Skip to main content
Top
Published in: Trials 1/2020

Open Access 01-12-2020 | SARS-CoV-2 | Study protocol

Interferon β-1a (IFNβ-1a) in COVID-19 patients (INTERCOP): study protocol for a randomized controlled trial

Authors: Emanuele Bosi, Carlo Bosi, Patrizia Rovere Querini, Nicasio Mancini, Giliola Calori, Annalisa Ruggeri, Cecilia Canzonieri, Luciano Callegaro, Massimo Clementi, Francesco De Cobelli, Massimo Filippi, Marco Bregni

Published in: Trials | Issue 1/2020

Login to get access

Abstract

Background

Pharmacological therapies of proven efficacy in coronavirus disease 2019 (COVID-19) are still lacking. We have identified IFNβ-1a as the most promising drug to be repurposed for COVID-19. The rationale relies on the evidence of IFNβ anti-viral activity in vitro against SARS-CoV-2 and animal models resembling SARS-CoV-2 infection and on a recent clinical trial where IFNβ was indicated as the key component of a successful therapeutic combination.

Methods

This is a randomized, controlled, open-label, monocentric, phase II trial (INTERCOP trial). One hundred twenty-six patients with positive swab detection of SARS-CoV-2, radiological signs of pneumonia, and mild-to-moderate disease will be randomized 2:1 to IFNβ-1a in addition to standard of care vs standard of care alone. No other anti-viral drugs will be used as part of the regimens, both in the control and the intervention arms. IFNβ-1a will be administered subcutaneously at the dose of 44 mcg (equivalent to 12 million international units) three times per week, at least 48 h apart, for a total of 2 weeks. The primary outcome is the time to negative conversion of SARS-CoV-2 nasopharyngeal swabs. Secondary outcomes include improvement or worsening in a clinical severity score measured on a 7-point ordinal scale (including transfer to intensive care unit and death), oxygen- and ventilator-free days, mortality, changes in pulmonary computed tomography severity score, hospital stay duration, reduction of viral load measured on nasopharyngeal swabs, number of serious adverse events, and changes in biochemical markers of organ dysfunction. Exploratory outcomes include blood cell counts, cytokine and inflammatory profile, peripheral mRNA expression profiles of interferon-stimulated genes, and antibodies to SARS-CoV-2 and to IFNβ-1a. INTERCOP is the first study to specifically investigate the clinical benefits of IFNβ-1a in COVID-19 patients.

Discussion

Potential implications of this trial are multifaceted: should the primary outcome be fulfilled and the treatment be safe, one may envisage that IFNβ-1a be used to reduce the infectivity of patients with mild-to moderate disease. In case IFNβ-1a reduced the duration of hospital stay and/or ameliorated the clinical status, it may become a cornerstone of COVID-19 treatment.

