Skip to main content
Top
Published in: Journal of Clinical Immunology 7/2021

01-10-2021 | Interferon | CME Review

Human Disease Phenotypes Associated with Loss and Gain of Function Mutations in STAT2: Viral Susceptibility and Type I Interferonopathy

Authors: Christopher James Arthur Duncan, Sophie Hambleton

Published in: Journal of Clinical Immunology | Issue 7/2021

Login to get access

Abstract

STAT2 is distinguished from other STAT family members by its exclusive involvement in type I and III interferon (IFN-I/III) signaling pathways, and its unique behavior as both positive and negative regulator of IFN-I signaling. The clinical relevance of these opposing STAT2 functions is exemplified by monogenic diseases of STAT2. Autosomal recessive STAT2 deficiency results in heightened susceptibility to severe and/or recurrent viral disease, whereas homozygous missense substitution of the STAT2-R148 residue is associated with severe type I interferonopathy due to loss of STAT2 negative regulation. Here we review the clinical presentation, pathogenesis, and management of these disorders of STAT2.
Literature
1.
go back to reference Uggenti C, et al. Self-awareness: nucleic acid-driven inflammation and the type I interferonopathies. Annu Rev Immunol. 2019;37:247–67.PubMedCrossRef Uggenti C, et al. Self-awareness: nucleic acid-driven inflammation and the type I interferonopathies. Annu Rev Immunol. 2019;37:247–67.PubMedCrossRef
2.
go back to reference Moens L, Meyts I. Recent human genetic errors of innate immunity leading to increased susceptibility to infection. Curr Opin Immunol. 2020;62:79–90.PubMedCrossRef Moens L, Meyts I. Recent human genetic errors of innate immunity leading to increased susceptibility to infection. Curr Opin Immunol. 2020;62:79–90.PubMedCrossRef
3.
go back to reference Duncan CJA, et al. Genetic lesions of type I interferon signalling in human antiviral immunity. Trends Genet. 2021;37(1):46–58.PubMedCrossRef Duncan CJA, et al. Genetic lesions of type I interferon signalling in human antiviral immunity. Trends Genet. 2021;37(1):46–58.PubMedCrossRef
4.
go back to reference Zhang Q et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570 Zhang Q et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570
5.
go back to reference Reich N, et al. Interferon-induced transcription of a gene encoding a 15-kDa protein depends on an upstream enhancer element. Proc Natl Acad Sci U S A. 1987;84(18):6394–8.PubMedPubMedCentralCrossRef Reich N, et al. Interferon-induced transcription of a gene encoding a 15-kDa protein depends on an upstream enhancer element. Proc Natl Acad Sci U S A. 1987;84(18):6394–8.PubMedPubMedCentralCrossRef
6.
go back to reference Levy DE, et al. Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev. 1988;2(4):383–93.PubMedCrossRef Levy DE, et al. Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev. 1988;2(4):383–93.PubMedCrossRef
7.
go back to reference Fu XY, et al. The proteins of ISGF-3, the interferon alpha-induced transcriptional activator, define a gene family involved in signal transduction. Proc Natl Acad Sci U S A. 1992;89(16):7840–3.PubMedPubMedCentralCrossRef Fu XY, et al. The proteins of ISGF-3, the interferon alpha-induced transcriptional activator, define a gene family involved in signal transduction. Proc Natl Acad Sci U S A. 1992;89(16):7840–3.PubMedPubMedCentralCrossRef
10.
go back to reference Meraz MA, et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell. 1996;84(3):431–42.PubMedCrossRef Meraz MA, et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell. 1996;84(3):431–42.PubMedCrossRef
11.
go back to reference Muller U, et al. Functional role of type I and type II interferons in antiviral defense. Science. 1994;264(5167):1918–21.PubMedCrossRef Muller U, et al. Functional role of type I and type II interferons in antiviral defense. Science. 1994;264(5167):1918–21.PubMedCrossRef
12.
go back to reference Muller M, et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature. 1993;366(6451):129–35.PubMedCrossRef Muller M, et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature. 1993;366(6451):129–35.PubMedCrossRef
13.
