Skip to main content
Top
Published in: Journal of Clinical Immunology 7/2021

01-10-2021 | SARS-CoV-2 | Commentary

Harnessing Type I IFN Immunity Against SARS-CoV-2 with Early Administration of IFN-β

Authors: Donald C. Vinh, Laurent Abel, Paul Bastard, Matthew P. Cheng, Antonio Condino-Neto, Peter K. Gregersen, Filomeen Haerynck, Maria-Pia Cicalese, David Hagin, Pere Soler-Palacín, Anna M. Planas, Aurora Pujol, Luigi D. Notarangelo, Qian Zhang, Helen C. Su, Jean-Laurent Casanova, Isabelle Meyts, On behalf of the COVID Human Genetic Effort

Published in: Journal of Clinical Immunology | Issue 7/2021

Login to get access

Excerpt

Since December 2019, over 150 million individuals have been infected with SARS-CoV-2 globally. While most cases (>95%) are asymptomatic or mild, a small proportion develop moderate, severe, or critical COVID-19 pneumonia requiring hospitalization, at times in the intensive care unit [1]. At least 2 million patients have already died [2]. The main epidemiological risk factor associated with critical pneumonia or death is age > 65 years; however, life-threatening COVID-19 has also affected younger people, albeit sporadically. Studies have suggested that type I interferon (IFN) immunity contributes to the control of SARS-CoV-2 infection [38]. Notably, inborn errors of TLR3- and IRF7-dependent type I IFN production or amplification underlie severe disease in ~3% of a cohort of relatively young adult patients analyzed by the COVID Human Genetic Effort (COVIDhge.​com) [3]. In at least an additional 10% of cases, high levels of pre-existing auto-antibodies (auto-Abs) neutralizing most type I IFNs, but rarely IFN-β, abrogate type I IFN–dependent control of SARS-CoV-2 replication in vitro, thereby underlying critical disease in vivo [3, 4, 9, 10]. This observation was replicated in other cohorts [1115]. The mean age of patients with inborn errors was 48 years, while that of patients with auto-Abs was 65 years. These findings support a two-step model of COVID-19 pathogenesis: defective type I IFN immunity in the first hours and days of infection leads to uncontrolled viral replication with spread to the lungs and other tissues, with subsequent excessive leukocyte recruitment, underlying uncontrolled inflammation [5]. This model of early deficient type I IFN function provides a framework for novel preventive and therapeutic approaches of COVID-19. Here, we explore two therapeutic routes that aim to restore protective type I IFN immunity: [1] the early administration of IFN-β in ambulatory subjects, including exposed individuals prior to infection, pre-symptomatic infected individuals and symptomatic individuals, and [2] the removal of auto-Abs to type I IFN in hospitalized patients. We also discuss the implications of these findings for other preventive and therapeutic interventions, including B cell depletion, JAK inhibitors, intravenous immunoglobulins, the use of convalescent plasma and virus-specific mAbs, and vaccination. This discussion is timely, as more than one year into the pandemic, we are still in the dark about the best prevention and treatment for severe COVID-19 pneumonia, while the emergence of more contagious viral variants, causing more severe disease, raises concerns regarding the efficacy of the nascent vaccination programs [16, 17]. …
Literature
3.
go back to reference Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515). Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515).
4.
go back to reference Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515). Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515).
5.
go back to reference Zhang Q, Bastard P, Bolze A, Jouanguy E, Zhang SY, Effort CHG, et al. Life-threatening COVID-19: defective interferons unleash excessive inflammation. Med (N Y). 2020;1(1):14–20. Zhang Q, Bastard P, Bolze A, Jouanguy E, Zhang SY, Effort CHG, et al. Life-threatening COVID-19: defective interferons unleash excessive inflammation. Med (N Y). 2020;1(1):14–20.
6.
go back to reference Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–24.PubMedPubMedCentralCrossRef Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–24.PubMedPubMedCentralCrossRef
7.
go back to reference Trouillet-Assant S, Viel S, Gaymard A, Pons S, Richard JC, Perret M, et al. Type I IFN immunoprofiling in COVID-19 patients. The Journal of Allergy and Clinical Immunology. 2020;146(1):206–8 e2.PubMedPubMedCentralCrossRef Trouillet-Assant S, Viel S, Gaymard A, Pons S, Richard JC, Perret M, et al. Type I IFN immunoprofiling in COVID-19 patients. The Journal of Allergy and Clinical Immunology. 2020;146(1):206–8 e2.PubMedPubMedCentralCrossRef
8.
go back to reference Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–45 e9.PubMedPubMedCentralCrossRef Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–45 e9.PubMedPubMedCentralCrossRef
9.
go back to reference Meffre E, Iwasaki A. Interferon deficiency can lead to severe COVID. Nature. 2020;587(7834):374–6.PubMedCrossRef Meffre E, Iwasaki A. Interferon deficiency can lead to severe COVID. Nature. 2020;587(7834):374–6.PubMedCrossRef
10.
11.
go back to reference Troya J, Bastard P, Planas-Serra L, Ryan P, Ruiz M, de Carranza M, et al. Neutralizing autoantibodies to type I IFNs in >10% of patients with severe COVID-19 pneumonia hospitalized in Madrid, Spain. J Clin Immunol. 2021. Troya J, Bastard P, Planas-Serra L, Ryan P, Ruiz M, de Carranza M, et al. Neutralizing autoantibodies to type I IFNs in >10% of patients with severe COVID-19 pneumonia hospitalized in Madrid, Spain. J Clin Immunol. 2021.
12.
go back to reference Koning R, Bastard P, Casanova JL, Brouwer MC, van de Beek D, with the Amsterdam UMCC-BI. Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Med. 2021. Koning R, Bastard P, Casanova JL, Brouwer MC, van de Beek D, with the Amsterdam UMCC-BI. Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Med. 2021.
13.
go back to reference van der Wijst MGP, Vazquez SE, Hartoularos GC, Bastard P, Grant T, Bueno R, et al. Longitudinal single-cell epitope and RNA-sequencing reveals the immunological impact of type 1 interferon autoantibodies in critical COVID-19. bioRxiv. 2021. van der Wijst MGP, Vazquez SE, Hartoularos GC, Bastard P, Grant T, Bueno R, et al. Longitudinal single-cell epitope and RNA-sequencing reveals the immunological impact of type 1 interferon autoantibodies in critical COVID-19. bioRxiv. 2021.
14.
go back to reference Goncalves D. Antibodies against type-I Interferon: detection and association with severe clinical outcome in COVID-19 patients. medRxiv. 2021. Goncalves D. Antibodies against type-I Interferon: detection and association with severe clinical outcome in COVID-19 patients. medRxiv. 2021.
16.
go back to reference Consortium WHOST, Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, et al. Repurposed antiviral drugs for Covid-19 - interim WHO Solidarity Trial results. N Engl J Med. 2021;384(6):497–511.CrossRef Consortium WHOST, Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, et al. Repurposed antiviral drugs for Covid-19 - interim WHO Solidarity Trial results. N Engl J Med. 2021;384(6):497–511.CrossRef
17.
go back to reference Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K, Danon L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ. 2021;372:n579.PubMedCrossRef Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K, Danon L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ. 2021;372:n579.PubMedCrossRef
18.
go back to reference Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH, Hauser BM, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021;184(9):2523.PubMedPubMedCentralCrossRef Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH, Hauser BM, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021;184(9):2523.PubMedPubMedCentralCrossRef
19.
go back to reference Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity. 2001;14(4):461–70.PubMedCrossRef Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity. 2001;14(4):461–70.PubMedCrossRef
20.
go back to reference Moens L, Van Eyck L, Jochmans D, Mitera T, Frans G, Bossuyt X, et al. A novel kindred with inherited STAT2 deficiency and severe viral illness. The Journal of allergy and clinical immunology. 2017;S0091-6749(16):31440–3. Moens L, Van Eyck L, Jochmans D, Mitera T, Frans G, Bossuyt X, et al. A novel kindred with inherited STAT2 deficiency and severe viral illness. The Journal of allergy and clinical immunology. 2017;S0091-6749(16):31440–3.
21.
go back to reference Meyts I, Casanova JL. Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. European Journal of Immunology. 2021. Meyts I, Casanova JL. Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. European Journal of Immunology. 2021.
22.
go back to reference Bastard P. Anti-IFN autoantibodies and YFV disease. The Journal of Experimental Medicine. 2021. Bastard P. Anti-IFN autoantibodies and YFV disease. The Journal of Experimental Medicine. 2021.
