Skip to main content
Top
Published in: Journal of Clinical Immunology 3/2021

01-04-2021 | Lymphopenia | Original Article

Characterization of Infants with Idiopathic Transient and Persistent T Cell Lymphopenia Identified by Newborn Screening—a Single-Center Experience in New York State

Authors: Artemio M. Jongco III, Robert Sporter, Elise Hon, Omer Elshaigi, Shouling Zhang, Foysal Daian, Emily Bae, Amanda Innamorato, Catherine Capo, Brianne Navetta-Modrov, David W. Rosenthal, Vincent R. Bonagura

Published in: Journal of Clinical Immunology | Issue 3/2021

Login to get access

Abstract

Purpose

Newborn screening (NBS) quantifies T cell receptor excision circles (TREC) and identifies infants with T cell lymphopenia (TCL). This study elucidates the demographics, laboratory characteristics, genetics, and clinical outcomes following live viral vaccine administration of term infants with transient or persistent idiopathic TCL.

Methods

A single-center retrospective analysis was performed from September 2010 through June 2018. Laboratory variables were compared with Mann-Whitney tests. Correlations between initial TREC levels and T cell counts were determined by Spearman tests.

Results

Twenty-two transient and 21 persistent TCL infants were identified. Males comprised 68% of the transient and 52% of the persistent TCL cohorts. Whites comprised 23% of the transient and 29% of the persistent cohorts. Median initial TREC levels did not differ (66 vs. 60 TRECs/μL of blood, P = 0.58). The transient cohort had higher median initial CD3+ (2135 vs. 1169 cells/μL, P < 0.001), CD4+ (1460 vs. 866 cells/μL, P < 0.001), and CD8+ (538 vs. 277 cells/μL, P < 0.001) counts. The median age of resolution for the transient cohort was 38 days. Genetic testing revealed 2 genes of interest which warrant further study and several variants of uncertain significance in immunology-related genes in the persistent cohort. 19 transient and 14 persistent subjects received the initial rotavirus and/or MMRV immunization. No adverse reactions to live viral vaccines were reported in either cohort.

