Skip to main content
Top
Published in: Journal of Clinical Immunology 1/2016

01-05-2016

Dissecting Epigenetic Dysregulation of Primary Antibody Deficiencies

Authors: Virginia C. Rodríguez-Cortez, Lucia del Pino-Molina, Javier Rodríguez-Ubreva, Eduardo López-Granados, Esteban Ballestar

Published in: Journal of Clinical Immunology | Special Issue 1/2016

Login to get access

Abstract

Primary antibody deficiencies (PADs), the most prevalent inherited primary immunodeficiencies (PIDs), are associated with a wide range of genetic alterations (both monogenic or polygenic) in B cell-specific genes. However, correlations between the genotype and clinical manifestations are not evident in all cases indicating that genetic interactions, environmental and epigenetic factors may have a role in PAD pathogenesis. The recent identification of key defects in DNA methylation in common variable immunodeficiency as well as the multiple evidences on the role of epigenetic control during B cell differentiation, activation and during antibody formation highlight the importance of investing research efforts in dissecting the participation of epigenetic defects in this group of diseases. This review focuses on the role of epigenetic control in B cell biology which can provide clues for the study of potential novel pathogenic defects involved in PADs.
Literature
1.
go back to reference A. Fischer, Human primary immunodeficiency diseases: a perspective., Nat Immunol, vol. 5, no. 1, pp. 23–30, Jan. 2004. A. Fischer, Human primary immunodeficiency diseases: a perspective., Nat Immunol, vol. 5, no. 1, pp. 23–30, Jan. 2004.
2.
go back to reference Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, Etzioni A, Franco JL, Gaspar HB, Holland SM, Klein C, Nonoyama S, Ochs HD, Oksenhendler E, Picard C, Puck JM, Sullivan K, Tang MLK Primary immunodeficiency diseases: An update on the classification from the International Union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:1–33. Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, Etzioni A, Franco JL, Gaspar HB, Holland SM, Klein C, Nonoyama S, Ochs HD, Oksenhendler E, Picard C, Puck JM, Sullivan K, Tang MLK Primary immunodeficiency diseases: An update on the classification from the International Union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:1–33.
3.
go back to reference Picard C, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, Conley ME, Cunningham-Rundles C, Etzioni A, Holland SM, Klein C, Nonoyama S, Ochs HD, Oksenhendler E, Puck JM, Sullivan KE, Tang MLK, Franco JL, Gaspar HB Primary immunodeficiency diseases: an update on the classification from the International Union Of Immunological Societies Expert Committee for primary immunodeficiency 2015. J Clin Immunol. 2015;35(8):696–726.CrossRefPubMedPubMedCentral Picard C, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, Conley ME, Cunningham-Rundles C, Etzioni A, Holland SM, Klein C, Nonoyama S, Ochs HD, Oksenhendler E, Puck JM, Sullivan KE, Tang MLK, Franco JL, Gaspar HB Primary immunodeficiency diseases: an update on the classification from the International Union Of Immunological Societies Expert Committee for primary immunodeficiency 2015. J Clin Immunol. 2015;35(8):696–726.CrossRefPubMedPubMedCentral
4.
go back to reference A. Durandy, S. Kracker, and A. Fischer, Primary antibody deficiencies., Nat Rev Immunol, vol. 13, no. 7, pp. 519–533, Jul. 2013. A. Durandy, S. Kracker, and A. Fischer, Primary antibody deficiencies., Nat Rev Immunol, vol. 13, no. 7, pp. 519–533, Jul. 2013.
5.
go back to reference Conley ME AK. Dobbs, D. M. Farmer, S. Kilic, K. Paris, S. Grigoriadou, E. coustan-smith, V. Howard, and D. Campana, primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol. Jan. 2009;27:199–227. Conley ME AK. Dobbs, D. M. Farmer, S. Kilic, K. Paris, S. Grigoriadou, E. coustan-smith, V. Howard, and D. Campana, primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol. Jan. 2009;27:199–227.
6.
go back to reference Y. Minegishi, E. Coustan-Smith, Y. H. Wang, M. D. Cooper, D. Campana, and M. E. Conley, Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia., J Exp Med., vol. 187, no. 1, pp. 71–77, Jan. 1998. Y. Minegishi, E. Coustan-Smith, Y. H. Wang, M. D. Cooper, D. Campana, and M. E. Conley, Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia., J Exp Med., vol. 187, no. 1, pp. 71–77, Jan. 1998.