Trial registration

EudraCT 2020-002458-25. Registered on May 11, 2020
ClinicalTrials.gov Identifier: NCT04449380
Literature
1.
go back to reference Fried MW, Shiffman ML, Reddy KR, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med. 2002;347:975–82.CrossRef Fried MW, Shiffman ML, Reddy KR, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med. 2002;347:975–82.CrossRef
2.
go back to reference Durelli L, Verdun E, Barbero P, et al. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet. 2002 Apr 27;359(9316):1453–60.CrossRef Durelli L, Verdun E, Barbero P, et al. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet. 2002 Apr 27;359(9316):1453–60.CrossRef
3.
go back to reference Cinatl J, Morgenstern B, Bauer G, et al. Treatment of SARS with human interferons. Lancet. 2003 Jul 26;362(9380):293–4.CrossRef Cinatl J, Morgenstern B, Bauer G, et al. Treatment of SARS with human interferons. Lancet. 2003 Jul 26;362(9380):293–4.CrossRef
4.
go back to reference Chan JFW, Chan KH, Kao RYT, et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Inf Secur. 2013 Dec 1;67(6):606–16. Chan JFW, Chan KH, Kao RYT, et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Inf Secur. 2013 Dec 1;67(6):606–16.
5.
go back to reference Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):222.CrossRef Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):222.CrossRef
6.
go back to reference Chan JF, Yao Y, Yeung ML, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis. 2015;212(12):1904–13.CrossRef Chan JF, Yao Y, Yeung ML, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis. 2015;212(12):1904–13.CrossRef
7.
go back to reference Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–45 e9.CrossRef Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–45 e9.CrossRef
8.
go back to reference Vijay R, Perlman S. Middle East respiratory syndrome and severe acute respiratory syndrome. Curr Opin Virol. 2016;16:70–6.CrossRef Vijay R, Perlman S. Middle East respiratory syndrome and severe acute respiratory syndrome. Curr Opin Virol. 2016;16:70–6.CrossRef
9.
go back to reference Clementi N, Ferrarese R, Criscuolo E, et al. Interferon-β 1a inhibits SARS-CoV-2 in vitro when administered after virus infection. J Infect Dis. 2020; jiaa350. [published online ahead of print, 2020 Jun 19]. Clementi N, Ferrarese R, Criscuolo E, et al. Interferon-β 1a inhibits SARS-CoV-2 in vitro when administered after virus infection. J Infect Dis. 2020; jiaa350. [published online ahead of print, 2020 Jun 19].
11.
go back to reference Hung IFN, Lung KC, Tso EYK, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020 May 30;395(10238):1695–704.CrossRef Hung IFN, Lung KC, Tso EYK, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020 May 30;395(10238):1695–704.CrossRef
13.
go back to reference Ranieri VM, Pettilä V, Karvonen MK, et al. Effect of intravenous interferon β-1a on death and days free from mechanical ventilation among patients with moderate to severe acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2020. https://doi.org/10.1001/jama.2019.22525 [published online ahead of print, 2020 Feb 17]. Ranieri VM, Pettilä V, Karvonen MK, et al. Effect of intravenous interferon β-1a on death and days free from mechanical ventilation among patients with moderate to severe acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2020. https://​doi.​org/​10.​1001/​jama.​2019.​22525 [published online ahead of print, 2020 Feb 17].
14.
go back to reference McGonagle D, O’Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2:e437–45.CrossRef McGonagle D, O’Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2:e437–45.CrossRef
15.
go back to reference Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020 [published online ahead of print, 2020 Apr 15]. Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020 [published online ahead of print, 2020 Apr 15].
16.
go back to reference Hippensteel JA, WB LR, Colbert JF, Langouët-Astrié CJ, Schmidt EP. Heparin as a therapy for COVID-19: current evidence and future possibilities. Am J Physiol Lung Cell Mol Physiol. [published online ahead of print, 2020 Jun 10]. Hippensteel JA, WB LR, Colbert JF, Langouët-Astrié CJ, Schmidt EP. Heparin as a therapy for COVID-19: current evidence and future possibilities. Am J Physiol Lung Cell Mol Physiol. [published online ahead of print, 2020 Jun 10].
17.
go back to reference Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19 - preliminary report. N Engl J Med. 2020; NEJMoa2007764. [published online ahead of print, 2020 May 22]. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19 - preliminary report. N Engl J Med. 2020; NEJMoa2007764. [published online ahead of print, 2020 May 22].
18.
go back to reference Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N Engl J Med. 2020;382(25):2411–8.CrossRef Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N Engl J Med. 2020;382(25):2411–8.CrossRef
19.
go back to reference PRISMS Study Group and the University of British Columbia MS/MRI Analysis Group. PRISMS-4: long-term efficacy of interferon-beta-1a in relapsing MS. Neurology. 2001;56(12):1628–36.CrossRef PRISMS Study Group and the University of British Columbia MS/MRI Analysis Group. PRISMS-4: long-term efficacy of interferon-beta-1a in relapsing MS. Neurology. 2001;56(12):1628–36.CrossRef
20.
go back to reference Ebers GC, Rice G, Lesaux J, et al. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet. 1998 Nov 7;352(9139):1498–504.CrossRef Ebers GC, Rice G, Lesaux J, et al. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet. 1998 Nov 7;352(9139):1498–504.CrossRef
22.
go back to reference Lampasona V, Rio J, Franciotta D, et al. Serial immunoprecipitation assays for interferon--(IFN)-beta antibodies in multiple sclerosis patients. Eur Cytokine Netw. 2003;14(3):154–7.PubMed Lampasona V, Rio J, Franciotta D, et al. Serial immunoprecipitation assays for interferon--(IFN)-beta antibodies in multiple sclerosis patients. Eur Cytokine Netw. 2003;14(3):154–7.PubMed
23.
go back to reference Polman CH, Bertolotto A, Deisenhammer F, et al. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol. 2010;9(7):740–50.CrossRef Polman CH, Bertolotto A, Deisenhammer F, et al. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol. 2010;9(7):740–50.CrossRef
Metadata
Title
Interferon β-1a (IFNβ-1a) in COVID-19 patients (INTERCOP): study protocol for a randomized controlled trial
Authors
Emanuele Bosi
Carlo Bosi
Patrizia Rovere Querini
Nicasio Mancini
Giliola Calori
Annalisa Ruggeri
Cecilia Canzonieri
Luciano Callegaro
Massimo Clementi
Francesco De Cobelli
Massimo Filippi
Marco Bregni
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Trials / Issue 1/2020
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-020-04864-4

Other articles of this Issue 1/2020

Trials 1/2020 Go to the issue