 1998.CrossRef Ascher UM, Petzold LR. Computer methods for ordinary differential equations and differential-algebraic equations. Philadelphia: Society for Industrial and Applied Mathematics; 1998.CrossRef
10.
go back to reference Yasuda N, Targ AG, Eger EI. Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg. 1989;69(3):370–3.CrossRefPubMed Yasuda N, Targ AG, Eger EI. Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg. 1989;69(3):370–3.CrossRefPubMed
11.
go back to reference Heffernan PB, Gibbs JM, McKinnon AE. Teaching the uptake and distribution of halothane. A computer simulation program. Anaesthesia. 1982;37(1):9–17.CrossRefPubMed Heffernan PB, Gibbs JM, McKinnon AE. Teaching the uptake and distribution of halothane. A computer simulation program. Anaesthesia. 1982;37(1):9–17.CrossRefPubMed
12.
go back to reference Garfield JM, Paskin S, Philip JH. An evaluation of the effectiveness of a computer simulation of anaesthetic uptake and distribution as a teaching tool. Med Educ. 1989;23(5):457–62.CrossRefPubMed Garfield JM, Paskin S, Philip JH. An evaluation of the effectiveness of a computer simulation of anaesthetic uptake and distribution as a teaching tool. Med Educ. 1989;23(5):457–62.CrossRefPubMed
13.
go back to reference Kennedy RR, French RA, Gilles S. The effect of a model-based predictive display on the control of end-tidal sevoflurane concentrations during low-flow anesthesia. Anesth Analg. 2004;99(4):1159–63.CrossRefPubMed Kennedy RR, French RA, Gilles S. The effect of a model-based predictive display on the control of end-tidal sevoflurane concentrations during low-flow anesthesia. Anesth Analg. 2004;99(4):1159–63.CrossRefPubMed
14.
go back to reference Kuo AS, Vijjeswarapu MA, Philip JH. Incomplete spontaneous recovery from airway obstruction during inhaled anesthesia induction: a computational simulation. Anesth Analg. 2016;122(3):698–705.CrossRefPubMed Kuo AS, Vijjeswarapu MA, Philip JH. Incomplete spontaneous recovery from airway obstruction during inhaled anesthesia induction: a computational simulation. Anesth Analg. 2016;122(3):698–705.CrossRefPubMed
15.
go back to reference Stroud KA. Laplace transforms: programmes and problems. New York: Wiley; 1973. ISBN 0470834153. Stroud KA. Laplace transforms: programmes and problems. New York: Wiley; 1973. ISBN 0470834153.
16.
go back to reference Jenkins M, Traub JF. A three-stage algorithm for real polynomials using quadratic iteration. SIAM J Num Anal. 1970;7(4):545–66.CrossRef Jenkins M, Traub JF. A three-stage algorithm for real polynomials using quadratic iteration. SIAM J Num Anal. 1970;7(4):545–66.CrossRef
17.
go back to reference Garcia CE, Prett DM, Morari M. Model predictive control: theory and practice—a survey. Automatica. 1989;25(3):335–48.CrossRef Garcia CE, Prett DM, Morari M. Model predictive control: theory and practice—a survey. Automatica. 1989;25(3):335–48.CrossRef
18.
go back to reference DeCarlo RAZ, Drakunov SH, S.V. Variable Structure, Sliding-Mode Controller Design. In: Levine WS, The Control Handbook. New York, NY: IEEE Press; 1996. DeCarlo RAZ, Drakunov SH, S.V. Variable Structure, Sliding-Mode Controller Design. In: Levine WS, The Control Handbook. New York, NY: IEEE Press; 1996.