23.
go back to reference Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters JL, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest. 2020;130(6):2757–65.PubMedPubMedCentralCrossRef Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters JL, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest. 2020;130(6):2757–65.PubMedPubMedCentralCrossRef
24.
go back to reference Casadevall A, Dadachova E, Pirofski LA. Passive antibody therapy for infectious diseases. Nat Rev Microbiol. 2004;2(9):695–703.PubMedCrossRef Casadevall A, Dadachova E, Pirofski LA. Passive antibody therapy for infectious diseases. Nat Rev Microbiol. 2004;2(9):695–703.PubMedCrossRef
26.
go back to reference Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R, Havenar-Daughton C, et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature. 2020;584(7821):353–63.PubMedCrossRef Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R, Havenar-Daughton C, et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature. 2020;584(7821):353–63.PubMedCrossRef
27.
go back to reference Chai KL, Valk SJ, Piechotta V, Kimber C, Monsef I, Doree C, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev. 2020;10:CD013600.PubMed Chai KL, Valk SJ, Piechotta V, Kimber C, Monsef I, Doree C, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev. 2020;10:CD013600.PubMed
28.
go back to reference Wooding DJ, Bach H. Treatment of COVID-19 with convalescent plasma: lessons from past coronavirus outbreaks. Clin Microbiol Infect. 2020;26(10):1436–46.PubMedPubMedCentralCrossRef Wooding DJ, Bach H. Treatment of COVID-19 with convalescent plasma: lessons from past coronavirus outbreaks. Clin Microbiol Infect. 2020;26(10):1436–46.PubMedPubMedCentralCrossRef
29.
go back to reference Vegivinti CTR, Pederson JM, Saravu K, Gupta N, Evanson KW, Kamrowski S, et al. Efficacy of convalescent plasma therapy for COVID-19: a systematic review and meta-analysis. J Clin Apheresis. 2021. Vegivinti CTR, Pederson JM, Saravu K, Gupta N, Evanson KW, Kamrowski S, et al. Efficacy of convalescent plasma therapy for COVID-19: a systematic review and meta-analysis. J Clin Apheresis. 2021.
30.
go back to reference Simonovich VA, Burgos Pratx LD, Scibona P, Beruto MV, Vallone MG, Vazquez C, et al. A randomized trial of convalescent plasma in Covid-19 severe pneumonia. N Engl J Med. 2021;384(7):619–29.PubMedCrossRef Simonovich VA, Burgos Pratx LD, Scibona P, Beruto MV, Vallone MG, Vazquez C, et al. A randomized trial of convalescent plasma in Covid-19 severe pneumonia. N Engl J Med. 2021;384(7):619–29.PubMedCrossRef
31.
go back to reference Libster R, Perez Marc G, Wappner D, Coviello S, Bianchi A, Braem V, et al. Early high-titer plasma therapy to prevent severe Covid-19 in older adults. N Engl J Med. 2021;384(7):610–8.PubMedCrossRef Libster R, Perez Marc G, Wappner D, Coviello S, Bianchi A, Braem V, et al. Early high-titer plasma therapy to prevent severe Covid-19 in older adults. N Engl J Med. 2021;384(7):610–8.PubMedCrossRef
32.
go back to reference Barone P, DeSimone RA. Convalescent plasma to treat coronavirus disease 2019 (COVID-19): considerations for clinical trial design. Transfusion. 2020;60(6):1123–7.PubMedCrossRef Barone P, DeSimone RA. Convalescent plasma to treat coronavirus disease 2019 (COVID-19): considerations for clinical trial design. Transfusion. 2020;60(6):1123–7.PubMedCrossRef
33.
go back to reference Subbarao K, Mordant F, Rudraraju R. Convalescent plasma treatment for COVID-19: tempering expectations with the influenza experience. Eur J Immunol. 2020;50(10):1447–53.PubMedCrossRef Subbarao K, Mordant F, Rudraraju R. Convalescent plasma treatment for COVID-19: tempering expectations with the influenza experience. Eur J Immunol. 2020;50(10):1447–53.PubMedCrossRef
34.
go back to reference Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. The New England journal of medicine. 2021;384(3):229–37.PubMedCrossRef Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. The New England journal of medicine. 2021;384(3):229–37.PubMedCrossRef
35.
go back to reference Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. The New England Journal of Medicine. 2021;384(3):238–51.PubMedCrossRef Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. The New England Journal of Medicine. 2021;384(3):238–51.PubMedCrossRef
36.
go back to reference Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. Jama. 2021;325(7):632–44.PubMedPubMedCentralCrossRef Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. Jama. 2021;325(7):632–44.PubMedPubMedCentralCrossRef
37.
go back to reference Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS, et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science. 2021;371(6531):850–4.PubMedPubMedCentralCrossRef Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS, et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science. 2021;371(6531):850–4.PubMedPubMedCentralCrossRef
38.
go back to reference Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med. 2012;367(21):2015–25.PubMedCrossRef Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med. 2012;367(21):2015–25.PubMedCrossRef
39.
go back to reference Cao W, Liu X, Bai T, Fan H, Hong K, Song H, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infectious Diseases. 2020;7(3):ofaa102.PubMedPubMedCentralCrossRef Cao W, Liu X, Bai T, Fan H, Hong K, Song H, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infectious Diseases. 2020;7(3):ofaa102.PubMedPubMedCentralCrossRef
40.
go back to reference Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerging Microbes & Infections. 2020;9(1):727–32.CrossRef Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerging Microbes & Infections. 2020;9(1):727–32.CrossRef
41.
go back to reference Mohtadi N, Ghaysouri A, Shirazi S, Sara A, Shafiee E, Bastani E, et al. Recovery of severely ill COVID-19 patients by intravenous immunoglobulin (IVIG) treatment: A case series. Virology. 2020;548:1–5.PubMedCrossRef Mohtadi N, Ghaysouri A, Shirazi S, Sara A, Shafiee E, Bastani E, et al. Recovery of severely ill COVID-19 patients by intravenous immunoglobulin (IVIG) treatment: A case series. Virology. 2020;548:1–5.PubMedCrossRef
42.
go back to reference Zhang J, Yang Y, Yang N, Ma Y, Zhou Q, Li W, et al. Effectiveness of intravenous immunoglobulin for children with severe COVID-19: a rapid review. Annals of Translational Medicine. 2020;8(10):625.PubMedPubMedCentralCrossRef Zhang J, Yang Y, Yang N, Ma Y, Zhou Q, Li W, et al. Effectiveness of intravenous immunoglobulin for children with severe COVID-19: a rapid review. Annals of Translational Medicine. 2020;8(10):625.PubMedPubMedCentralCrossRef
43.
go back to reference Liu X, Cao W, Li T. High-dose intravenous immunoglobulins in the treatment of severe acute viral pneumonia: the known mechanisms and clinical effects. Frontiers in Immunology. 2020;11:1660.PubMedPubMedCentralCrossRef Liu X, Cao W, Li T. High-dose intravenous immunoglobulins in the treatment of severe acute viral pneumonia: the known mechanisms and clinical effects. Frontiers in Immunology. 2020;11:1660.PubMedPubMedCentralCrossRef
44.
go back to reference Morris SB, Schwartz NG, Patel P, Abbo L, Beauchamps L, Balan S, et al. Case series of multisystem inflammatory syndrome in adults associated with SARS-CoV-2 infection - United Kingdom and United States, March-August 2020. MMWR Morbidity and Mortality Weekly Report. 2020;69(40):1450–6.PubMedPubMedCentralCrossRef Morris SB, Schwartz NG, Patel P, Abbo L, Beauchamps L, Balan S, et al. Case series of multisystem inflammatory syndrome in adults associated with SARS-CoV-2 infection - United Kingdom and United States, March-August 2020. MMWR Morbidity and Mortality Weekly Report. 2020;69(40):1450–6.PubMedPubMedCentralCrossRef
45.
go back to reference Ouldali N, Toubiana J, Antona D, Javouhey E, Madhi F, Lorrot M, et al. Association of intravenous immunoglobulins plus methylprednisolone vs immunoglobulins alone with course of fever in multisystem inflammatory syndrome in children. Jama. 2021. Ouldali N, Toubiana J, Antona D, Javouhey E, Madhi F, Lorrot M, et al. Association of intravenous immunoglobulins plus methylprednisolone vs immunoglobulins alone with course of fever in multisystem inflammatory syndrome in children. Jama. 2021.