7.
go back to reference L. Yel, Y. Minegishi, E. Coustan-Smith, R. H. Buckley, H. Trübel, L. M. Pachman, G. R. Kitchingman, D. Campana, J. Rohrer, and M. E. Conley, Mutations in the mu heavy-chain gene in patients with agammaglobulinemia., N Engl J Med, vol. 335, no. 20, pp. 1486–1493, Nov. 1996. L. Yel, Y. Minegishi, E. Coustan-Smith, R. H. Buckley, H. Trübel, L. M. Pachman, G. R. Kitchingman, D. Campana, J. Rohrer, and M. E. Conley, Mutations in the mu heavy-chain gene in patients with agammaglobulinemia., N Engl J Med, vol. 335, no. 20, pp. 1486–1493, Nov. 1996.
8.
go back to reference Y. Minegishi, E. Coustan-Smith, L. Rapalus, F. Ersoy, D. Campana, and M. E. Conley, Mutations in Igalpha (CD79a) result in a complete block in B-cell development., J Clin Invest, vol. 104, no. 8, pp. 1115–1121, Oct. 1999. Y. Minegishi, E. Coustan-Smith, L. Rapalus, F. Ersoy, D. Campana, and M. E. Conley, Mutations in Igalpha (CD79a) result in a complete block in B-cell development., J Clin Invest, vol. 104, no. 8, pp. 1115–1121, Oct. 1999.
9.
go back to reference S. Ferrari, V. Lougaris, S. Caraffi, R. Zuntini, J. Yang, A. Soresina, A. Meini, G. Cazzola, C. Rossi, M. Reth, and A. Plebani, Mutations of the Igbeta gene cause agammaglobulinemia in man., J Exp Med., vol. 204, no. 9, pp. 2047–2051, Sep. 2007. S. Ferrari, V. Lougaris, S. Caraffi, R. Zuntini, J. Yang, A. Soresina, A. Meini, G. Cazzola, C. Rossi, M. Reth, and A. Plebani, Mutations of the Igbeta gene cause agammaglobulinemia in man., J Exp Med., vol. 204, no. 9, pp. 2047–2051, Sep. 2007.
10.
go back to reference Y. Minegishi, J. Rohrer, E. Coustan-Smith, H. M. Lederman, R. Pappu, D. Campana, A. C. Chan, and M. E. Conley, An essential role for BLNK in human B cell development., Science, vol. 286, no. 5446, pp. 1954–1957, Dec. 1999. Y. Minegishi, J. Rohrer, E. Coustan-Smith, H. M. Lederman, R. Pappu, D. Campana, A. C. Chan, and M. E. Conley, An essential role for BLNK in human B cell development., Science, vol. 286, no. 5446, pp. 1954–1957, Dec. 1999.
11.
go back to reference M. E. Conley, D. Mathias, J. Treadaway, Y. Minegishi, and J. Rohrer, Mutations in btk in patients with presumed X-linked agammaglobulinemia., Am J Hum Genet, vol. 62, no. 5, pp. 1034–1043, May 1998. M. E. Conley, D. Mathias, J. Treadaway, Y. Minegishi, and J. Rohrer, Mutations in btk in patients with presumed X-linked agammaglobulinemia., Am J Hum Genet, vol. 62, no. 5, pp. 1034–1043, May 1998.
12.
go back to reference P. Revy, T. Muto, Y. Levy, A. Plebani, O. Sanal, N. Catalan, M. Forveille, A. Gennery, I. Tezcan, F. Ersoy, H. Kayserili, A. G. Ugazio, N. Brousse, M. Muramatsu, L. D. Notarangelo, K. Kinoshita, T. Honjo, A. Fischer, A. Durandy, C. Pediatrica, I. Medicina, and M. A. Nocivelli, Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2 ), vol. 102, no. 2, pp. 565–575, 2000. P. Revy, T. Muto, Y. Levy, A. Plebani, O. Sanal, N. Catalan, M. Forveille, A. Gennery, I. Tezcan, F. Ersoy, H. Kayserili, A. G. Ugazio, N. Brousse, M. Muramatsu, L. D. Notarangelo, K. Kinoshita, T. Honjo, A. Fischer, A. Durandy, C. Pediatrica, I. Medicina, and M. A. Nocivelli, Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2 ), vol. 102, no. 2, pp. 565–575, 2000.
13.
go back to reference E. López-Granados, R. Pérez de Diego, A. Ferreira Cerdán, G. Fontán Casariego, and M. C. García Rodríguez, A genotype-phenotype correlation study in a group of 54 patients with X-linked agammaglobulinemia., J Allergy Clin Immunol, vol. 116, no. 3, pp. 690–697, Sep. 2005. E. López-Granados, R. Pérez de Diego, A. Ferreira Cerdán, G. Fontán Casariego, and M. C. García Rodríguez, A genotype-phenotype correlation study in a group of 54 patients with X-linked agammaglobulinemia., J Allergy Clin Immunol, vol. 116, no. 3, pp. 690–697, Sep. 2005.