19.
go back to reference Sonneborn L, Van Vleck F. The bang-bang principle for linear control systems. J Soc Ind Appl Math A. 1964;2(2):151–9.CrossRef Sonneborn L, Van Vleck F. The bang-bang principle for linear control systems. J Soc Ind Appl Math A. 1964;2(2):151–9.CrossRef
20.
go back to reference Hung JY, Gao W, Hung JC. Variable structure control: a survey. IEEE Trans Industr Electron. 1993;40(1):2–22.CrossRef Hung JY, Gao W, Hung JC. Variable structure control: a survey. IEEE Trans Industr Electron. 1993;40(1):2–22.CrossRef
21.
go back to reference Tseng ML, Chen MS. Chattering reduction of sliding mode control by low-pass filtering the control signal. Asian Journal of Control. 2010;12(3):392–8.CrossRef Tseng ML, Chen MS. Chattering reduction of sliding mode control by low-pass filtering the control signal. Asian Journal of Control. 2010;12(3):392–8.CrossRef
22.
go back to reference Draper NR, Smith H. Applied regression analysis. Wiley series in probability and mathematical statistics. 2d ed. New York: Wiley; 1981. Draper NR, Smith H. Applied regression analysis. Wiley series in probability and mathematical statistics. 2d ed. New York: Wiley; 1981.
23.
go back to reference Chatterjee S, Hadi AS. (1986) Influential observations, high leverage points, and outliers in linear regression. Stat Sci. 1:379–93.CrossRef Chatterjee S, Hadi AS. (1986) Influential observations, high leverage points, and outliers in linear regression. Stat Sci. 1:379–93.CrossRef
24.
go back to reference Struys MM, Kalmar AF, De Baerdemaeker LE, Mortier EP, Rolly G, Manigel J, Buschke W. Time course of inhaled anaesthetic drug delivery using a new multifunctional closed-circuit anaesthesia ventilator. In vitro comparison with a classical anaesthesia machine. Br J Anaesth. 2005;94(3):306–17.CrossRefPubMed Struys MM, Kalmar AF, De Baerdemaeker LE, Mortier EP, Rolly G, Manigel J, Buschke W. Time course of inhaled anaesthetic drug delivery using a new multifunctional closed-circuit anaesthesia ventilator. In vitro comparison with a classical anaesthesia machine. Br J Anaesth. 2005;94(3):306–17.CrossRefPubMed
25.
go back to reference Bottom DK. (2013) Medical vaporizer and method of control of a medical vaporizer. US Patent and Trademark Office, US8752544. Bottom DK. (2013) Medical vaporizer and method of control of a medical vaporizer. US Patent and Trademark Office, US8752544.
26.
go back to reference Van Poucke GE, Bravo LJ, Shafer SL. Target controlled infusions: targeting the effect site while limiting peak plasma concentration. IEEE Trans Biomed Eng. 2004;51(11):1869–75.CrossRefPubMed Van Poucke GE, Bravo LJ, Shafer SL. Target controlled infusions: targeting the effect site while limiting peak plasma concentration. IEEE Trans Biomed Eng. 2004;51(11):1869–75.CrossRefPubMed
27.
go back to reference Kang C-G. Origin of Stability Analysis: “On Governors” by JC Maxwell. IEEE Control Systems. 2016;36(5):77–88.CrossRef Kang C-G. Origin of Stability Analysis: “On Governors” by JC Maxwell. IEEE Control Systems. 2016;36(5):77–88.CrossRef
29.
go back to reference Sangkum L, Liu GL, Yu L, Yan H, Kaye AD, Liu H. Minimally invasive or noninvasive cardiac output measurement: an update. J Anesth. 2016;30(3):461–80.CrossRefPubMed Sangkum L, Liu GL, Yu L, Yan H, Kaye AD, Liu H. Minimally invasive or noninvasive cardiac output measurement: an update. J Anesth. 2016;30(3):461–80.CrossRefPubMed
30.
go back to reference Thiele RH, Bartels K, Gan TJ. Cardiac output monitoring: a contemporary assessment and review. Crit Care Med. 2015;43(1):177–85.CrossRefPubMed Thiele RH, Bartels K, Gan TJ. Cardiac output monitoring: a contemporary assessment and review. Crit Care Med. 2015;43(1):177–85.CrossRefPubMed
31.
go back to reference Drummond KE, Murphy E. Minimally invasive cardiac output monitors. Cont Educ Anaesth Crit Care Pain. 2011;12(1):5–10.CrossRef Drummond KE, Murphy E. Minimally invasive cardiac output monitors. Cont Educ Anaesth Crit Care Pain. 2011;12(1):5–10.CrossRef
32.