Conclusion

Transient and persistent TCL infants differ by demographic, laboratory, and clinical characteristics. Select transient and persistent TCL patients may safely receive live attenuated viral vaccines, but larger confirmatory studies are needed.
Appendix
Available only for authorised users
Literature
1.
go back to reference Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32(3):338–43.CrossRefPubMed Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32(3):338–43.CrossRefPubMed
2.
go back to reference Routes JM, Grossman WJ, Verbsky J, Laessig RH, Hoffman GL, Brokopp CD, et al. Statewide newborn screening for severe T-cell lymphopenia. JAMA. 2009;302(22):2465–70.PubMedCrossRef Routes JM, Grossman WJ, Verbsky J, Laessig RH, Hoffman GL, Brokopp CD, et al. Statewide newborn screening for severe T-cell lymphopenia. JAMA. 2009;302(22):2465–70.PubMedCrossRef
3.
go back to reference Comeau AM, Hale JE, Pai SY, Bonilla FA, Notarangelo LD, Pasternack MS, et al. Guidelines for implementation of population-based newborn screening for severe combined immunodeficiency. J Inherit Metab Dis. 2010;33(Suppl 2):S273–81.PubMedCrossRef Comeau AM, Hale JE, Pai SY, Bonilla FA, Notarangelo LD, Pasternack MS, et al. Guidelines for implementation of population-based newborn screening for severe combined immunodeficiency. J Inherit Metab Dis. 2010;33(Suppl 2):S273–81.PubMedCrossRef
4.
go back to reference Gerstel-Thompson JL, Wilkey JF, Baptiste JC, Navas JS, Pai SY, Pass KA, et al. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening. Clin Chem. 2010;56(9):1466–74.PubMedCrossRef Gerstel-Thompson JL, Wilkey JF, Baptiste JC, Navas JS, Pai SY, Pass KA, et al. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening. Clin Chem. 2010;56(9):1466–74.PubMedCrossRef
5.
go back to reference Accetta D, Syverson G, Bonacci B, Reddy S, Bengtson C, Surfus J, et al. Human phagocyte defect caused by a Rac2 mutation detected by means of neonatal screening for T-cell lymphopenia. J Allergy Clin Immunol. 2011;127(2):535–8.e1–2.PubMedCrossRef Accetta D, Syverson G, Bonacci B, Reddy S, Bengtson C, Surfus J, et al. Human phagocyte defect caused by a Rac2 mutation detected by means of neonatal screening for T-cell lymphopenia. J Allergy Clin Immunol. 2011;127(2):535–8.e1–2.PubMedCrossRef
6.
go back to reference Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.PubMedPubMedCentralCrossRef Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.PubMedPubMedCentralCrossRef
7.
go back to reference Vogel BH, Bonagura V, Weinberg GA, Ballow M, Isabelle J, DiAntonio L, et al. Newborn screening for SCID in New York State: experience from the first two years. J Clin Immunol. 2014;34(3):289–303.PubMedPubMedCentralCrossRef Vogel BH, Bonagura V, Weinberg GA, Ballow M, Isabelle J, DiAntonio L, et al. Newborn screening for SCID in New York State: experience from the first two years. J Clin Immunol. 2014;34(3):289–303.PubMedPubMedCentralCrossRef
8.
go back to reference Buelow BJ, Verbsky JW, Routes JM. Newborn screening for SCID: lessons learned. Expert Rev Hematol. 2016;9(6):579–84.PubMedCrossRef Buelow BJ, Verbsky JW, Routes JM. Newborn screening for SCID: lessons learned. Expert Rev Hematol. 2016;9(6):579–84.PubMedCrossRef
9.
go back to reference Amatuni GS, Currier RJ, Church JA, Bishop T, Grimbacher E, Nguyen AA, et al. Newborn Screening for Severe Combined Immunodeficiency and T-cell Lymphopenia in California, 2010–2017. Pediatrics. 2019;143(2). Amatuni GS, Currier RJ, Church JA, Bishop T, Grimbacher E, Nguyen AA, et al. Newborn Screening for Severe Combined Immunodeficiency and T-cell Lymphopenia in California, 2010–2017. Pediatrics. 2019;143(2).
10.
go back to reference Serana F, Chiarini M, Zanotti C, Sottini A, Bertoli D, Bosio A, et al. Use of V(D)J recombination excision circles to identify T- and B-cell defects and to monitor the treatment in primary and acquired immunodeficiencies. J Transl Med. 2013;11:119.PubMedPubMedCentralCrossRef Serana F, Chiarini M, Zanotti C, Sottini A, Bertoli D, Bosio A, et al. Use of V(D)J recombination excision circles to identify T- and B-cell defects and to monitor the treatment in primary and acquired immunodeficiencies. J Transl Med. 2013;11:119.PubMedPubMedCentralCrossRef