go back to reference Velazquez L, et al. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell. 1992;70(2):313–22.PubMedCrossRef Velazquez L, et al. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell. 1992;70(2):313–22.PubMedCrossRef
15.
16.
17.
go back to reference Wang W, et al. Unphosphorylated ISGF3 drives constitutive expression of interferon-stimulated genes to protect against viral infections. Sci Signal. 2017;10(476):eaah4248.PubMedCrossRef Wang W, et al. Unphosphorylated ISGF3 drives constitutive expression of interferon-stimulated genes to protect against viral infections. Sci Signal. 2017;10(476):eaah4248.PubMedCrossRef
18.
go back to reference Blaszczyk K, et al. The unique role of STAT2 in constitutive and IFN-induced transcription and antiviral responses. Cytokine Growth Factor Rev. 2016;29:71–81.PubMedCrossRef Blaszczyk K, et al. The unique role of STAT2 in constitutive and IFN-induced transcription and antiviral responses. Cytokine Growth Factor Rev. 2016;29:71–81.PubMedCrossRef
20.
go back to reference Shahni R, et al. Signal transducer and activator of transcription 2 deficiency is a novel disorder of mitochondrial fission. Brain. 2015;138(Pt 10):2834–46.PubMedPubMedCentralCrossRef Shahni R, et al. Signal transducer and activator of transcription 2 deficiency is a novel disorder of mitochondrial fission. Brain. 2015;138(Pt 10):2834–46.PubMedPubMedCentralCrossRef
21.
go back to reference Moens L, et al. A novel kindred with inherited STAT2 deficiency and severe viral illness. J Allergy Clin Immunol. 2017;139(6):1995-1997 e9.PubMedCrossRef Moens L, et al. A novel kindred with inherited STAT2 deficiency and severe viral illness. J Allergy Clin Immunol. 2017;139(6):1995-1997 e9.PubMedCrossRef
22.
23.
go back to reference Freij B et al. Life-threatening influenza, haemophagocytic lymphohistiocytosis and probable vaccine strain varicella in a novel case of homozygous STAT2 deficiency. Front Immunol. 2021;11:624415. Freij B et al. Life-threatening influenza, haemophagocytic lymphohistiocytosis and probable vaccine strain varicella in a novel case of homozygous STAT2 deficiency. Front Immunol. 2021;11:624415.
24.
go back to reference Steen HC, et al. Identification of STAT2 serine 287 as a novel regulatory phosphorylation site in type I interferon-induced cellular responses. J Biol Chem. 2013;288(1):747–58.PubMedCrossRef Steen HC, et al. Identification of STAT2 serine 287 as a novel regulatory phosphorylation site in type I interferon-induced cellular responses. J Biol Chem. 2013;288(1):747–58.PubMedCrossRef
25.
go back to reference Wang Y, et al. Negative regulation of type I IFN signaling by phosphorylation of STAT2 on T387. EMBO J. 2017;36(2):202–12.PubMedCrossRef Wang Y, et al. Negative regulation of type I IFN signaling by phosphorylation of STAT2 on T387. EMBO J. 2017;36(2):202–12.PubMedCrossRef
26.
go back to reference Steen HC, et al. Phosphorylation of STAT2 on serine-734 negatively regulates the IFN-alpha-induced antiviral response. J Cell Sci. 2016;129(22):4190–9.PubMedPubMedCentral Steen HC, et al. Phosphorylation of STAT2 on serine-734 negatively regulates the IFN-alpha-induced antiviral response. J Cell Sci. 2016;129(22):4190–9.PubMedPubMedCentral
27.
go back to reference Wang Y, et al. A virus-induced conformational switch of STAT1-STAT2 dimers boosts antiviral defenses. Cell Res. 2021;31(2):206–18.PubMedCrossRef Wang Y, et al. A virus-induced conformational switch of STAT1-STAT2 dimers boosts antiviral defenses. Cell Res. 2021;31(2):206–18.PubMedCrossRef
28.
go back to reference Tang X, et al. Acetylation-dependent signal transduction for type I interferon receptor. Cell. 2007;131(1):93–105.PubMedCrossRef Tang X, et al. Acetylation-dependent signal transduction for type I interferon receptor. Cell. 2007;131(1):93–105.PubMedCrossRef
29.
go back to reference Frahm T, et al. IFN-type-I-mediated signaling is regulated by modulation of STAT2 nuclear export. J Cell Sci. 2006;119(Pt 6):1092–104.PubMedCrossRef Frahm T, et al. IFN-type-I-mediated signaling is regulated by modulation of STAT2 nuclear export. J Cell Sci. 2006;119(Pt 6):1092–104.PubMedCrossRef
30.
go back to reference Rengachari S, et al. Structural basis of STAT2 recognition by IRF9 reveals molecular insights into ISGF3 function. Proc Natl Acad Sci U S A. 2018;115(4):E601–9.PubMedPubMedCentralCrossRef Rengachari S, et al. Structural basis of STAT2 recognition by IRF9 reveals molecular insights into ISGF3 function. Proc Natl Acad Sci U S A. 2018;115(4):E601–9.PubMedPubMedCentralCrossRef