14.
go back to reference K. Liadaki, J. Sun, L. Hammarström, and Q. Pan-Hammarström, New facets of antibody deficiencies., Curr Opin Immunol, vol. 25, no. 5, pp. 629–638, Oct. 2013. K. Liadaki, J. Sun, L. Hammarström, and Q. Pan-Hammarström, New facets of antibody deficiencies., Curr Opin Immunol, vol. 25, no. 5, pp. 629–638, Oct. 2013.
15.
go back to reference A. Bird, Perceptions of epigenetics., Nature vol. 447, no. 7143, pp. 396–398, May 2007. A. Bird, Perceptions of epigenetics., Nature vol. 447, no. 7143, pp. 396–398, May 2007.
16.
go back to reference T. H. Bestor, The DNA methyltransferases of mammals., Hum Mol Genet, vol. 9, no. 16, pp. 2395–2402, Oct. 2000. T. H. Bestor, The DNA methyltransferases of mammals., Hum Mol Genet, vol. 9, no. 16, pp. 2395–2402, Oct. 2000.
17.
go back to reference C. Vinson and R. Chatterjee, CG methylation., Epigenomics, vol. 4, no. 6, pp. 655–663, Dec. 2012. C. Vinson and R. Chatterjee, CG methylation., Epigenomics, vol. 4, no. 6, pp. 655–663, Dec. 2012.
18.
go back to reference S. Eden and H. Cedar, Role of DNA methylation in the regulation of transcription., Curr Opin Genet Dev, vol. 4, no. 2, pp. 255–259, Apr. 1994. S. Eden and H. Cedar, Role of DNA methylation in the regulation of transcription., Curr Opin Genet Dev, vol. 4, no. 2, pp. 255–259, Apr. 1994.
19.
go back to reference B. D. Strahl and C. D. Allis, The language of covalent histone modifications., Nature, vol. 403, no. 6765, pp. 41–45, Jan. 2000. B. D. Strahl and C. D. Allis, The language of covalent histone modifications., Nature, vol. 403, no. 6765, pp. 41–45, Jan. 2000.
20.
go back to reference Tessarz P, Kouzarides T Histone core modifications regulating nucleosome structure and dynamics. Nat Publ Gr. 2014;15(11):703–8. Tessarz P, Kouzarides T Histone core modifications regulating nucleosome structure and dynamics. Nat Publ Gr. 2014;15(11):703–8.
21.
go back to reference E. Ballestar, Epigenetics lessons from twins: prospects for autoimmune disease., Clin Rev Allergy Immunol, vol. 39, no. 1, pp. 30–41, Aug. 2010. E. Ballestar, Epigenetics lessons from twins: prospects for autoimmune disease., Clin Rev Allergy Immunol, vol. 39, no. 1, pp. 30–41, Aug. 2010.
22.
go back to reference M. Symons, J. M. Derry, B. Karlak, S. Jiang, V. Lemahieu, F. Mccormick, U. Francke, and A. Abo, Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization., Cell, vol. 84, no. 5, pp. 723–734, Mar. 1996. M. Symons, J. M. Derry, B. Karlak, S. Jiang, V. Lemahieu, F. Mccormick, U. Francke, and A. Abo, Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization., Cell, vol. 84, no. 5, pp. 723–734, Mar. 1996.
23.
go back to reference Bosticardo M, Marangoni F, Aiuti A, Villa A, Roncarolo MG Review article recent advances in understanding the pathophysiology of wiskott-aldrich syndrome. Blood. 2009;113(25):6288–95.CrossRefPubMed Bosticardo M, Marangoni F, Aiuti A, Villa A, Roncarolo MG Review article recent advances in understanding the pathophysiology of wiskott-aldrich syndrome. Blood. 2009;113(25):6288–95.CrossRefPubMed
24.
go back to reference Buchbinder D, Nadeau K, Nugent D Monozygotic twin pair showing discordant phenotype for X-linked thrombocytopenia and wiskott-aldrich syndrome: A role for epigenetics? J Clin Immunol. 2011;31:773–7.CrossRefPubMed Buchbinder D, Nadeau K, Nugent D Monozygotic twin pair showing discordant phenotype for X-linked thrombocytopenia and wiskott-aldrich syndrome: A role for epigenetics? J Clin Immunol. 2011;31:773–7.CrossRefPubMed
25.
go back to reference Ehrlich M The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol. 2003;109:17–28.CrossRefPubMed Ehrlich M The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol. 2003;109:17–28.CrossRefPubMed
26.
go back to reference H. Heyn, E. Vidal, S. Sayols, J. V Sanchez-Mut, S. Moran, I. Medina, J. Sandoval, L. Simó-Riudalbas, K. Szczesna, D. Huertas, S. Gatto, M. R. Matarazzo, J. Dopazo, and M. Esteller, Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient., Epigenetics, vol. 7, no. 6, pp. 542–550, Jun. 2012. H. Heyn, E. Vidal, S. Sayols, J. V Sanchez-Mut, S. Moran, I. Medina, J. Sandoval, L. Simó-Riudalbas, K. Szczesna, D. Huertas, S. Gatto, M. R. Matarazzo, J. Dopazo, and M. Esteller, Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient., Epigenetics, vol. 7, no. 6, pp. 542–550, Jun. 2012.