46.
go back to reference Shao Z, Feng Y, Zhong L, Xie Q, Lei M, Liu Z, et al. Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVID-19: a multicenter retrospective cohort study. Clinical & Translational Immunology. 2020;9(10):e1192.CrossRef Shao Z, Feng Y, Zhong L, Xie Q, Lei M, Liu Z, et al. Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVID-19: a multicenter retrospective cohort study. Clinical & Translational Immunology. 2020;9(10):e1192.CrossRef
47.
go back to reference Tabarsi P, Barati S, Jamaati H, Haseli S, Marjani M, Moniri A, et al. Evaluating the effects of intravenous immunoglobulin (IVIg) on the management of severe COVID-19 cases: a randomized controlled trial. Int Immunopharmacol. 2021;90:107205.PubMedCrossRef Tabarsi P, Barati S, Jamaati H, Haseli S, Marjani M, Moniri A, et al. Evaluating the effects of intravenous immunoglobulin (IVIg) on the management of severe COVID-19 cases: a randomized controlled trial. Int Immunopharmacol. 2021;90:107205.PubMedCrossRef
48.
go back to reference Gharebaghi N, Nejadrahim R, Mousavi SJ, Sadat-Ebrahimi SR, Hajizadeh R. The use of intravenous immunoglobulin gamma for the treatment of severe coronavirus disease 2019: a randomized placebo-controlled double-blind clinical trial. BMC Infect Dis. 2020;20(1):786.PubMedPubMedCentralCrossRef Gharebaghi N, Nejadrahim R, Mousavi SJ, Sadat-Ebrahimi SR, Hajizadeh R. The use of intravenous immunoglobulin gamma for the treatment of severe coronavirus disease 2019: a randomized placebo-controlled double-blind clinical trial. BMC Infect Dis. 2020;20(1):786.PubMedPubMedCentralCrossRef
49.
go back to reference Peter HH, Ochs HD, Cunningham-Rundles C, Vinh DC, Kiessling P, Greve B, et al. Targeting FcRn for immunomodulation: benefits, risks, and practical considerations. The Journal of Allergy and Clinical Immunology. 2020;146(3):479–91.e5.PubMedPubMedCentralCrossRef Peter HH, Ochs HD, Cunningham-Rundles C, Vinh DC, Kiessling P, Greve B, et al. Targeting FcRn for immunomodulation: benefits, risks, and practical considerations. The Journal of Allergy and Clinical Immunology. 2020;146(3):479–91.e5.PubMedPubMedCentralCrossRef
50.
go back to reference Benesch M, Kerbl R, Lackner H, Berghold A, Schwinger W, Triebl-Roth K, et al. Low-dose versus high-dose immunoglobulin for primary treatment of acute immune thrombocytopenic purpura in children: results of a prospective, randomized single-center trial. Journal of Pediatric Hematology/Oncology. 2003;25(10):797–800.PubMedCrossRef Benesch M, Kerbl R, Lackner H, Berghold A, Schwinger W, Triebl-Roth K, et al. Low-dose versus high-dose immunoglobulin for primary treatment of acute immune thrombocytopenic purpura in children: results of a prospective, randomized single-center trial. Journal of Pediatric Hematology/Oncology. 2003;25(10):797–800.PubMedCrossRef
51.
go back to reference van Doorn PA, Ruts L, Jacobs BC. Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. The Lancet Neurology. 2008;7(10):939–50.PubMedCrossRef van Doorn PA, Ruts L, Jacobs BC. Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. The Lancet Neurology. 2008;7(10):939–50.PubMedCrossRef
52.
go back to reference Group RC, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704.CrossRef Group RC, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704.CrossRef
53.
go back to reference Group WHOREAfC-TW, Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. Jama. 2020;324(13):1330–41.CrossRef Group WHOREAfC-TW, Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. Jama. 2020;324(13):1330–41.CrossRef
54.
go back to reference Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AS, et al. Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med. 2020;383(24):2333–44.PubMedCrossRef Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AS, et al. Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med. 2020;383(24):2333–44.PubMedCrossRef
55.
go back to reference Hermine O, Mariette X, Tharaux PL, Resche-Rigon M, Porcher R, Ravaud P, et al. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med. 2021;181(1):32–40.PubMedCrossRef Hermine O, Mariette X, Tharaux PL, Resche-Rigon M, Porcher R, Ravaud P, et al. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med. 2021;181(1):32–40.PubMedCrossRef
56.
go back to reference Salvarani C, Dolci G, Massari M, Merlo DF, Cavuto S, Savoldi L, et al. Effect of tocilizumab vs standard care on clinical worsening in patients hospitalized with COVID-19 pneumonia: a randomized clinical trial. JAMA Intern Med. 2021;181(1):24–31.PubMedCrossRef Salvarani C, Dolci G, Massari M, Merlo DF, Cavuto S, Savoldi L, et al. Effect of tocilizumab vs standard care on clinical worsening in patients hospitalized with COVID-19 pneumonia: a randomized clinical trial. JAMA Intern Med. 2021;181(1):24–31.PubMedCrossRef
57.
go back to reference Rosas IO, Brau N, Waters M, Go RC, Hunter BD, Bhagani S, et al. Tocilizumab in hospitalized patients with severe Covid-19 pneumonia. N Engl J Med. 2021. Rosas IO, Brau N, Waters M, Go RC, Hunter BD, Bhagani S, et al. Tocilizumab in hospitalized patients with severe Covid-19 pneumonia. N Engl J Med. 2021.
58.
go back to reference Klopfenstein T, Zayet S, Lohse A, Balblanc JC, Badie J, Royer PY, et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med Mal Infect. 2020;50(5):397–400.PubMedPubMedCentralCrossRef Klopfenstein T, Zayet S, Lohse A, Balblanc JC, Badie J, Royer PY, et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med Mal Infect. 2020;50(5):397–400.PubMedPubMedCentralCrossRef
59.
go back to reference Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, et al. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N Engl J Med. 2021;384(1):20–30.PubMedCrossRef Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, et al. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N Engl J Med. 2021;384(1):20–30.PubMedCrossRef
60.
go back to reference Veiga VC, Prats J, Farias DLC, Rosa RG, Dourado LK, Zampieri FG, et al. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial. BMJ. 2021;372:n84.PubMedCrossRef Veiga VC, Prats J, Farias DLC, Rosa RG, Dourado LK, Zampieri FG, et al. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial. BMJ. 2021;372:n84.PubMedCrossRef
61.
go back to reference Investigators R-C, Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, et al. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N Engl J Med. 2021. Investigators R-C, Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, et al. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N Engl J Med. 2021.
62.
go back to reference Rubin EJ, Longo DL, Baden LR. Interleukin-6 receptor inhibition in Covid-19 - cooling the inflammatory soup. N Engl J Med. 2021. Rubin EJ, Longo DL, Baden LR. Interleukin-6 receptor inhibition in Covid-19 - cooling the inflammatory soup. N Engl J Med. 2021.
63.
go back to reference Gadina M, Chisolm DA, Philips RL, McInness IB, Changelian PS, O’Shea JJ. Translating JAKs to Jakinibs. J Immunol. 2020;204(8):2011–20.PubMedCrossRef Gadina M, Chisolm DA, Philips RL, McInness IB, Changelian PS, O’Shea JJ. Translating JAKs to Jakinibs. J Immunol. 2020;204(8):2011–20.PubMedCrossRef
64.
go back to reference Lauwerys BR, Hachulla E, Spertini F, Lazaro E, Jorgensen C, Mariette X, et al. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon alpha-kinoid. Arthritis Rheum. 2013;65(2):447–56.PubMedCrossRef Lauwerys BR, Hachulla E, Spertini F, Lazaro E, Jorgensen C, Mariette X, et al. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon alpha-kinoid. Arthritis Rheum. 2013;65(2):447–56.PubMedCrossRef
65.
go back to reference Meyts I, Bucciol G, Quinti I, Neven B, Fischer A, Seoane E, et al. Coronavirus disease 2019 in patients with inborn errors of immunity: an international study. The Journal of Allergy and Clinical Immunology. 2020;147(2):520–31.PubMedPubMedCentralCrossRef Meyts I, Bucciol G, Quinti I, Neven B, Fischer A, Seoane E, et al. Coronavirus disease 2019 in patients with inborn errors of immunity: an international study. The Journal of Allergy and Clinical Immunology. 2020;147(2):520–31.PubMedPubMedCentralCrossRef
66.
go back to reference Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. The New England Journal of Medicine. 2020. Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. The New England Journal of Medicine. 2020.