31.
go back to reference Martinez-Moczygemba M, et al. Distinct STAT structure promotes interaction of STAT2 with the p48 subunit of the interferon-alpha-stimulated transcription factor ISGF3. J Biol Chem. 1997;272(32):20070–6.PubMedCrossRef Martinez-Moczygemba M, et al. Distinct STAT structure promotes interaction of STAT2 with the p48 subunit of the interferon-alpha-stimulated transcription factor ISGF3. J Biol Chem. 1997;272(32):20070–6.PubMedCrossRef
32.
33.
go back to reference Stancato LF, et al. Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation. J Biol Chem. 1996;271(8):4134–7.PubMedCrossRef Stancato LF, et al. Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation. J Biol Chem. 1996;271(8):4134–7.PubMedCrossRef
34.
go back to reference Li X, et al. Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling. Mol Cell Biol. 1997;17(4):2048–56.PubMedPubMedCentralCrossRef Li X, et al. Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling. Mol Cell Biol. 1997;17(4):2048–56.PubMedPubMedCentralCrossRef
35.
go back to reference Bluyssen HA, Levy DE. Stat2 is a transcriptional activator that requires sequence-specific contacts provided by stat1 and p48 for stable interaction with DNA. J Biol Chem. 1997;272(7):4600–5.PubMedCrossRef Bluyssen HA, Levy DE. Stat2 is a transcriptional activator that requires sequence-specific contacts provided by stat1 and p48 for stable interaction with DNA. J Biol Chem. 1997;272(7):4600–5.PubMedCrossRef
37.
go back to reference Chowdhury FZ, Farrar JD. STAT2: a shape-shifting anti-viral super STAT. JAKSTAT. 2013;2(1):e123633. Chowdhury FZ, Farrar JD. STAT2: a shape-shifting anti-viral super STAT. JAKSTAT. 2013;2(1):e123633.
39.
go back to reference Paulson M, et al. Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem. 1999;274(36):25343–9.PubMedCrossRef Paulson M, et al. Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem. 1999;274(36):25343–9.PubMedCrossRef
42.
go back to reference Joyce MA, et al. HCV and flaviviruses hijack cellular mechanisms for nuclear STAT2 degradation: up-regulation of PDLIM2 suppresses the innate immune response. PLoS Pathog. 2019;15(8):e1007949.PubMedPubMedCentralCrossRef Joyce MA, et al. HCV and flaviviruses hijack cellular mechanisms for nuclear STAT2 degradation: up-regulation of PDLIM2 suppresses the innate immune response. PLoS Pathog. 2019;15(8):e1007949.PubMedPubMedCentralCrossRef
43.
go back to reference Ulane CM, Horvath CM. Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology. 2002;304(2):160–6.PubMedCrossRef Ulane CM, Horvath CM. Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology. 2002;304(2):160–6.PubMedCrossRef
44.
go back to reference Precious B, et al. In vitro and in vivo specificity of ubiquitination and degradation of STAT1 and STAT2 by the V proteins of the paramyxoviruses simian virus 5 and human parainfluenza virus type 2. J Gen Virol. 2005;86(Pt 1):151–8.PubMedCrossRef Precious B, et al. In vitro and in vivo specificity of ubiquitination and degradation of STAT1 and STAT2 by the V proteins of the paramyxoviruses simian virus 5 and human parainfluenza virus type 2. J Gen Virol. 2005;86(Pt 1):151–8.PubMedCrossRef
45.
go back to reference Xu X, et al. Respiratory syncytial virus NS1 protein degrades STAT2 by inducing SOCS1 expression. Intervirology. 2014;57(2):65–73.PubMedCrossRef Xu X, et al. Respiratory syncytial virus NS1 protein degrades STAT2 by inducing SOCS1 expression. Intervirology. 2014;57(2):65–73.PubMedCrossRef
46.
go back to reference Le VTK, et al. Human cytomegalovirus interferes with signal transducer and activator of transcription (STAT) 2 protein stability and tyrosine phosphorylation. J Gen Virol. 2008;89(Pt 10):2416–26.PubMedCrossRef Le VTK, et al. Human cytomegalovirus interferes with signal transducer and activator of transcription (STAT) 2 protein stability and tyrosine phosphorylation. J Gen Virol. 2008;89(Pt 10):2416–26.PubMedCrossRef
49.
50.