27.
go back to reference Rodríguez-Cortez VC, del Pino-Molina L, Rodríguez-Ubreva J, Ciudad L, Gómez-Cabrero D, Company C, Urquiza JM, Tegnér J, Rodríguez-Gallego C, López-Granados E, Ballestar E Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naïve-to-memory B-cell transition. Nat Commun. Jun. 2015;6:7335. Rodríguez-Cortez VC, del Pino-Molina L, Rodríguez-Ubreva J, Ciudad L, Gómez-Cabrero D, Company C, Urquiza JM, Tegnér J, Rodríguez-Gallego C, López-Granados E, Ballestar E Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naïve-to-memory B-cell transition. Nat Commun. Jun. 2015;6:7335.
28.
go back to reference Traver D, Akashi K Lineage commitment and developmental plasticity in early lymphoid progenitor subsets. Adv Immunol. Jan. 2004;83:1–54. Traver D, Akashi K Lineage commitment and developmental plasticity in early lymphoid progenitor subsets. Adv Immunol. Jan. 2004;83:1–54.
29.
go back to reference Blom B, Spits H Development of human lymphoid cells. Annu Rev Immunol. Jan. 2006;24:287–320. Blom B, Spits H Development of human lymphoid cells. Annu Rev Immunol. Jan. 2006;24:287–320.
30.
go back to reference I. Györy, S. Boller, R. Nechanitzky, E. Mandel, S. Pott, E. Liu, and R. Grosschedl, Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells., Genes Dev, vol. 26, no. 7, pp. 668–682, Apr. 2012. I. Györy, S. Boller, R. Nechanitzky, E. Mandel, S. Pott, E. Liu, and R. Grosschedl, Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells., Genes Dev, vol. 26, no. 7, pp. 668–682, Apr. 2012.
31.
go back to reference C. Cobaleda, A. Schebesta, A. Delogu, and M. Busslinger, Pax5: the guardian of B cell identity and function., Nat Immunol, vol. 8, no. 5, pp. 463–470, May 2007. C. Cobaleda, A. Schebesta, A. Delogu, and M. Busslinger, Pax5: the guardian of B cell identity and function., Nat Immunol, vol. 8, no. 5, pp. 463–470, May 2007.
32.
go back to reference Lee S-T, Xiao Y, Muench MO, Xiao J, Fomin ME, Wiencke JK, Zheng S, Dou X, de Smith A, Chokkalingam A, Buffler P, Ma X, Wiemels JL A global DNA methylation and gene expression analysis of early human B-cell development reveals a demethylation signature and transcription factor network. Nucleic Acids Res. 2012;40(22):11339–51.CrossRefPubMedPubMedCentral Lee S-T, Xiao Y, Muench MO, Xiao J, Fomin ME, Wiencke JK, Zheng S, Dou X, de Smith A, Chokkalingam A, Buffler P, Ma X, Wiemels JL A global DNA methylation and gene expression analysis of early human B-cell development reveals a demethylation signature and transcription factor network. Nucleic Acids Res. 2012;40(22):11339–51.CrossRefPubMedPubMedCentral
33.
go back to reference M. Almamun, B. T. Levinson, S. T. Gater, R. D. Schnabel, G. L. Arthur, J. W. Davis, and K. H. Taylor, Genome-wide DNA methylation analysis in precursor B-cells, Epigenetics, vol. 9, no. March, pp. 1588–1595, 2015. M. Almamun, B. T. Levinson, S. T. Gater, R. D. Schnabel, G. L. Arthur, J. W. Davis, and K. H. Taylor, Genome-wide DNA methylation analysis in precursor B-cells, Epigenetics, vol. 9, no. March, pp. 1588–1595, 2015.
34.