67.
go back to reference Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19 - Final Report. N Engl J Med. 2020;383(19):1813–26.PubMedCrossRef Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19 - Final Report. N Engl J Med. 2020;383(19):1813–26.PubMedCrossRef
68.
go back to reference Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. The Journal of Allergy and Clinical Immunology. 2020;146(1):137–46 e3.PubMedPubMedCentralCrossRef Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. The Journal of Allergy and Clinical Immunology. 2020;146(1):137–46 e3.PubMedPubMedCentralCrossRef
69.
go back to reference Browne SK, Zaman R, Sampaio EP, Jutivorakool K, Rosen LB, Ding L, et al. Anti-CD20 (rituximab) therapy for anti-IFN-γ autoantibody-associated nontuberculous mycobacterial infection. Blood. 2012;119(17):3933–9.PubMedPubMedCentralCrossRef Browne SK, Zaman R, Sampaio EP, Jutivorakool K, Rosen LB, Ding L, et al. Anti-CD20 (rituximab) therapy for anti-IFN-γ autoantibody-associated nontuberculous mycobacterial infection. Blood. 2012;119(17):3933–9.PubMedPubMedCentralCrossRef
70.
go back to reference Czaja CA, Merkel PA, Chan ED, Lenz LL, Wolf ML, Alam R, et al. Rituximab as successful adjunct treatment in a patient with disseminated nontuberculous mycobacterial infection due to acquired anti-interferon-γ autoantibody. Clinical Infectious Diseases. 2014;58(6):e115–8.PubMedCrossRef Czaja CA, Merkel PA, Chan ED, Lenz LL, Wolf ML, Alam R, et al. Rituximab as successful adjunct treatment in a patient with disseminated nontuberculous mycobacterial infection due to acquired anti-interferon-γ autoantibody. Clinical Infectious Diseases. 2014;58(6):e115–8.PubMedCrossRef
71.
go back to reference Yerramilli A, Huang GKL, Griffin DWJ, Kong KL, Muhi S, Muttucumaru RS, et al. Disseminated nontuberculous mycobacterial infection associated with acquired immunodeficiency due to anti-interferon γ autoantibodies. Open Forum Infectious Diseases. 2019;6(4):ofz131.PubMedPubMedCentralCrossRef Yerramilli A, Huang GKL, Griffin DWJ, Kong KL, Muhi S, Muttucumaru RS, et al. Disseminated nontuberculous mycobacterial infection associated with acquired immunodeficiency due to anti-interferon γ autoantibodies. Open Forum Infectious Diseases. 2019;6(4):ofz131.PubMedPubMedCentralCrossRef
72.
go back to reference Naik R, Cortes JA. Persistent Mycobacterium abscessus infection secondary to interferon-γ autoantibodies. Annals of Allergy, Asthma & Immunology. 2016;116(5):461–2.CrossRef Naik R, Cortes JA. Persistent Mycobacterium abscessus infection secondary to interferon-γ autoantibodies. Annals of Allergy, Asthma & Immunology. 2016;116(5):461–2.CrossRef
73.
go back to reference Pruetpongpun N, Khawcharoenporn T, Damronglerd P, Suthiwartnarueput W, Apisarnthanarak A, Rujanavej S, et al. Disseminated Talaromyces marneffei and Mycobacterium abscessus in a patient with anti-interferon-γ autoantibodies. Open Forum Infectious Diseases. 2016;3(2):ofw093.PubMedPubMedCentralCrossRef Pruetpongpun N, Khawcharoenporn T, Damronglerd P, Suthiwartnarueput W, Apisarnthanarak A, Rujanavej S, et al. Disseminated Talaromyces marneffei and Mycobacterium abscessus in a patient with anti-interferon-γ autoantibodies. Open Forum Infectious Diseases. 2016;3(2):ofw093.PubMedPubMedCentralCrossRef
74.
go back to reference Shah UA, Mailankody S. Emerging immunotherapies in multiple myeloma. BMJ (Clinical research ed). 2020;370:m3176. Shah UA, Mailankody S. Emerging immunotherapies in multiple myeloma. BMJ (Clinical research ed). 2020;370:m3176.
75.
go back to reference Even-Or E, Naser Eddin A, Shadur B, Dinur Schejter Y, Najajreh M, Zelig O, et al. Successful treatment with daratumumab for post-HSCT refractory hemolytic anemia. Pediatric Blood & Cancer. 2020;67(1):e28010.CrossRef Even-Or E, Naser Eddin A, Shadur B, Dinur Schejter Y, Najajreh M, Zelig O, et al. Successful treatment with daratumumab for post-HSCT refractory hemolytic anemia. Pediatric Blood & Cancer. 2020;67(1):e28010.CrossRef
76.
go back to reference Ratuszny D, Skripuletz T, Wegner F, Groß M, Falk C, Jacobs R, et al. Case report: daratumumab in a patient with severe refractory anti-NMDA receptor encephalitis. Frontiers in Neurology. 2020;11:602102.PubMedPubMedCentralCrossRef Ratuszny D, Skripuletz T, Wegner F, Groß M, Falk C, Jacobs R, et al. Case report: daratumumab in a patient with severe refractory anti-NMDA receptor encephalitis. Frontiers in Neurology. 2020;11:602102.PubMedPubMedCentralCrossRef
77.
78.
go back to reference Ochoa S, Ding L, Kreuzburg S, Treat J, Holland SM, Zerbe CS. Daratumumab (anti-CD38) for treatment of disseminated nontuberculous mycobacteria in a patient with anti-IFN-γ autoantibodies. Clin Infect Dis 2020. Ochoa S, Ding L, Kreuzburg S, Treat J, Holland SM, Zerbe CS. Daratumumab (anti-CD38) for treatment of disseminated nontuberculous mycobacteria in a patient with anti-IFN-γ autoantibodies. Clin Infect Dis 2020.
79.
go back to reference Fallet B, Kyburz D, Walker UA. Mild course of COVID-19 and spontaneous virus clearance in a patient with depleted peripheral blood B cells due to rituximab treatment. Arthritis & Rheumatology (Hoboken, NJ). 2020;72(9):1581–2.CrossRef Fallet B, Kyburz D, Walker UA. Mild course of COVID-19 and spontaneous virus clearance in a patient with depleted peripheral blood B cells due to rituximab treatment. Arthritis & Rheumatology (Hoboken, NJ). 2020;72(9):1581–2.CrossRef
80.
go back to reference Monti S, Montecucco C. Diagnostic and therapeutic challenges for patients with ANCA-associated vasculitides at the time of COVID-19. Response to: 'Rituximab for granulomatosis with polyangiitis in the pandemic of COVID-19: lessons from a case with severe pneumonia' by Guilpain et al. Annals of the Rheumatic Diseases. 2021;80(1):e11.PubMedCrossRef Monti S, Montecucco C. Diagnostic and therapeutic challenges for patients with ANCA-associated vasculitides at the time of COVID-19. Response to: 'Rituximab for granulomatosis with polyangiitis in the pandemic of COVID-19: lessons from a case with severe pneumonia' by Guilpain et al. Annals of the Rheumatic Diseases. 2021;80(1):e11.PubMedCrossRef
81.
go back to reference Sanchez-Piedra C, Diaz-Torne C, Manero J, Pego-Reigosa JM, Rúa-Figueroa Í, Gonzalez-Gay MA, et al. Clinical features and outcomes of COVID-19 in patients with rheumatic diseases treated with biological and synthetic targeted therapies. Annals of the Rheumatic Diseases. 2020;79(7):988–90.PubMedCrossRef Sanchez-Piedra C, Diaz-Torne C, Manero J, Pego-Reigosa JM, Rúa-Figueroa Í, Gonzalez-Gay MA, et al. Clinical features and outcomes of COVID-19 in patients with rheumatic diseases treated with biological and synthetic targeted therapies. Annals of the Rheumatic Diseases. 2020;79(7):988–90.PubMedCrossRef
82.
go back to reference Loarce-Martos J, Garcia-Fernandez A, Lopez-Gutierrez F, Garcia-Garcia V, Calvo-Sanz L, Del Bosque-Granero I, et al. High rates of severe disease and death due to SARS-CoV-2 infection in rheumatic disease patients treated with rituximab: a descriptive study. Rheumatol Int. 2020;40(12):2015–21.PubMedCrossRef Loarce-Martos J, Garcia-Fernandez A, Lopez-Gutierrez F, Garcia-Garcia V, Calvo-Sanz L, Del Bosque-Granero I, et al. High rates of severe disease and death due to SARS-CoV-2 infection in rheumatic disease patients treated with rituximab: a descriptive study. Rheumatol Int. 2020;40(12):2015–21.PubMedCrossRef
83.
go back to reference Kow CS, Hasan SS. Use of rituximab and the risk of adverse clinical outcomes in COVID-19 patients with systemic rheumatic disease. Rheumatol Int. 2020;40(12):2117–8.PubMedCrossRefPubMedCentral Kow CS, Hasan SS. Use of rituximab and the risk of adverse clinical outcomes in COVID-19 patients with systemic rheumatic disease. Rheumatol Int. 2020;40(12):2117–8.PubMedCrossRefPubMedCentral
84.
go back to reference Soresina A, Moratto D, Chiarini M, Paolillo C, Baresi G, Focà E, et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatric Allergy and Immunology. 2020;31(5):565–9.PubMedCrossRef Soresina A, Moratto D, Chiarini M, Paolillo C, Baresi G, Focà E, et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatric Allergy and Immunology. 2020;31(5):565–9.PubMedCrossRef
85.
go back to reference Quinti I, Lougaris V, Milito C, Cinetto F, Pecoraro A, Mezzaroma I, et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. The Journal of allergy and clinical immunology. 2020;146(1):211–3.e4.PubMedPubMedCentralCrossRef Quinti I, Lougaris V, Milito C, Cinetto F, Pecoraro A, Mezzaroma I, et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. The Journal of allergy and clinical immunology. 2020;146(1):211–3.e4.PubMedPubMedCentralCrossRef
86.