go back to reference Arimoto KI, et al. STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling. Nat Struct Mol Biol. 2017;24(3):279–89.PubMedPubMedCentralCrossRef Arimoto KI, et al. STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling. Nat Struct Mol Biol. 2017;24(3):279–89.PubMedPubMedCentralCrossRef
51.
52.
go back to reference Francois-Newton V, et al. USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon alpha response. PLoS One. 2011;6(7):e122200.CrossRef Francois-Newton V, et al. USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon alpha response. PLoS One. 2011;6(7):e122200.CrossRef
54.
go back to reference Meuwissen ME, et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med. 2016;213(7):1163–74.PubMedPubMedCentralCrossRef Meuwissen ME, et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med. 2016;213(7):1163–74.PubMedPubMedCentralCrossRef
56.
go back to reference Duncan CJA, et al. Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in STAT2. Sci Immunol. 2019;4(42):eaav7501.PubMedPubMedCentralCrossRef Duncan CJA, et al. Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in STAT2. Sci Immunol. 2019;4(42):eaav7501.PubMedPubMedCentralCrossRef
57.
go back to reference Gruber C, et al. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J Exp Med. 2020;217(5):e20192319.PubMedPubMedCentralCrossRef Gruber C, et al. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J Exp Med. 2020;217(5):e20192319.PubMedPubMedCentralCrossRef
58.
go back to reference Hernandez N, et al. Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. J Exp Med. 2019;216(9):2057–70.PubMedPubMedCentralCrossRef Hernandez N, et al. Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. J Exp Med. 2019;216(9):2057–70.PubMedPubMedCentralCrossRef
59.
go back to reference Bastard P, et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J Exp Med. 2021;218(4):e20202486.PubMedCrossRefPubMedCentral Bastard P, et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J Exp Med. 2021;218(4):e20202486.PubMedCrossRefPubMedCentral
60.
go back to reference Zhang SY, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317(5844):1522–7.PubMedCrossRef Zhang SY, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317(5844):1522–7.PubMedCrossRef
63.
go back to reference Picard C, et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science. 2003;299(5615):2076–9.PubMedCrossRef Picard C, et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science. 2003;299(5615):2076–9.PubMedCrossRef
64.
go back to reference von Bernuth H, et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 2008;321(5889):691–6.CrossRef von Bernuth H, et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 2008;321(5889):691–6.CrossRef
66.
go back to reference Alazawi W, et al. Stat2 loss leads to cytokine-independent, cell-mediated lethality in LPS-induced sepsis. Proc Natl Acad Sci U S A. 2013;110(21):8656–61.PubMedPubMedCentralCrossRef Alazawi W, et al. Stat2 loss leads to cytokine-independent, cell-mediated lethality in LPS-induced sepsis. Proc Natl Acad Sci U S A. 2013;110(21):8656–61.PubMedPubMedCentralCrossRef
67.
go back to reference Karaghiosoff M, et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol. 2003;4(5):471–7.PubMedCrossRef Karaghiosoff M, et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol. 2003;4(5):471–7.PubMedCrossRef
68.
go back to reference Zhao W, et al. Stat2-dependent regulation of MHC class II expression. J Immunol. 2007;179(1):463–71.PubMedCrossRef Zhao W, et al. Stat2-dependent regulation of MHC class II expression. J Immunol. 2007;179(1):463–71.PubMedCrossRef
69.
go back to reference Katz U, et al. Update on intravenous immunoglobulins (IVIg) mechanisms of action and off- label use in autoimmune diseases. Curr Pharm Des. 2011;17(29):3166–75.PubMedCrossRef Katz U, et al. Update on intravenous immunoglobulins (IVIg) mechanisms of action and off- label use in autoimmune diseases. Curr Pharm Des. 2011;17(29):3166–75.PubMedCrossRef
70.
go back to reference Group, R.C. , et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med. 2021;384(8):693–704.CrossRef Group, R.C. , et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med. 2021;384(8):693–704.CrossRef
71.
go back to reference Investigators R-C, et al. Interleukin-6 receptor antagonists in critically ill patients with COVID-19. N Engl J Med. 2021;384(16):1491–502.CrossRef Investigators R-C, et al. Interleukin-6 receptor antagonists in critically ill patients with COVID-19. N Engl J Med. 2021;384(16):1491–502.CrossRef