go back to reference M. Kulis, A. Merkel, S. Heath, A. C. Queirós, R. P. Schuyler, G. Castellano, R. Beekman, E. Raineri, A. Esteve, G. Clot, N. Verdaguer-Dot, M. Duran-Ferrer, N. Russiñol, R. Vilarrasa-Blasi, S. Ecker, V. Pancaldi, D. Rico, L. Agueda, J. Blanc, D. Richardson, L. Clarke, A. Datta, M. Pascual, X. Agirre, F. Prosper, D. Alignani, B. Paiva, G. Caron, T. Fest, M. O. Muench, M. E. Fomin, S.-T. Lee, J. L. Wiemels, A. Valencia, M. Gut, P. Flicek, H. G. Stunnenberg, R. Siebert, R. Küppers, I. G. Gut, E. Campo, and J. I. Martín-Subero, Whole-genome fingerprint of the DNA methylome during human B cell differentiation., Nat Genet, vol. 47, no. 7, pp. 746–756, Jul. 2015. M. Kulis, A. Merkel, S. Heath, A. C. Queirós, R. P. Schuyler, G. Castellano, R. Beekman, E. Raineri, A. Esteve, G. Clot, N. Verdaguer-Dot, M. Duran-Ferrer, N. Russiñol, R. Vilarrasa-Blasi, S. Ecker, V. Pancaldi, D. Rico, L. Agueda, J. Blanc, D. Richardson, L. Clarke, A. Datta, M. Pascual, X. Agirre, F. Prosper, D. Alignani, B. Paiva, G. Caron, T. Fest, M. O. Muench, M. E. Fomin, S.-T. Lee, J. L. Wiemels, A. Valencia, M. Gut, P. Flicek, H. G. Stunnenberg, R. Siebert, R. Küppers, I. G. Gut, E. Campo, and J. I. Martín-Subero, Whole-genome fingerprint of the DNA methylome during human B cell differentiation., Nat Genet, vol. 47, no. 7, pp. 746–756, Jul. 2015.
35.
go back to reference C. H. Bassing, W. Swat, and F. W. Alt, The mechanism and regulation of chromosomal V(D)J recombination., Cell, vol. 109 Suppl, pp. S45–S55, Apr. 2002. C. H. Bassing, W. Swat, and F. W. Alt, The mechanism and regulation of chromosomal V(D)J recombination., Cell, vol. 109 Suppl, pp. S45–S55, Apr. 2002.
36.
go back to reference G. D. Yancopoulos and F. W. Alt, Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell. 1985. 40: 271-281., J. Immunol., vol. 188, no. 1, pp. 10–20, Jan. 2012. G. D. Yancopoulos and F. W. Alt, Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell. 1985. 40: 271-281., J. Immunol., vol. 188, no. 1, pp. 10–20, Jan. 2012.
37.
go back to reference Selimyan R, Gerstein RM, Ivanova I, Precht P, Subrahmanyam R, Perlot T, Alt FW, Sen R Localized DNA Demethylation at Recombination Intermediates during Immunoglobulin Heavy Chain Gene Assembly,. PLoS Biol. 2013;11(1). Selimyan R, Gerstein RM, Ivanova I, Precht P, Subrahmanyam R, Perlot T, Alt FW, Sen R Localized DNA Demethylation at Recombination Intermediates during Immunoglobulin Heavy Chain Gene Assembly,. PLoS Biol. 2013;11(1).
38.
go back to reference Stanhope-Baker P, Hudson KM, Shaffer AL, Constantinescu A, Schlissel MS Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell. 1996;85(D):887–97.CrossRefPubMed Stanhope-Baker P, Hudson KM, Shaffer AL, Constantinescu A, Schlissel MS Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell. 1996;85(D):887–97.CrossRefPubMed
39.
go back to reference Goldmit M, Ji Y, Skok J, Roldan E, Jung S, Cedar H, Bergman Y Epigenetic ontogeny of the Igk locus during B cell development. Nat Immunol. 2005;6(2):198–203.CrossRefPubMed Goldmit M, Ji Y, Skok J, Roldan E, Jung S, Cedar H, Bergman Y Epigenetic ontogeny of the Igk locus during B cell development. Nat Immunol. 2005;6(2):198–203.CrossRefPubMed
41.
go back to reference K. Johnson, C. Angelin-duclos, S. Park, and K. L. Calame, Changes in Histone Acetylation Are Associated with Differences in Accessibility of V H Gene Segments to V-DJ Recombination during B-Cell Ontogeny and Development Changes in Histone Acetylation Are Associated with Differences in Accessibility of V H Gene S, vol. 23, no. 7, pp. 2438–2450, 2003. K. Johnson, C. Angelin-duclos, S. Park, and K. L. Calame, Changes in Histone Acetylation Are Associated with Differences in Accessibility of V H Gene Segments to V-DJ Recombination during B-Cell Ontogeny and Development Changes in Histone Acetylation Are Associated with Differences in Accessibility of V H Gene S, vol. 23, no. 7, pp. 2438–2450, 2003.
42.
go back to reference K. Johnson, C. Angelin-Duclos, S. Park, and K. L. Calame, Changes in histone acetylation are associated with differences in accessibility of V(H) gene segments to V-DJ recombination during B-cell ontogeny and development., Mol Cell Biol, vol. 23, no. 7, pp. 2438–2450, Apr. 2003. K. Johnson, C. Angelin-Duclos, S. Park, and K. L. Calame, Changes in histone acetylation are associated with differences in accessibility of V(H) gene segments to V-DJ recombination during B-cell ontogeny and development., Mol Cell Biol, vol. 23, no. 7, pp. 2438–2450, Apr. 2003.