go back to reference Papp KA, Haraoui B, Kumar D, Marshall JK, Bissonnette R, Bitton A, et al. Vaccination guidelines for patients with immune-mediated disorders on immunosuppressive therapies. Journal of Cutaneous Medicine and Surgery. 2019;23(1):50–74.PubMedCrossRef Papp KA, Haraoui B, Kumar D, Marshall JK, Bissonnette R, Bitton A, et al. Vaccination guidelines for patients with immune-mediated disorders on immunosuppressive therapies. Journal of Cutaneous Medicine and Surgery. 2019;23(1):50–74.PubMedCrossRef
87.
go back to reference Thibaud S, Tremblay D, Bhalla S, Zimmerman B, Sigel K, Gabrilove J. Protective role of Bruton tyrosine kinase inhibitors in patients with chronic lymphocytic leukaemia and COVID-19. British Journal of Haematology. 2020;190(2):e73–e6.PubMedCrossRef Thibaud S, Tremblay D, Bhalla S, Zimmerman B, Sigel K, Gabrilove J. Protective role of Bruton tyrosine kinase inhibitors in patients with chronic lymphocytic leukaemia and COVID-19. British Journal of Haematology. 2020;190(2):e73–e6.PubMedCrossRef
88.
go back to reference Roschewski M, Lionakis MS, Sharman JP, Roswarski J, Goy A, Monticelli MA, et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci Immunol. 2020;5(48). Roschewski M, Lionakis MS, Sharman JP, Roswarski J, Goy A, Monticelli MA, et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci Immunol. 2020;5(48).
89.
go back to reference Kos I, Balensiefer B, Roth S, Ahlgrimm M, Sester M, Schmidt T, et al. Prolonged course of COVID-19-associated pneumonia in a B-cell depleted patient after rituximab. Frontiers in Oncology. 2020;10:1578.PubMedPubMedCentralCrossRef Kos I, Balensiefer B, Roth S, Ahlgrimm M, Sester M, Schmidt T, et al. Prolonged course of COVID-19-associated pneumonia in a B-cell depleted patient after rituximab. Frontiers in Oncology. 2020;10:1578.PubMedPubMedCentralCrossRef
90.
go back to reference Yasuda H, Tsukune Y, Watanabe N, Sugimoto K, Uchimura A, Tateyama M, et al. Persistent COVID-19 pneumonia and failure to develop anti-SARS-CoV-2 antibodies during rituximab maintenance therapy for follicular lymphoma. Clinical Lymphoma, Myeloma & Leukemia. 2020;20(11):774–6.CrossRef Yasuda H, Tsukune Y, Watanabe N, Sugimoto K, Uchimura A, Tateyama M, et al. Persistent COVID-19 pneumonia and failure to develop anti-SARS-CoV-2 antibodies during rituximab maintenance therapy for follicular lymphoma. Clinical Lymphoma, Myeloma & Leukemia. 2020;20(11):774–6.CrossRef
91.
go back to reference Leipe J, Wilke EL, Ebert MP, Teufel A, Reindl W. Long, relapsing, and atypical symptomatic course of COVID-19 in a B-cell-depleted patient after rituximab. Seminars in Arthritis and Rheumatism. 2020;50(5):1087–8.PubMedPubMedCentralCrossRef Leipe J, Wilke EL, Ebert MP, Teufel A, Reindl W. Long, relapsing, and atypical symptomatic course of COVID-19 in a B-cell-depleted patient after rituximab. Seminars in Arthritis and Rheumatism. 2020;50(5):1087–8.PubMedPubMedCentralCrossRef
92.
go back to reference Schulze-Koops H, Krueger K, Vallbracht IV, Hasseli R, Skapenko A. Treatment of patients with inflammatory rheumatic diseases with rituximab should be carefully considered during the SARS-CoV-2/COVID-19 pandemic. Response to: 'Persistence of rT-PCR-SARS-CoV-2 infection and delayed serological response, as a possible effect of rituximab according to the hypothesis of Schulze-Koops et al' by Benucci et al. Annals of the rheumatic diseases. 2020. Schulze-Koops H, Krueger K, Vallbracht IV, Hasseli R, Skapenko A. Treatment of patients with inflammatory rheumatic diseases with rituximab should be carefully considered during the SARS-CoV-2/COVID-19 pandemic. Response to: 'Persistence of rT-PCR-SARS-CoV-2 infection and delayed serological response, as a possible effect of rituximab according to the hypothesis of Schulze-Koops et al' by Benucci et al. Annals of the rheumatic diseases. 2020.
93.
go back to reference Padmanabhan A, Connelly-Smith L, Aqui N, Balogun RA, Klingel R, Meyer E, et al. Guidelines on the use of therapeutic apheresis in clinical practice - evidence-based approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue. Journal of Clinical Apheresis. 2019;34(3):171–354.PubMedCrossRef Padmanabhan A, Connelly-Smith L, Aqui N, Balogun RA, Klingel R, Meyer E, et al. Guidelines on the use of therapeutic apheresis in clinical practice - evidence-based approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue. Journal of Clinical Apheresis. 2019;34(3):171–354.PubMedCrossRef
94.
go back to reference Ishikawa T, Abe S, Kojima Y, Sano T, Iwanaga A, Seki KI, et al. Prediction of a sustained viral response in chronic hepatitis C patients who undergo induction therapy with double filtration plasmapheresis plus interferon-beta/ribavirin. Exp Ther Med. 2015;9(5):1646–50.PubMedPubMedCentralCrossRef Ishikawa T, Abe S, Kojima Y, Sano T, Iwanaga A, Seki KI, et al. Prediction of a sustained viral response in chronic hepatitis C patients who undergo induction therapy with double filtration plasmapheresis plus interferon-beta/ribavirin. Exp Ther Med. 2015;9(5):1646–50.PubMedPubMedCentralCrossRef
95.
go back to reference Jagdish K, Jacob S, Varughese S, David VG, Mohapatra A, Valson A, et al. Effect of double filtration plasmapheresis on various plasma components and patient safety: a prospective observational cohort study. Indian J Nephrol. 2017;27(5):377–83.PubMedPubMedCentralCrossRef Jagdish K, Jacob S, Varughese S, David VG, Mohapatra A, Valson A, et al. Effect of double filtration plasmapheresis on various plasma components and patient safety: a prospective observational cohort study. Indian J Nephrol. 2017;27(5):377–83.PubMedPubMedCentralCrossRef
96.
go back to reference Liu X, Zhang Y, Xu X, Du W, Su K, Zhu C, et al. Evaluation of plasma exchange and continuous veno-venous hemofiltration for the treatment of severe avian influenza A (H7N9): a cohort study. Ther Apher Dial. 2015;19(2):178–84.PubMedCrossRef Liu X, Zhang Y, Xu X, Du W, Su K, Zhu C, et al. Evaluation of plasma exchange and continuous veno-venous hemofiltration for the treatment of severe avian influenza A (H7N9): a cohort study. Ther Apher Dial. 2015;19(2):178–84.PubMedCrossRef
97.
go back to reference Patel P, Nandwani V, Vanchiere J, Conrad SA, Scott LK. Use of therapeutic plasma exchange as a rescue therapy in 2009 pH1N1 influenza A--an associated respiratory failure and hemodynamic shock. Pediatr Crit Care Med. 2011;12(2):e87–9.PubMedPubMedCentralCrossRef Patel P, Nandwani V, Vanchiere J, Conrad SA, Scott LK. Use of therapeutic plasma exchange as a rescue therapy in 2009 pH1N1 influenza A--an associated respiratory failure and hemodynamic shock. Pediatr Crit Care Med. 2011;12(2):e87–9.PubMedPubMedCentralCrossRef
98.
go back to reference Adeli SH, Asghari A, Tabarraii R, Shajari R, Afshari S, Kalhor N, et al. Therapeutic plasma exchange as a rescue therapy in patients with coronavirus disease 2019: a case series. Pol Arch Intern Med. 2020;130(5):455–8.PubMed Adeli SH, Asghari A, Tabarraii R, Shajari R, Afshari S, Kalhor N, et al. Therapeutic plasma exchange as a rescue therapy in patients with coronavirus disease 2019: a case series. Pol Arch Intern Med. 2020;130(5):455–8.PubMed
99.