11.
go back to reference Verbsky JW, Baker MW, Grossman WJ, Hintermeyer M, Dasu T, Bonacci B, et al. Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008-2011). J Clin Immunol. 2012;32(1):82–8.PubMedCrossRef Verbsky JW, Baker MW, Grossman WJ, Hintermeyer M, Dasu T, Bonacci B, et al. Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008-2011). J Clin Immunol. 2012;32(1):82–8.PubMedCrossRef
12.
go back to reference Verbsky J, Thakar M, Routes J. The Wisconsin approach to newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol. 2012;129(3):622–7.PubMedCrossRef Verbsky J, Thakar M, Routes J. The Wisconsin approach to newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol. 2012;129(3):622–7.PubMedCrossRef
13.
15.
go back to reference Albin-Leeds S, Ochoa J, Mehta H, Vogel BH, Caggana M, Bonagura V, et al. Idiopathic T cell lymphopenia identified in New York State Newborn Screening. Clin Immunol. 2017;183:36–40.PubMedPubMedCentralCrossRef Albin-Leeds S, Ochoa J, Mehta H, Vogel BH, Caggana M, Bonagura V, et al. Idiopathic T cell lymphopenia identified in New York State Newborn Screening. Clin Immunol. 2017;183:36–40.PubMedPubMedCentralCrossRef
16.
go back to reference Aluri J, Gupta MR, Dalvi A, Mhatre S, Kulkarni M, Desai M, et al. Lymphopenia and severe combined immunodeficiency (SCID) - think before you ink. Indian J Pediatr. 2019;86:584–9.PubMedCrossRef Aluri J, Gupta MR, Dalvi A, Mhatre S, Kulkarni M, Desai M, et al. Lymphopenia and severe combined immunodeficiency (SCID) - think before you ink. Indian J Pediatr. 2019;86:584–9.PubMedCrossRef
17.
go back to reference Rios X, Chinn IK, Orange JS, Hanson CI, Rider NL. T-cell lymphopenia detected by newborn screening in two siblings with an Xq13.1 duplication. Front Pediatr. 2017;5:156.PubMedPubMedCentralCrossRef Rios X, Chinn IK, Orange JS, Hanson CI, Rider NL. T-cell lymphopenia detected by newborn screening in two siblings with an Xq13.1 duplication. Front Pediatr. 2017;5:156.PubMedPubMedCentralCrossRef
18.
go back to reference Patrawala M, Kobrynski L. Nonsevere combined immunodeficiency T-cell lymphopenia identified through newborn screening. Curr Opin Allergy Clin Immunol. 2019;19(6):586–93.PubMedCrossRef Patrawala M, Kobrynski L. Nonsevere combined immunodeficiency T-cell lymphopenia identified through newborn screening. Curr Opin Allergy Clin Immunol. 2019;19(6):586–93.PubMedCrossRef
19.
go back to reference Kobrynski LJ. Identification of non-severe combined immune deficiency T-cell lymphopenia at newborn screening for severe combined immune deficiency. Ann Allergy Asthma Immunol. 2019;123(5):424–7.PubMedCrossRef Kobrynski LJ. Identification of non-severe combined immune deficiency T-cell lymphopenia at newborn screening for severe combined immune deficiency. Ann Allergy Asthma Immunol. 2019;123(5):424–7.PubMedCrossRef
20.
go back to reference Gholamin M, Bazi A, Abbaszadegan MR. Idiopathic lymphopenia. Curr Opin Hematol. 2015;22(1):46–52.PubMed Gholamin M, Bazi A, Abbaszadegan MR. Idiopathic lymphopenia. Curr Opin Hematol. 2015;22(1):46–52.PubMed
21.
go back to reference Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003;112(5):973–80.PubMedCrossRef Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003;112(5):973–80.PubMedCrossRef
22.
go back to reference Baldeyron C, Soria G, Roche D, Cook AJ, Almouzni G. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol. 2011;193(1):81–95.PubMedPubMedCentralCrossRef Baldeyron C, Soria G, Roche D, Cook AJ, Almouzni G. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol. 2011;193(1):81–95.PubMedPubMedCentralCrossRef
23.
go back to reference Rodriges Blanko E, Kadyrova LY, Kadyrov FA. DNA mismatch repair interacts with CAF-1- and ASF1A-H3-H4-dependent histone (H3-H4)2 tetramer deposition. J Biol Chem. 2016;291(17):9203–17.PubMedPubMedCentralCrossRef Rodriges Blanko E, Kadyrova LY, Kadyrov FA. DNA mismatch repair interacts with CAF-1- and ASF1A-H3-H4-dependent histone (H3-H4)2 tetramer deposition. J Biol Chem. 2016;291(17):9203–17.PubMedPubMedCentralCrossRef