go back to reference Funk DJ, Moretti EW, Gan TJ. Minimally invasive cardiac output monitoring in the perioperative setting. Anesth Analg. 2009;108(3):887–97.CrossRefPubMed Funk DJ, Moretti EW, Gan TJ. Minimally invasive cardiac output monitoring in the perioperative setting. Anesth Analg. 2009;108(3):887–97.CrossRefPubMed
33.
go back to reference Klein M, Minkovich L, Machina M, Selzner M, Spetzler VN, Knaak JM, Roy D, Duffin J, Fisher JA. Non-invasive measurement of cardiac output using an iterative, respiration-based method. Br J Anaesth. 2015;114(3):406–13.CrossRefPubMed Klein M, Minkovich L, Machina M, Selzner M, Spetzler VN, Knaak JM, Roy D, Duffin J, Fisher JA. Non-invasive measurement of cardiac output using an iterative, respiration-based method. Br J Anaesth. 2015;114(3):406–13.CrossRefPubMed
34.
go back to reference Agostoni P, Cattadori G. Noninvasive cardiac output measurement: a new tool in heart failure. Cardiology. 2009;114(4):244–6.CrossRefPubMed Agostoni P, Cattadori G. Noninvasive cardiac output measurement: a new tool in heart failure. Cardiology. 2009;114(4):244–6.CrossRefPubMed
35.
go back to reference Wiegand G, Kerst G, Baden W, Hofbeck M. Noninvasive cardiac output determination for children by the inert gas-rebreathing method. Pediatr Cardiol. 2010;31(8):1214–8.CrossRefPubMed Wiegand G, Kerst G, Baden W, Hofbeck M. Noninvasive cardiac output determination for children by the inert gas-rebreathing method. Pediatr Cardiol. 2010;31(8):1214–8.CrossRefPubMed
36.
go back to reference Bogaard HJ, Wagner PD. Measurement of cardiac output by open-circuit acetylene uptake: a computer model to quantify error caused by ventilation-perfusion inequality. Physiol Meas. 2006;27(10):1023–32.CrossRefPubMed Bogaard HJ, Wagner PD. Measurement of cardiac output by open-circuit acetylene uptake: a computer model to quantify error caused by ventilation-perfusion inequality. Physiol Meas. 2006;27(10):1023–32.CrossRefPubMed
37.
go back to reference Kalman RE. A new approach to linear filtering and prediction problems. J Basic Eng. 1960;82(1):35–45.CrossRef Kalman RE. A new approach to linear filtering and prediction problems. J Basic Eng. 1960;82(1):35–45.CrossRef
38.
go back to reference Akman G, Kaufman H, Roy R. Continuous pulmonary capillary blood flow estimation from measurements of respiratory anesthetic gas concentration. IEEE Trans Bio-Med Eng. 1985;32(12):1017–31.CrossRef Akman G, Kaufman H, Roy R. Continuous pulmonary capillary blood flow estimation from measurements of respiratory anesthetic gas concentration. IEEE Trans Bio-Med Eng. 1985;32(12):1017–31.CrossRef
39.
go back to reference Hendrickx JF, De Cooman S, Deloof T, Vandeput D, Coddens J, De Wolf AM. The ADU vaporizing unit: a new vaporizer. Anesth Analg. 2001;93(2):391–5.PubMed Hendrickx JF, De Cooman S, Deloof T, Vandeput D, Coddens J, De Wolf AM. The ADU vaporizing unit: a new vaporizer. Anesth Analg. 2001;93(2):391–5.PubMed
40.
go back to reference Young J, Kapoor V. Principles of anaesthetic vaporizers. Anaesth Intens Care Med. 2013;14(3):99–102.CrossRef Young J, Kapoor V. Principles of anaesthetic vaporizers. Anaesth Intens Care Med. 2013;14(3):99–102.CrossRef
Metadata
Title
Optimizing target control of the vessel rich group with volatile anesthetics
Author
Christopher W. Connor
Publication date
01-06-2019
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 3/2019
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-018-0169-5

Other articles of this Issue 3/2019

Journal of Clinical Monitoring and Computing 3/2019 Go to the issue