72.
go back to reference Naviglio S, et al. Long-term survival after hematopoietic stem cell transplantation for complete STAT1 deficiency. J Clin Immunol. 2017;37(7):701–6.PubMedCrossRef Naviglio S, et al. Long-term survival after hematopoietic stem cell transplantation for complete STAT1 deficiency. J Clin Immunol. 2017;37(7):701–6.PubMedCrossRef
73.
go back to reference Crow YJ, Manel N. Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol. 2015;15(7):429–40.PubMedCrossRef Crow YJ, Manel N. Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol. 2015;15(7):429–40.PubMedCrossRef
74.
go back to reference Aicardi J, Goutieres F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol. 1984;15(1):49–54.PubMedCrossRef Aicardi J, Goutieres F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol. 1984;15(1):49–54.PubMedCrossRef
75.
76.
go back to reference Sarasin-Filipowicz M, et al. Alpha interferon induces long-lasting refractoriness of JAK-STAT signaling in the mouse liver through induction of USP18/UBP43. Mol Cell Biol. 2009;29(17):4841–51.PubMedPubMedCentralCrossRef Sarasin-Filipowicz M, et al. Alpha interferon induces long-lasting refractoriness of JAK-STAT signaling in the mouse liver through induction of USP18/UBP43. Mol Cell Biol. 2009;29(17):4841–51.PubMedPubMedCentralCrossRef
77.
go back to reference Larner AC, et al. Transcriptional induction by interferon. New protein(s) determine the extent and length of the induction. J Biol Chem. 1986;261(1):453–9.PubMedCrossRef Larner AC, et al. Transcriptional induction by interferon. New protein(s) determine the extent and length of the induction. J Biol Chem. 1986;261(1):453–9.PubMedCrossRef
78.
go back to reference Cavaco BM, et al. Homozygous calcium-sensing receptor polymorphism R544Q presents as hypocalcemic hypoparathyroidism. J Clin Endocrinol Metab. 2018;103(8):2879–88.PubMedCrossRef Cavaco BM, et al. Homozygous calcium-sensing receptor polymorphism R544Q presents as hypocalcemic hypoparathyroidism. J Clin Endocrinol Metab. 2018;103(8):2879–88.PubMedCrossRef
79.
go back to reference Drutman SB, et al. Homozygous NLRP1 gain-of-function mutation in siblings with a syndromic form of recurrent respiratory papillomatosis. Proc Natl Acad Sci U S A. 2019;116(38):19055–63.PubMedPubMedCentralCrossRef Drutman SB, et al. Homozygous NLRP1 gain-of-function mutation in siblings with a syndromic form of recurrent respiratory papillomatosis. Proc Natl Acad Sci U S A. 2019;116(38):19055–63.PubMedPubMedCentralCrossRef
80.
go back to reference Liu L, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635–48.PubMedPubMedCentralCrossRef Liu L, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635–48.PubMedPubMedCentralCrossRef
81.
go back to reference van de Veerdonk FL, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365(1):54–61.PubMedCrossRef van de Veerdonk FL, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365(1):54–61.PubMedCrossRef
82.
83.
84.
go back to reference Del Bel KL, et al. JAK1 gain-of-function causes an autosomal dominant immune dysregulatory and hypereosinophilic syndrome. J Allergy Clin Immunol. 2017;139(6):2016-2020 e5.PubMedCrossRef Del Bel KL, et al. JAK1 gain-of-function causes an autosomal dominant immune dysregulatory and hypereosinophilic syndrome. J Allergy Clin Immunol. 2017;139(6):2016-2020 e5.PubMedCrossRef
85.
go back to reference Gruber CN, et al. Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity. 2020;53(3):672-684 e11.PubMedPubMedCentralCrossRef Gruber CN, et al. Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity. 2020;53(3):672-684 e11.PubMedPubMedCentralCrossRef
Metadata
Title
Human Disease Phenotypes Associated with Loss and Gain of Function Mutations in STAT2: Viral Susceptibility and Type I Interferonopathy
Authors
Christopher James Arthur Duncan
Sophie Hambleton
Publication date
01-10-2021
Publisher
Springer US
Keyword
Interferon
Published in
Journal of Clinical Immunology / Issue 7/2021
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-021-01118-z

Other articles of this Issue 7/2021

Journal of Clinical Immunology 7/2021 Go to the issue