24.
go back to reference Takahashi D, Hase K, Kimura S, Nakatsu F, Ohmae M, Mandai Y, et al. The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology. 2011;141(2):621–32.PubMedCrossRef Takahashi D, Hase K, Kimura S, Nakatsu F, Ohmae M, Mandai Y, et al. The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology. 2011;141(2):621–32.PubMedCrossRef
25.
go back to reference Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 2001;7(2):273–82.PubMedCrossRef Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 2001;7(2):273–82.PubMedCrossRef
26.
go back to reference Xia F, Taghian DG, DeFrank JS, Zeng ZC, Willers H, Iliakis G, et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci U S A. 2001;98(15):8644–9.PubMedPubMedCentralCrossRef Xia F, Taghian DG, DeFrank JS, Zeng ZC, Willers H, Iliakis G, et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci U S A. 2001;98(15):8644–9.PubMedPubMedCentralCrossRef
27.
go back to reference Bergmann C, Fliegauf M, Brüchle NO, Frank V, Olbrich H, Kirschner J, et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet. 2008;82(4):959–70.PubMedPubMedCentralCrossRef Bergmann C, Fliegauf M, Brüchle NO, Frank V, Olbrich H, Kirschner J, et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet. 2008;82(4):959–70.PubMedPubMedCentralCrossRef
28.
go back to reference Moylett EH, Wasan AN, Noroski LM, Shearer WT. Live viral vaccines in patients with partial DiGeorge syndrome: clinical experience and cellular immunity. Clin Immunol. 2004;112(1):106–12.PubMedCrossRef Moylett EH, Wasan AN, Noroski LM, Shearer WT. Live viral vaccines in patients with partial DiGeorge syndrome: clinical experience and cellular immunity. Clin Immunol. 2004;112(1):106–12.PubMedCrossRef
29.
go back to reference Waters V, Peterson KS, LaRussa P. Live viral vaccines in a DiGeorge syndrome patient. Arch Dis Child. 2007;96(6):519–20.CrossRef Waters V, Peterson KS, LaRussa P. Live viral vaccines in a DiGeorge syndrome patient. Arch Dis Child. 2007;96(6):519–20.CrossRef
30.
go back to reference Markert ML. Defects in thymic development. In: Sullivan KE, Stiehm RE, editors. Stiehm’s Immune Deficiencies. Second ed. London: Elsevier; 2020. p. 357–80.CrossRef Markert ML. Defects in thymic development. In: Sullivan KE, Stiehm RE, editors. Stiehm’s Immune Deficiencies. Second ed. London: Elsevier; 2020. p. 357–80.CrossRef
31.
go back to reference Perez EE, Bokszczanin A, McDonald-McGinn D, Zackai EH, Sullivan KE. Safety of live viral vaccines in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Pediatrics. 2003;122(4):e325.CrossRef Perez EE, Bokszczanin A, McDonald-McGinn D, Zackai EH, Sullivan KE. Safety of live viral vaccines in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Pediatrics. 2003;122(4):e325.CrossRef
32.
go back to reference Azzari C, Gambineri E, Resti M, Moriondo M, Betti L, Saldias LR, et al. Safety and immunogenicity of measles-mumps-rubella vaccine in children with congenital immunodeficiency (DiGeorge syndrome). Vaccine. 2005;23(14):1668–71.PubMedCrossRef Azzari C, Gambineri E, Resti M, Moriondo M, Betti L, Saldias LR, et al. Safety and immunogenicity of measles-mumps-rubella vaccine in children with congenital immunodeficiency (DiGeorge syndrome). Vaccine. 2005;23(14):1668–71.PubMedCrossRef
33.
go back to reference Davis CM, Kancherla VS, Reddy A, Chan W, Yeh HW, Noroski LM, et al. Development of specific T-cell responses to Candida and tetanus antigens in partial DiGeorge syndrome. J Allergy Clin Immunol. 2008;122(6):1194–9.PubMedCrossRef Davis CM, Kancherla VS, Reddy A, Chan W, Yeh HW, Noroski LM, et al. Development of specific T-cell responses to Candida and tetanus antigens in partial DiGeorge syndrome. J Allergy Clin Immunol. 2008;122(6):1194–9.PubMedCrossRef
36.
go back to reference Gans MD, Gavrilova T. Retrospective analysis of a New York newborn screen severe combined immunodeficiency referral center. J Clin Immunol. 2020;40(3):456–65.PubMedCrossRef Gans MD, Gavrilova T. Retrospective analysis of a New York newborn screen severe combined immunodeficiency referral center. J Clin Immunol. 2020;40(3):456–65.PubMedCrossRef