100.
go back to reference Tabibi S, Tabibi T, Conic RRZ, Banisaeed N, Streiff MB. Therapeutic plasma exchange: a potential management strategy for critically ill COVID-19 patients. J Intensive Care Med. 2020;35(9):827–35.PubMedPubMedCentralCrossRef Tabibi S, Tabibi T, Conic RRZ, Banisaeed N, Streiff MB. Therapeutic plasma exchange: a potential management strategy for critically ill COVID-19 patients. J Intensive Care Med. 2020;35(9):827–35.PubMedPubMedCentralCrossRef
101.
go back to reference Kesici S, Yavuz S, Bayrakci B. Get rid of the bad first: therapeutic plasma exchange with convalescent plasma for severe COVID-19. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(23):12526–7.PubMedPubMedCentralCrossRef Kesici S, Yavuz S, Bayrakci B. Get rid of the bad first: therapeutic plasma exchange with convalescent plasma for severe COVID-19. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(23):12526–7.PubMedPubMedCentralCrossRef
102.
go back to reference Lin JH, Chen YC, Lu CL, Hsu YN, Wang WJ. Application of plasma exchange in association with higher dose CVVH in cytokine storm complicating COVID-19. J Formos Med Assoc. 2020;119(6):1116–8.PubMedPubMedCentralCrossRef Lin JH, Chen YC, Lu CL, Hsu YN, Wang WJ. Application of plasma exchange in association with higher dose CVVH in cytokine storm complicating COVID-19. J Formos Med Assoc. 2020;119(6):1116–8.PubMedPubMedCentralCrossRef
103.
go back to reference Ma J, Xia P, Zhou Y, Liu Z, Zhou X, Wang J, et al. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19. Clinical Immunology (Orlando, Fla). 2020;214:108408.CrossRef Ma J, Xia P, Zhou Y, Liu Z, Zhou X, Wang J, et al. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19. Clinical Immunology (Orlando, Fla). 2020;214:108408.CrossRef
104.
go back to reference Shi H, Zhou C, He P, Huang S, Duan Y, Wang X, et al. Successful treatment with plasma exchange followed by intravenous immunoglobulin in a critically ill patient with COVID-19. Int J Antimicrob Agents. 2020;56(2):105974.PubMedPubMedCentralCrossRef Shi H, Zhou C, He P, Huang S, Duan Y, Wang X, et al. Successful treatment with plasma exchange followed by intravenous immunoglobulin in a critically ill patient with COVID-19. Int J Antimicrob Agents. 2020;56(2):105974.PubMedPubMedCentralCrossRef
105.
go back to reference Aminimoghaddam S, Afrooz N, Nasiri S, Motaghi Nejad O, Mahmoudzadeh F. A COVID-19 pregnant patient with thrombotic thrombocytopenic purpura: a case report. J Med Case Rep. 2021;15(1):104.PubMedPubMedCentralCrossRef Aminimoghaddam S, Afrooz N, Nasiri S, Motaghi Nejad O, Mahmoudzadeh F. A COVID-19 pregnant patient with thrombotic thrombocytopenic purpura: a case report. J Med Case Rep. 2021;15(1):104.PubMedPubMedCentralCrossRef
106.
go back to reference Dogan L, Kaya D, Sarikaya T, Zengin R, Dincer A, Akinci IO, et al. Plasmapheresis treatment in COVID-19-related autoimmune meningoencephalitis: case series. Brain, Behavior, and Immunity. 2020;87:155–8.PubMedPubMedCentralCrossRef Dogan L, Kaya D, Sarikaya T, Zengin R, Dincer A, Akinci IO, et al. Plasmapheresis treatment in COVID-19-related autoimmune meningoencephalitis: case series. Brain, Behavior, and Immunity. 2020;87:155–8.PubMedPubMedCentralCrossRef
107.
go back to reference Gucyetmez B, Atalan HK, Sertdemir I, Cakir U, Telci L. Therapeutic plasma exchange in patients with COVID-19 pneumonia in intensive care unit: a retrospective study. Critical care (London, England). 2020;24(1):492.CrossRef Gucyetmez B, Atalan HK, Sertdemir I, Cakir U, Telci L. Therapeutic plasma exchange in patients with COVID-19 pneumonia in intensive care unit: a retrospective study. Critical care (London, England). 2020;24(1):492.CrossRef
108.
go back to reference Honore PM, Mugisha A, Kugener L, Redant S, Attou R, Gallerani A, et al. Therapeutic plasma exchange as a routine therapy in septic shock and as an experimental treatment for COVID-19: we are not sure. Crit Care. 2020;24(1):226.PubMedPubMedCentralCrossRef Honore PM, Mugisha A, Kugener L, Redant S, Attou R, Gallerani A, et al. Therapeutic plasma exchange as a routine therapy in septic shock and as an experimental treatment for COVID-19: we are not sure. Crit Care. 2020;24(1):226.PubMedPubMedCentralCrossRef
109.
110.
go back to reference Keith P, Day M, Perkins L, Moyer L, Hewitt K, Wells A. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19. Crit Care. 2020;24(1):128.PubMedPubMedCentralCrossRef Keith P, Day M, Perkins L, Moyer L, Hewitt K, Wells A. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19. Crit Care. 2020;24(1):128.PubMedPubMedCentralCrossRef
111.
go back to reference Faqihi F, Alharthy A, Alodat M, Asad D, Aletreby W, Kutsogiannis DJ, et al. A pilot study of therapeutic plasma exchange for serious SARS CoV-2 disease (COVID-19): a structured summary of a randomized controlled trial study protocol. Trials. 2020;21(1):506.PubMedPubMedCentralCrossRef Faqihi F, Alharthy A, Alodat M, Asad D, Aletreby W, Kutsogiannis DJ, et al. A pilot study of therapeutic plasma exchange for serious SARS CoV-2 disease (COVID-19): a structured summary of a randomized controlled trial study protocol. Trials. 2020;21(1):506.PubMedPubMedCentralCrossRef
112.
go back to reference Ranganathan C, Fusinski SD, Obeid IM, Ismail KM, Ferguson DT, Raminick MF, et al. Therapeutic plasma exchange for persistent encephalopathy associated with Covid-19. eNeurologicalSci. 2021;22:100327.PubMedPubMedCentralCrossRef Ranganathan C, Fusinski SD, Obeid IM, Ismail KM, Ferguson DT, Raminick MF, et al. Therapeutic plasma exchange for persistent encephalopathy associated with Covid-19. eNeurologicalSci. 2021;22:100327.PubMedPubMedCentralCrossRef
113.
go back to reference Merigan TC, Reed SE, Hall TS, Tyrrell DA. Inhibition of respiratory virus infection by locally applied interferon. Lancet (London, England). 1973;1(7803):563–7.CrossRef Merigan TC, Reed SE, Hall TS, Tyrrell DA. Inhibition of respiratory virus infection by locally applied interferon. Lancet (London, England). 1973;1(7803):563–7.CrossRef
114.
go back to reference Hoofnagle JH, Mullen KD, Jones DB, Rustgi V, Di Bisceglie A, Peters M, et al. Treatment of chronic non-A,non-B hepatitis with recombinant human alpha interferon. A preliminary report. The New England journal of medicine. 1986;315(25):1575–8.PubMedCrossRef Hoofnagle JH, Mullen KD, Jones DB, Rustgi V, Di Bisceglie A, Peters M, et al. Treatment of chronic non-A,non-B hepatitis with recombinant human alpha interferon. A preliminary report. The New England journal of medicine. 1986;315(25):1575–8.PubMedCrossRef
115.
go back to reference Aghemo A, Rumi MG, Colombo M. Pegylated interferons alpha2a and alpha2b in the treatment of chronic hepatitis C. Nature Reviews Gastroenterology & Hepatology. 2010;7(9):485–94.CrossRef Aghemo A, Rumi MG, Colombo M. Pegylated interferons alpha2a and alpha2b in the treatment of chronic hepatitis C. Nature Reviews Gastroenterology & Hepatology. 2010;7(9):485–94.CrossRef
116.
go back to reference Lin FC, Young HA. Interferons: success in anti-viral immunotherapy. Cytokine & Growth Factor Reviews. 2014;25(4):369–76.CrossRef Lin FC, Young HA. Interferons: success in anti-viral immunotherapy. Cytokine & Growth Factor Reviews. 2014;25(4):369–76.CrossRef
117.
go back to reference Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet (London, England). 1998;352(9139):1498-504. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet (London, England). 1998;352(9139):1498-504.