43.
go back to reference Nightingale KP, Baumann M, Eberharter A, Mamais A, Becker PB, Boyes J Acetylation increases access of remodelling complexes to their nucleosome targets to enhance initiation of V(D)J recombination. Nucleic Acids Res. 2007;35(18):6311–21.CrossRefPubMedPubMedCentral Nightingale KP, Baumann M, Eberharter A, Mamais A, Becker PB, Boyes J Acetylation increases access of remodelling complexes to their nucleosome targets to enhance initiation of V(D)J recombination. Nucleic Acids Res. 2007;35(18):6311–21.CrossRefPubMedPubMedCentral
44.
go back to reference Ramón-Maiques S, Kuo AJ, Carney D, Matthews AGW, Oettinger M a, Gozani O, Yang W The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc Natl Acad Sci U S A. 2007;104(48):18993–8.CrossRefPubMedPubMedCentral Ramón-Maiques S, Kuo AJ, Carney D, Matthews AGW, Oettinger M a, Gozani O, Yang W The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc Natl Acad Sci U S A. 2007;104(48):18993–8.CrossRefPubMedPubMedCentral
45.
go back to reference Y. Bergman and H. Cedar, Epigenetic control of recombination in the immune system., Semin Immunol, vol. 22, no. 6, pp. 323–329, Dec. 2010. Y. Bergman and H. Cedar, Epigenetic control of recombination in the immune system., Semin Immunol, vol. 22, no. 6, pp. 323–329, Dec. 2010.
46.
go back to reference Matthews AGW, Kuo AJ, Ramón-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, Walter KL, Utz PJ, Shi Y, Kutateladze TG, Yang W, Gozani O, Oettinger MA RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature. Nov. 2007;450(7172):1106–10. Matthews AGW, Kuo AJ, Ramón-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, Walter KL, Utz PJ, Shi Y, Kutateladze TG, Yang W, Gozani O, Oettinger MA RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature. Nov. 2007;450(7172):1106–10.
47.
go back to reference Su I-H, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT, Tarakhovsky A Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol. 2003;4(2):124–31.CrossRefPubMed Su I-H, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT, Tarakhovsky A Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol. 2003;4(2):124–31.CrossRefPubMed
48.
go back to reference T. W. LeBien and T. F. Tedder, B lymphocytes: how they develop and function., Blood, vol. 112, no. 5, pp. 1570–1580, Sep. 2008. T. W. LeBien and T. F. Tedder, B lymphocytes: how they develop and function., Blood, vol. 112, no. 5, pp. 1570–1580, Sep. 2008.
49.
go back to reference P. Nieuwenhuis and D. Opstelten, Functional anatomy of germinal centers., Am J Anat, vol. 170, no. 3, pp. 421–435, Jul. 1984. P. Nieuwenhuis and D. Opstelten, Functional anatomy of germinal centers., Am J Anat, vol. 170, no. 3, pp. 421–435, Jul. 1984.
50.
go back to reference Victora GD, Nussenzweig MC Germinal centers. Annu Rev Immunol. Jan. 2012;30:429–57. Victora GD, Nussenzweig MC Germinal centers. Annu Rev Immunol. Jan. 2012;30:429–57.
51.
go back to reference U. Klein and R. Dalla-Favera, Germinal centres: role in B-cell physiology and malignancy., Nat Rev Immunol, vol. 8, no. 1, pp. 22–33, Jan. 2008. U. Klein and R. Dalla-Favera, Germinal centres: role in B-cell physiology and malignancy., Nat Rev Immunol, vol. 8, no. 1, pp. 22–33, Jan. 2008.
52.
go back to reference A. L. Shaffer, X. Yu, Y. He, J. Boldrick, E. P. Chan, and L. M. Staudt, BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control., Immunity, vol. 13, no. 2, pp. 199–212, Aug. 2000. A. L. Shaffer, X. Yu, Y. He, J. Boldrick, E. P. Chan, and L. M. Staudt, BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control., Immunity, vol. 13, no. 2, pp. 199–212, Aug. 2000.
53.
go back to reference Dhordain P, Lin RJ, Quief S, Lantoine D, Kerckaert JP, Evans RM, Albagli O The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res. 1998;26(20):4645–51.CrossRefPubMedPubMedCentral Dhordain P, Lin RJ, Quief S, Lantoine D, Kerckaert JP, Evans RM, Albagli O The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res. 1998;26(20):4645–51.CrossRefPubMedPubMedCentral
54.
go back to reference C. Lemercier, M.-P. Brocard, F. Puvion-Dutilleul, H.-Y. Kao, O. Albagli, and S. Khochbin, Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor., J Biol Chem, vol. 277, no. 24, pp. 22045–22052, Jun. 2002. C. Lemercier, M.-P. Brocard, F. Puvion-Dutilleul, H.-Y. Kao, O. Albagli, and S. Khochbin, Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor., J Biol Chem, vol. 277, no. 24, pp. 22045–22052, Jun. 2002.