37.
go back to reference Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, et al. The histone chaperone CAF-1 safeguards somatic cell identity. Nature. 2015;528(7581):218–24.PubMedPubMedCentralCrossRef Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, et al. The histone chaperone CAF-1 safeguards somatic cell identity. Nature. 2015;528(7581):218–24.PubMedPubMedCentralCrossRef
38.
go back to reference Ng C, Aichinger M, Nguyen T, Au C, Najar T, Wu L, et al. The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain. Genes Dev. 2019;33(11–12):669–83.PubMedPubMedCentralCrossRef Ng C, Aichinger M, Nguyen T, Au C, Najar T, Wu L, et al. The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain. Genes Dev. 2019;33(11–12):669–83.PubMedPubMedCentralCrossRef
39.
go back to reference Bosticardo M, Yamazaki Y, Cowan J, Giardino G, Corsino C, Scalia G, et al. Heterozygous FOXN1 variants cause low TRECs and severe T cell lymphopenia, revealing a crucial role of FOXN1 in supporting early thymopoiesis. Am J Hum Genet. 2019;105(3):549–61.PubMedPubMedCentralCrossRef Bosticardo M, Yamazaki Y, Cowan J, Giardino G, Corsino C, Scalia G, et al. Heterozygous FOXN1 variants cause low TRECs and severe T cell lymphopenia, revealing a crucial role of FOXN1 in supporting early thymopoiesis. Am J Hum Genet. 2019;105(3):549–61.PubMedPubMedCentralCrossRef
40.
go back to reference Quinn J, Modell V, Holle J, Truty R, Aradhya S, Johnson B, et al. Jeffrey’s insights: Jeffrey Modell Foundation’s global genetic sequencing pilot program to identify specific primary immunodeficiency defects to optimize disease management and treatment. Immunol Res. 2020;68(3):126–34.PubMedPubMedCentralCrossRef Quinn J, Modell V, Holle J, Truty R, Aradhya S, Johnson B, et al. Jeffrey’s insights: Jeffrey Modell Foundation’s global genetic sequencing pilot program to identify specific primary immunodeficiency defects to optimize disease management and treatment. Immunol Res. 2020;68(3):126–34.PubMedPubMedCentralCrossRef
41.
go back to reference Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, et al. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: a working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2020;145(1):46–69.PubMedCrossRef Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, et al. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: a working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2020;145(1):46–69.PubMedCrossRef
43.
go back to reference Zhang S, Elshaigi O, Daian F, Bae E, Innamorato A, Navetta-Modrov B, et al. Describing single nucleotide polymorphisms (SNPs) transient T cell lymphopenia in the United States Immunodeficiency Network (USIDNET) following infants with low lymphocytes (FILL) program and a single referral center from 2010-2017. J Clin Immunol. 2019;39(Suppl 1):S13. Zhang S, Elshaigi O, Daian F, Bae E, Innamorato A, Navetta-Modrov B, et al. Describing single nucleotide polymorphisms (SNPs) transient T cell lymphopenia in the United States Immunodeficiency Network (USIDNET) following infants with low lymphocytes (FILL) program and a single referral center from 2010-2017. J Clin Immunol. 2019;39(Suppl 1):S13.
44.
go back to reference Gans MD, Saavedra-Matiz CA, Bernstein L. A single nucleotide polymorphism in the T-cell receptor excision circle. J Allergy Clin Immunol Pract. 2020;8(2):803–5.e1.PubMedCrossRef Gans MD, Saavedra-Matiz CA, Bernstein L. A single nucleotide polymorphism in the T-cell receptor excision circle. J Allergy Clin Immunol Pract. 2020;8(2):803–5.e1.PubMedCrossRef
45.
go back to reference Dorsey MJ, Dvorak CC, Cowan MJ, Puck JM. Treatment of infants identified as having severe combined immunodeficiency by means of newborn screening. J Allergy Clin Immunol. 2017;139(3):733–42.PubMedPubMedCentralCrossRef Dorsey MJ, Dvorak CC, Cowan MJ, Puck JM. Treatment of infants identified as having severe combined immunodeficiency by means of newborn screening. J Allergy Clin Immunol. 2017;139(3):733–42.PubMedPubMedCentralCrossRef