118.
go back to reference Tenembaum SN, Banwell B, Pohl D, Krupp LB, Boyko A, Meinel M, et al. Subcutaneous interferon Beta-1a in pediatric multiple sclerosis: a retrospective study. Journal of Child Neurology. 2013;28(7):849–56.PubMedCrossRef Tenembaum SN, Banwell B, Pohl D, Krupp LB, Boyko A, Meinel M, et al. Subcutaneous interferon Beta-1a in pediatric multiple sclerosis: a retrospective study. Journal of Child Neurology. 2013;28(7):849–56.PubMedCrossRef
119.
go back to reference Kalincik T, Spelman T, Trojano M, Duquette P, Izquierdo G, Grammond P, et al. Persistence on therapy and propensity matched outcome comparison of two subcutaneous interferon beta 1a dosages for multiple sclerosis. PloS one. 2013;8(5):e63480.PubMedPubMedCentralCrossRef Kalincik T, Spelman T, Trojano M, Duquette P, Izquierdo G, Grammond P, et al. Persistence on therapy and propensity matched outcome comparison of two subcutaneous interferon beta 1a dosages for multiple sclerosis. PloS one. 2013;8(5):e63480.PubMedPubMedCentralCrossRef
120.
go back to reference Sulkowski MS, Cooper C, Hunyady B, Jia J, Ogurtsov P, Peck-Radosavljevic M, et al. Management of adverse effects of Peg-IFN and ribavirin therapy for hepatitis C. Nature Reviews Gastroenterology & Hepatology. 2011;8(4):212–23.CrossRef Sulkowski MS, Cooper C, Hunyady B, Jia J, Ogurtsov P, Peck-Radosavljevic M, et al. Management of adverse effects of Peg-IFN and ribavirin therapy for hepatitis C. Nature Reviews Gastroenterology & Hepatology. 2011;8(4):212–23.CrossRef
121.
go back to reference Okanoue T, Sakamoto S, Itoh Y, Minami M, Yasui K, Sakamoto M, et al. Side effects of high-dose interferon therapy for chronic hepatitis C. Journal of Hepatology. 1996;25(3):283–91.PubMedCrossRef Okanoue T, Sakamoto S, Itoh Y, Minami M, Yasui K, Sakamoto M, et al. Side effects of high-dose interferon therapy for chronic hepatitis C. Journal of Hepatology. 1996;25(3):283–91.PubMedCrossRef
122.
go back to reference Raison CL, Demetrashvili M, Capuron L, Miller AH. Neuropsychiatric adverse effects of interferon-alpha: recognition and management. CNS Drugs. 2005;19(2):105–23.PubMedPubMedCentralCrossRef Raison CL, Demetrashvili M, Capuron L, Miller AH. Neuropsychiatric adverse effects of interferon-alpha: recognition and management. CNS Drugs. 2005;19(2):105–23.PubMedPubMedCentralCrossRef
123.
go back to reference Vallbracht A, Treuner J, Flehmig B, Joester KE, Niethammer D. Interferon-neutralizing antibodies in a patient treated with human fibroblast interferon. Nature. 1981;289(5797):496–7.PubMedCrossRef Vallbracht A, Treuner J, Flehmig B, Joester KE, Niethammer D. Interferon-neutralizing antibodies in a patient treated with human fibroblast interferon. Nature. 1981;289(5797):496–7.PubMedCrossRef
124.
go back to reference Dunn N, Fogdell-Hahn A, Hillert J, Spelman T. Long-term consequences of high titer neutralizing antibodies to interferon-β in multiple sclerosis. Frontiers in immunology. 2020;11:583560.PubMedPubMedCentralCrossRef Dunn N, Fogdell-Hahn A, Hillert J, Spelman T. Long-term consequences of high titer neutralizing antibodies to interferon-β in multiple sclerosis. Frontiers in immunology. 2020;11:583560.PubMedPubMedCentralCrossRef
125.
go back to reference Aruna LL. Anti-interferon alpha antibodies in patients with high-risk BCR/ABL-negative myeloproliferative neoplasms treated with recombinant human interferon-α. Medical Science Monitor. 2018;24:2302–9.PubMedPubMedCentralCrossRef Aruna LL. Anti-interferon alpha antibodies in patients with high-risk BCR/ABL-negative myeloproliferative neoplasms treated with recombinant human interferon-α. Medical Science Monitor. 2018;24:2302–9.PubMedPubMedCentralCrossRef
126.
go back to reference Steis RG, Smith JW 2nd, Urba WJ, Clark JW, Itri LM, Evans LM, et al. Resistance to recombinant interferon alfa-2a in hairy-cell leukemia associated with neutralizing anti-interferon antibodies. The New England Journal of Medicine. 1988;318(22):1409–13.PubMedCrossRef Steis RG, Smith JW 2nd, Urba WJ, Clark JW, Itri LM, Evans LM, et al. Resistance to recombinant interferon alfa-2a in hairy-cell leukemia associated with neutralizing anti-interferon antibodies. The New England Journal of Medicine. 1988;318(22):1409–13.PubMedCrossRef
127.
go back to reference Andlauer TFM, Link J, Martin D, Ryner M, Hermanrud C, Grummel V, et al. Treatment- and population-specific genetic risk factors for anti-drug antibodies against interferon-beta: a GWAS. BMC Medicine. 2020;18(1):298.PubMedPubMedCentralCrossRef Andlauer TFM, Link J, Martin D, Ryner M, Hermanrud C, Grummel V, et al. Treatment- and population-specific genetic risk factors for anti-drug antibodies against interferon-beta: a GWAS. BMC Medicine. 2020;18(1):298.PubMedPubMedCentralCrossRef
128.
go back to reference Pellegrini S, Uze G. An old cytokine against a new virus? J Interferon Cytokine Res. 2020;40(8):425–8.PubMedCrossRef Pellegrini S, Uze G. An old cytokine against a new virus? J Interferon Cytokine Res. 2020;40(8):425–8.PubMedCrossRef
129.
go back to reference Wang N, Zhan Y, Zhu L, Hou Z, Liu F, Song P, et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe. 2020;28(3):455–64 e2.PubMedPubMedCentralCrossRef Wang N, Zhan Y, Zhu L, Hou Z, Liu F, Song P, et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe. 2020;28(3):455–64 e2.PubMedPubMedCentralCrossRef
131.
go back to reference Monk PD, Marsden RJ, Tear VJ, Brookes J, Batten TN, Mankowski M, et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021;9(2):196–206.PubMedCrossRef Monk PD, Marsden RJ, Tear VJ, Brookes J, Batten TN, Mankowski M, et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021;9(2):196–206.PubMedCrossRef
132.
go back to reference Hung IF, Lung KC, Tso EY, Liu R, Chung TW, Chu MY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695–704.PubMedPubMedCentralCrossRef Hung IF, Lung KC, Tso EY, Liu R, Chung TW, Chu MY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695–704.PubMedPubMedCentralCrossRef
133.
go back to reference Davoudi-Monfared E, Rahmani H, Khalili H, Hajiabdolbaghi M, Salehi M, Abbasian L, et al. A randomized clinical trial of the efficacy and safety of interferon beta-1a in treatment of severe COVID-19. Antimicrob Agents Chemother. 2020;64(9). Davoudi-Monfared E, Rahmani H, Khalili H, Hajiabdolbaghi M, Salehi M, Abbasian L, et al. A randomized clinical trial of the efficacy and safety of interferon beta-1a in treatment of severe COVID-19. Antimicrob Agents Chemother. 2020;64(9).
134.
go back to reference Rahmani H, Davoudi-Monfared E, Nourian A, Khalili H, Hajizadeh N, Jalalabadi NZ, et al. Interferon beta-1b in treatment of severe COVID-19: a randomized clinical trial. Int Immunopharmacol. 2020;88:106903.PubMedPubMedCentralCrossRef Rahmani H, Davoudi-Monfared E, Nourian A, Khalili H, Hajizadeh N, Jalalabadi NZ, et al. Interferon beta-1b in treatment of severe COVID-19: a randomized clinical trial. Int Immunopharmacol. 2020;88:106903.PubMedPubMedCentralCrossRef
135.
go back to reference Dastan F, Nadji SA, Saffaei A, Marjani M, Moniri A, Jamaati H, et al. Subcutaneous administration of interferon beta-1a for COVID-19: a non-controlled prospective trial. Int Immunopharmacol. 2020;85:106688.PubMedPubMedCentralCrossRef Dastan F, Nadji SA, Saffaei A, Marjani M, Moniri A, Jamaati H, et al. Subcutaneous administration of interferon beta-1a for COVID-19: a non-controlled prospective trial. Int Immunopharmacol. 2020;85:106688.PubMedPubMedCentralCrossRef
136.
go back to reference Mary A, Henaut L, Macq PY, Badoux L, Cappe A, Poree T, et al. Rationale for COVID-19 treatment by nebulized interferon-beta-1b-literature review and personal preliminary experience. Front Pharmacol. 2020;11:592543.PubMedPubMedCentralCrossRef Mary A, Henaut L, Macq PY, Badoux L, Cappe A, Poree T, et al. Rationale for COVID-19 treatment by nebulized interferon-beta-1b-literature review and personal preliminary experience. Front Pharmacol. 2020;11:592543.PubMedPubMedCentralCrossRef
137.
go back to reference Hong SI, Ryu BH, Chong YP, Lee S, Kim S, Kim HC, et al. Five severe COVID-19 pneumonia patients treated with triple combination therapy with lopinavir/ritonavir, hydroxychloroquine, and interferon beta-1b. Int J Antimicrob Agents. 2020;56(2):106052.PubMedPubMedCentralCrossRef Hong SI, Ryu BH, Chong YP, Lee S, Kim S, Kim HC, et al. Five severe COVID-19 pneumonia patients treated with triple combination therapy with lopinavir/ritonavir, hydroxychloroquine, and interferon beta-1b. Int J Antimicrob Agents. 2020;56(2):106052.PubMedPubMedCentralCrossRef
138.