55.
go back to reference Caganova M, Carrisi C, Varano G, Mainoldi F, Zanardi F, Germain PL, George L, Alberghini F, Ferrarini L, Talukder AK, Ponzoni M, Testa G, Nojima T, Doglioni C, Kitamura D, Toellner KM, Su IH, Casola S Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest. 2013;123(12):5009–22.CrossRefPubMedPubMedCentral Caganova M, Carrisi C, Varano G, Mainoldi F, Zanardi F, Germain PL, George L, Alberghini F, Ferrarini L, Talukder AK, Ponzoni M, Testa G, Nojima T, Doglioni C, Kitamura D, Toellner KM, Su IH, Casola S Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest. 2013;123(12):5009–22.CrossRefPubMedPubMedCentral
56.
go back to reference A. Y. Lai, D. Mav, R. Shah, S. A. Grimm, D. Phadke, K. Hatzi, A. Melnick, C. Geigerman, S. E. Sobol, D. L. Jaye, and P. A. Wade, DNA methylation profiling in human B cells reveals immune regulatory elements and epigenetic plasticity at Alu elements during B-cell activation., Genome Res, vol. 23, no. 12, pp. 2030–2041, Dec. 2013. A. Y. Lai, D. Mav, R. Shah, S. A. Grimm, D. Phadke, K. Hatzi, A. Melnick, C. Geigerman, S. E. Sobol, D. L. Jaye, and P. A. Wade, DNA methylation profiling in human B cells reveals immune regulatory elements and epigenetic plasticity at Alu elements during B-cell activation., Genome Res, vol. 23, no. 12, pp. 2030–2041, Dec. 2013.
57.
go back to reference R. Shaknovich, L. Cerchietti, L. Tsikitas, M. Kormaksson, S. De, M. E. Figueroa, G. Ballon, S. N. Yang, N. Weinhold, M. Reimers, T. Clozel, K. Luttrop, T. J. Ekstrom, J. Frank, A. Vasanthakumar, L. a Godley, F. Michor, O. Elemento, and A. Melnick, DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation., Blood, vol. 118, no. 13, pp. 3559–3569, Sep. 2011. R. Shaknovich, L. Cerchietti, L. Tsikitas, M. Kormaksson, S. De, M. E. Figueroa, G. Ballon, S. N. Yang, N. Weinhold, M. Reimers, T. Clozel, K. Luttrop, T. J. Ekstrom, J. Frank, A. Vasanthakumar, L. a Godley, F. Michor, O. Elemento, and A. Melnick, DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation., Blood, vol. 118, no. 13, pp. 3559–3569, Sep. 2011.
58.
go back to reference Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol. Jan. 2014;122:1–57. Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol. Jan. 2014;122:1–57.
59.
go back to reference Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA Editing enzyme. Cell. Sep. 2000;102(5):553–63. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA Editing enzyme. Cell. Sep. 2000;102(5):553–63.
60.
go back to reference Fraenkel S, Mostoslavsky R, Novobrantseva TI, Pelanda R, Chaudhuri J, Esposito G, Jung S, Alt FW, Rajewsky K, Cedar H, Bergman Y Allelic ‘Choice’ Governs Somatic Hypermutation in Vivo at the Immunoglobulin Kappa-Chain Locus. Nat Immunol. Jul. 2007;8(7):715–22. Fraenkel S, Mostoslavsky R, Novobrantseva TI, Pelanda R, Chaudhuri J, Esposito G, Jung S, Alt FW, Rajewsky K, Cedar H, Bergman Y Allelic ‘Choice’ Governs Somatic Hypermutation in Vivo at the Immunoglobulin Kappa-Chain Locus. Nat Immunol. Jul. 2007;8(7):715–22.
61.
go back to reference C. J. Woo, A. Martin, and M. D. Scharff, Induction of somatic hypermutation is associated with modifications in immunoglobulin variable region chromatin., Immunity, vol. 19, no. 4, pp. 479–489, Oct. 2003. C. J. Woo, A. Martin, and M. D. Scharff, Induction of somatic hypermutation is associated with modifications in immunoglobulin variable region chromatin., Immunity, vol. 19, no. 4, pp. 479–489, Oct. 2003.
62.
go back to reference N. a Begum, A. Stanlie, M. Nakata, H. Akiyama, and T. Honjo, The histone chaperone Spt6 is required for activation-induced cytidine deaminase target determination through H3K4me3 regulation., J Biol Chem, vol. 287, no. 39, pp. 32415–32429, Sep. 2012. N. a Begum, A. Stanlie, M. Nakata, H. Akiyama, and T. Honjo, The histone chaperone Spt6 is required for activation-induced cytidine deaminase target determination through H3K4me3 regulation., J Biol Chem, vol. 287, no. 39, pp. 32415–32429, Sep. 2012.