46.
go back to reference Amatuni GS, Sciortino S, Currier RJ, Naides SJ, Church JA, Puck JM. Reference intervals for lymphocyte subsets in preterm and term neonates without immune defects. J Allergy Clin Immunol. 2019;144(6):1674–83.PubMedPubMedCentralCrossRef Amatuni GS, Sciortino S, Currier RJ, Naides SJ, Church JA, Puck JM. Reference intervals for lymphocyte subsets in preterm and term neonates without immune defects. J Allergy Clin Immunol. 2019;144(6):1674–83.PubMedPubMedCentralCrossRef
47.
go back to reference Shoenfeld Y, Alkan ML, Asaly A, Carmeli Y, Katz M. Benign familial leukopenia and neutropenia in different ethnic groups. Eur J Haematol. 1988;41(3):273–7.PubMedCrossRef Shoenfeld Y, Alkan ML, Asaly A, Carmeli Y, Katz M. Benign familial leukopenia and neutropenia in different ethnic groups. Eur J Haematol. 1988;41(3):273–7.PubMedCrossRef
48.
go back to reference Gitlin D, Janeway CA. Agammaglobulinemia, congenital, acquired and transient forms. Prog Hematol. 1956;1:318–29.PubMed Gitlin D, Janeway CA. Agammaglobulinemia, congenital, acquired and transient forms. Prog Hematol. 1956;1:318–29.PubMed
49.
go back to reference Zonios DI, Falloon J, Bennett JE, Shaw PA, Chaitt D, Baseler MW, et al. Idiopathic CD4+ lymphocytopenia: natural history and prognostic factors. Blood. 2008;112(2):287–94.PubMedPubMedCentralCrossRef Zonios DI, Falloon J, Bennett JE, Shaw PA, Chaitt D, Baseler MW, et al. Idiopathic CD4+ lymphocytopenia: natural history and prognostic factors. Blood. 2008;112(2):287–94.PubMedPubMedCentralCrossRef
50.
go back to reference Busch MP, Valinsky JE, Paglieroni T, Prince HE, Crutcher GJ, Gjerset GF, et al. Screening blood donors for idiopthic CD4+ T-lymphocyotpenia. Transfusion. 1994;34(3):192–7.PubMedCrossRef Busch MP, Valinsky JE, Paglieroni T, Prince HE, Crutcher GJ, Gjerset GF, et al. Screening blood donors for idiopthic CD4+ T-lymphocyotpenia. Transfusion. 1994;34(3):192–7.PubMedCrossRef
51.
go back to reference Lisco A, Freeman AF, Sereti I. Idiopathic CD4 lymphopenia. In: Sullivan KE, Stiehm RE, editors. Stiehm’s immune deficiencies. Second ed. London: Elsevier; 2020. p. 381–92.CrossRef Lisco A, Freeman AF, Sereti I. Idiopathic CD4 lymphopenia. In: Sullivan KE, Stiehm RE, editors. Stiehm’s immune deficiencies. Second ed. London: Elsevier; 2020. p. 381–92.CrossRef
52.
53.
go back to reference Régent A, Autran B, Carcelain G, Cheynier R, Terrier B, Charmeteau-De Muylder B, et al. Idiopathic CD4 lymphocytopenia: clinical and immunologic characteristics and follow-up of 40 patients. Medicine (Baltimore). 2014;93(2):61–72.CrossRef Régent A, Autran B, Carcelain G, Cheynier R, Terrier B, Charmeteau-De Muylder B, et al. Idiopathic CD4 lymphocytopenia: clinical and immunologic characteristics and follow-up of 40 patients. Medicine (Baltimore). 2014;93(2):61–72.CrossRef
54.
go back to reference Kuo CY, Garcia-Lloret MI, Slev P, Bohnsack JF, Chen K. Profound T-cell lymphopenia associated with prenatal exposure to purine antagonists detected by TREC newborn screening. J Allergy Clin Immunol Pract. 2017;5(1):198–200.PubMedPubMedCentralCrossRef Kuo CY, Garcia-Lloret MI, Slev P, Bohnsack JF, Chen K. Profound T-cell lymphopenia associated with prenatal exposure to purine antagonists detected by TREC newborn screening. J Allergy Clin Immunol Pract. 2017;5(1):198–200.PubMedPubMedCentralCrossRef
Metadata
Title
Characterization of Infants with Idiopathic Transient and Persistent T Cell Lymphopenia Identified by Newborn Screening—a Single-Center Experience in New York State
Authors
Artemio M. Jongco III
Robert Sporter
Elise Hon
Omer Elshaigi
Shouling Zhang
Foysal Daian
Emily Bae
Amanda Innamorato
Catherine Capo
Brianne Navetta-Modrov
David W. Rosenthal
Vincent R. Bonagura
Publication date
01-04-2021
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 3/2021
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-020-00957-6

Other articles of this Issue 3/2021

Journal of Clinical Immunology 3/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.