go back to reference Angus DC, Derde L, Al-Beidh F, Annane D, Arabi Y, Beane A, et al. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: the REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. Jama. 2020;324(13):1317–29.PubMedPubMedCentralCrossRef Angus DC, Derde L, Al-Beidh F, Annane D, Arabi Y, Beane A, et al. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: the REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. Jama. 2020;324(13):1317–29.PubMedPubMedCentralCrossRef
139.
go back to reference Bosi E, Bosi C, Rovere Querini P, Mancini N, Calori G, Ruggeri A, et al. Interferon beta-1a (IFNbeta-1a) in COVID-19 patients (INTERCOP): study protocol for a randomized controlled trial. Trials. 2020;21(1):939.PubMedPubMedCentralCrossRef Bosi E, Bosi C, Rovere Querini P, Mancini N, Calori G, Ruggeri A, et al. Interferon beta-1a (IFNbeta-1a) in COVID-19 patients (INTERCOP): study protocol for a randomized controlled trial. Trials. 2020;21(1):939.PubMedPubMedCentralCrossRef
140.
go back to reference Alavi Darazam I, Hatami F, Rabiei MM, Pourhoseingholi MA, Moradi O, Shokouhi S, et al. An investigation into the beneficial effects of high-dose interferon beta 1-a, compared to low-dose interferon beta 1-a (the base therapeutic regimen) in moderate to severe COVID-19: A structured summary of a study protocol for a randomized controlled l trial. Trials. 2020;21(1):880.PubMedPubMedCentralCrossRef Alavi Darazam I, Hatami F, Rabiei MM, Pourhoseingholi MA, Moradi O, Shokouhi S, et al. An investigation into the beneficial effects of high-dose interferon beta 1-a, compared to low-dose interferon beta 1-a (the base therapeutic regimen) in moderate to severe COVID-19: A structured summary of a study protocol for a randomized controlled l trial. Trials. 2020;21(1):880.PubMedPubMedCentralCrossRef
141.
go back to reference Hart BJ, Dyall J, Postnikova E, Zhou H, Kindrachuk J, Johnson RF, et al. Interferon-beta and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. The Journal of General Virology. 2014;95(Pt 3):571–7.PubMedPubMedCentralCrossRef Hart BJ, Dyall J, Postnikova E, Zhou H, Kindrachuk J, Johnson RF, et al. Interferon-beta and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. The Journal of General Virology. 2014;95(Pt 3):571–7.PubMedPubMedCentralCrossRef
142.
143.
go back to reference Mantlo E, Bukreyeva N, Maruyama J, Paessler S, Huang C. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020;179:104811.PubMedPubMedCentralCrossRef Mantlo E, Bukreyeva N, Maruyama J, Paessler S, Huang C. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020;179:104811.PubMedPubMedCentralCrossRef
144.
go back to reference Arabi YM, Asiri AY, Assiri AM, Balkhy HH, Al Bshabshe A, Al Jeraisy M, et al. Interferon beta-1b and lopinavir-ritonavir for Middle East respiratory syndrome. N Engl J Med. 2020;383(17):1645–56.PubMedCrossRef Arabi YM, Asiri AY, Assiri AM, Balkhy HH, Al Bshabshe A, Al Jeraisy M, et al. Interferon beta-1b and lopinavir-ritonavir for Middle East respiratory syndrome. N Engl J Med. 2020;383(17):1645–56.PubMedCrossRef
145.
go back to reference Khamis F, Al Naabi H, Al Lawati A, Ambusaidi Z, Al Sharji M, Al Barwani U, et al. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. Int J Infect Dis. 2021;102:538–43.PubMedCrossRef Khamis F, Al Naabi H, Al Lawati A, Ambusaidi Z, Al Sharji M, Al Barwani U, et al. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. Int J Infect Dis. 2021;102:538–43.PubMedCrossRef
146.
go back to reference To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020;20(5):565–74.PubMedPubMedCentralCrossRef To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020;20(5):565–74.PubMedPubMedCentralCrossRef
147.
go back to reference Hillyer P, Mane VP, Schramm LM, Puig M, Verthelyi D, Chen A, et al. Expression profiles of human interferon-alpha and interferon-lambda subtypes are ligand- and cell-dependent. Immunology and Cell Biology. 2012;90(8):774–83.PubMedPubMedCentralCrossRef Hillyer P, Mane VP, Schramm LM, Puig M, Verthelyi D, Chen A, et al. Expression profiles of human interferon-alpha and interferon-lambda subtypes are ligand- and cell-dependent. Immunology and Cell Biology. 2012;90(8):774–83.PubMedPubMedCentralCrossRef
148.
go back to reference Crotta S, Davidson S, Mahlakoiv T, Desmet CJ, Buckwalter MR, Albert ML, et al. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathogens. 2013;9(11):e1003773.PubMedPubMedCentralCrossRef Crotta S, Davidson S, Mahlakoiv T, Desmet CJ, Buckwalter MR, Albert ML, et al. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathogens. 2013;9(11):e1003773.PubMedPubMedCentralCrossRef
149.
go back to reference Vanderheiden A, Ralfs P, Chirkova T, Upadhyay AA, Zimmerman MG, Bedoya S, et al. Type I and type III interferons restrict SARS-CoV-2 infection of human airway epithelial cultures. Journal of Virology. 2020;94(19). Vanderheiden A, Ralfs P, Chirkova T, Upadhyay AA, Zimmerman MG, Bedoya S, et al. Type I and type III interferons restrict SARS-CoV-2 infection of human airway epithelial cultures. Journal of Virology. 2020;94(19).
150.
go back to reference Dinnon KH 3rd, Leist SR, Schäfer A, Edwards CE, Martinez DR, Montgomery SA, et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature. 2020;586(7830):560–6.PubMedPubMedCentralCrossRef Dinnon KH 3rd, Leist SR, Schäfer A, Edwards CE, Martinez DR, Montgomery SA, et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature. 2020;586(7830):560–6.PubMedPubMedCentralCrossRef
151.
go back to reference Feld JJ, Kandel C, Biondi MJ, Kozak RA, Zahoor MA, Lemieux C, et al. Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial. Lancet Respiratory Med. Feld JJ, Kandel C, Biondi MJ, Kozak RA, Zahoor MA, Lemieux C, et al. Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial. Lancet Respiratory Med.
152.
go back to reference Jagannathan P, Andrews JR, Bonilla H, Hedlin H, Jacobson KB, Balasubramanian V, et al. Peginterferon lambda-1a for treatment of outpatients with uncomplicated COVID-19: a randomized placebo-controlled trial. Nat Commun. 2021;12(1):1967.PubMedPubMedCentralCrossRef Jagannathan P, Andrews JR, Bonilla H, Hedlin H, Jacobson KB, Balasubramanian V, et al. Peginterferon lambda-1a for treatment of outpatients with uncomplicated COVID-19: a randomized placebo-controlled trial. Nat Commun. 2021;12(1):1967.PubMedPubMedCentralCrossRef
153.
go back to reference Major J, Crotta S, Llorian M, McCabe TM, Gad HH, Priestnall SL, et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science. 2020;369(6504):712–7.PubMedPubMedCentralCrossRef Major J, Crotta S, Llorian M, McCabe TM, Gad HH, Priestnall SL, et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science. 2020;369(6504):712–7.PubMedPubMedCentralCrossRef
154.
go back to reference Broggi A, Ghosh S, Sposito B, Spreafico R, Balzarini F, Lo Cascio A, et al. Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science. 2020;369(6504):706–12.PubMedPubMedCentralCrossRef Broggi A, Ghosh S, Sposito B, Spreafico R, Balzarini F, Lo Cascio A, et al. Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science. 2020;369(6504):706–12.PubMedPubMedCentralCrossRef
Metadata
Title
Harnessing Type I IFN Immunity Against SARS-CoV-2 with Early Administration of IFN-β
Authors
Donald C. Vinh
Laurent Abel
Paul Bastard
Matthew P. Cheng
Antonio Condino-Neto
Peter K. Gregersen
Filomeen Haerynck
Maria-Pia Cicalese
David Hagin
Pere Soler-Palacín
Anna M. Planas
Aurora Pujol
Luigi D. Notarangelo
Qian Zhang
Helen C. Su
Jean-Laurent Casanova
Isabelle Meyts
On behalf of the COVID Human Genetic Effort
Publication date
01-10-2021
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 7/2021
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-021-01068-6

Other articles of this Issue 7/2021

Journal of Clinical Immunology 7/2021 Go to the issue