63.
go back to reference Odegard VH, Kim ST, Anderson SM, Shlomchik MJ, Schatz DG Histone modifications associated with somatic hypermutation. Immunity. 2005;23:101–10.CrossRefPubMed Odegard VH, Kim ST, Anderson SM, Shlomchik MJ, Schatz DG Histone modifications associated with somatic hypermutation. Immunity. 2005;23:101–10.CrossRefPubMed
64.
go back to reference Borchert GM, Holton NW, Edwards KA, Vogel LA, Larson ED Histone H2A and H2B are monoubiquitinated at AID-targeted loci. PLoS One. 2010;5(7). Borchert GM, Holton NW, Edwards KA, Vogel LA, Larson ED Histone H2A and H2B are monoubiquitinated at AID-targeted loci. PLoS One. 2010;5(7).
66.
go back to reference Jeevan-Raj BP, Robert I, Heyer V, Page A, Wang JH, Cammas F, Alt FW, Losson R, Reina-San-Martin B Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J Exp Med. 2011;208(8):1649–60.CrossRefPubMedPubMedCentral Jeevan-Raj BP, Robert I, Heyer V, Page A, Wang JH, Cammas F, Alt FW, Losson R, Reina-San-Martin B Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J Exp Med. 2011;208(8):1649–60.CrossRefPubMedPubMedCentral
67.
go back to reference L. Wang, N. Whang, R. Wuerffel, and A. L. Kenter, AID-dependent histone acetylation is detected in immunoglobulin S regions., J Exp Med., vol. 203, no. 1, pp. 215–226, Jan. 2006. L. Wang, N. Whang, R. Wuerffel, and A. L. Kenter, AID-dependent histone acetylation is detected in immunoglobulin S regions., J Exp Med., vol. 203, no. 1, pp. 215–226, Jan. 2006.
68.
go back to reference Z. Xu, Z. Fulop, G. Wu, E. J. Pone, J. Zhang, T. Mai, L. M. Thomas, A. Al-Qahtani, C. A White, S.-R. Park, P. Steinacker, Z. Li, J. Yates, B. Herron, M. Otto, H. Zan, H. Fu, and P. Casali, 14–3-3 adaptor proteins recruit AID to 5′-AGCT-3′-rich switch regions for class switch recombination., Nat Struct Mol Biol, vol. 17, no. 9, pp. 1124–1135, Sep. 2010. Z. Xu, Z. Fulop, G. Wu, E. J. Pone, J. Zhang, T. Mai, L. M. Thomas, A. Al-Qahtani, C. A White, S.-R. Park, P. Steinacker, Z. Li, J. Yates, B. Herron, M. Otto, H. Zan, H. Fu, and P. Casali, 14–3-3 adaptor proteins recruit AID to 5′-AGCT-3′-rich switch regions for class switch recombination., Nat Struct Mol Biol, vol. 17, no. 9, pp. 1124–1135, Sep. 2010.
69.
go back to reference J. Yu, C. Angelin-Duclos, J. Greenwood, J. Liao, and K. Calame, Transcriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase., Mol Cell Biol, vol. 20, no. 7, pp. 2592–2603, Apr. 2000. J. Yu, C. Angelin-Duclos, J. Greenwood, J. Liao, and K. Calame, Transcriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase., Mol Cell Biol, vol. 20, no. 7, pp. 2592–2603, Apr. 2000.
70.
go back to reference I. Gyory, J. Wu, G. Fejér, E. Seto, and K. L. Wright, PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing., Nat Immunol, vol. 5, no. 3, pp. 299–308, Mar. 2004. I. Gyory, J. Wu, G. Fejér, E. Seto, and K. L. Wright, PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing., Nat Immunol, vol. 5, no. 3, pp. 299–308, Mar. 2004.
71.
go back to reference Su S-T, Ying H-Y, Chiu Y-K, Lin F-R, Chen M-Y, Lin K-I Involvement of histone demethylase LSD1 in Blimp-1-mediated gene repression during plasma cell differentiation. Mol Cell Biol. 2009;29(6):1421–31.CrossRefPubMedPubMedCentral Su S-T, Ying H-Y, Chiu Y-K, Lin F-R, Chen M-Y, Lin K-I Involvement of histone demethylase LSD1 in Blimp-1-mediated gene repression during plasma cell differentiation. Mol Cell Biol. 2009;29(6):1421–31.CrossRefPubMedPubMedCentral
Metadata
Title
Dissecting Epigenetic Dysregulation of Primary Antibody Deficiencies
Authors
Virginia C. Rodríguez-Cortez
Lucia del Pino-Molina
Javier Rodríguez-Ubreva
Eduardo López-Granados
Esteban Ballestar
Publication date
01-05-2016
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue Special Issue 1/2016
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-016-0267-4

Other articles of this Special Issue 1/2016

Journal of Clinical Immunology 1/2016 Go to the issue